

TEST REPORT

Product Name Model Numbe FCC ID	er	: Smart Terminal : NG-TC2 : 2AJ9T-10601
Prepared for Address	:	ZKTECO CO., LTD. No.32, Pingshan Industrial Avenue, Tangxia Town, Dongguan City, Guangdong Province, China 523728
Prepared by Address	:	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China
		Tel: (0755) 26954280 Fax: (0755) 26954282
•	:	ENS2411120146W00101R November 19, 2024 to December 9, 2024

Date of issue : December 10, 2024

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Table of Contents

1	EUT	TECHNICAL DESCRIPTION	. 4
2	SUN	IMARY OF TEST RESULT	6
3	TES	T METHODOLOGY	7
	3.1 3.2 3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	7
4	FAC	CILITIES AND ACCREDITATIONS	. 9
	4.1 4.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	
5	TES	ST SYSTEM UNCERTAINTY	10
6	SET	UP OF EQUIPMENT UNDER TEST	
	6.1 6.2 6.3 6.4 6.5	RADIO FREQUENCY TEST SETUP 1 RADIO FREQUENCY TEST SETUP 2 CONDUCTED EMISSION TEST SETUP BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT	. 11 . 12 . 13 . 13
7	TES	T REQUIREMENTS	
	7.1 7.2 7.3	OCCUPIED BANDWIDTH RADIATED SPURIOUS EMISSION CONDUCTED EMISSION TEST	16 26
8	ANT	TENNA APPLICATION	29

TEST RESULT CERTIFICATION

Applicant	:	ZKTECO CO., LTD.
Address	:	No.32, Pingshan Industrial Avenue, Tangxia Town, Dongguan City, Guangdong Province, China 523728
Manufacturer	:	ZKTECO CO., LTD.
Address	:	No.32, Pingshan Industrial Avenue, Tangxia Town, Dongguan City, Guangdong Province, China 523728
EUT	:	Smart Terminal
Model Name	:	NG-TC2
Trademark	:	

Measurement Procedure Used:

APPLICABLE STANDARDS			
STANDARD TEST RESULT			
FCC 47 CFR Part 2, Subpart J PASS FCC 47 CFR Part 15, Subpart C PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 15.207&15.209.

The test results of this report relate only to the tested sample identified in this report.

 Date of Test :
 November 19, 2024 to December 9, 2024

 Prepared by :
 GwmyJM Zhu

 Guangjun Zhu/Editor
 Joe Xia/Editor

 Joe Xia/Editor
 Joe Xia/Editor

 Joe Xia/Editor
 Joe Xia/Editor

Lisa Wang/Manager

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

1 EUT TECHNICAL DESCRIPTION

Product:	Smart Terminal	
Model Number:	NG-TC2	
Power Supply	DC 12V from adapter	
Test Voltage	AC 120V/60Hz	
Adapter	MODEL:FJ-SW124S1201500E INPUT: 100-240V~, 50Hz/60Hz, 0.6A Max OUTPUT:12.0V, 1.5A, 18.0W	
Frequency Range:	125KHz	
Antenna Type:	Induction coil antenna	
Antenna Gain:	0 dBi Note: The antenna information provided by the manufacturer will have a certain impact on the test results.	
Temperature Range:	0°C ~ +45°C	

Note: for more details, please refer to the User's manual of the EUT.

Modified Information

Version	Report No.	Revision Date	Summary
Ver1.0	ENS2411120146W00101R	/	Original Report

2 SUMMARY OF TEST RESULT

FCC Part Clause	Test Parameter	Verdict	Remark
2.1049	Occupied Bandwidth	PASS	
15.209	Radiated Spurious Emissions	PASS	
15.207	Conducted Emission PASS		
NOTE1: N/A (Not Applicable) NOTE2: The time on the test data photo is wrong, The correct test time is as described on the report.If there is fraud, Our laboratory assumes full responsibility.			

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AJ9T-10601 filing to comply with Section 15.225 of the FCC Part 15, Subpart C Rules.

TEST METHODOLOGY 3

3.1 **GENERAL DESCRIPTION OF APPLIED STANDARDS**

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C

3.2 MEASUREMENT EQUIPMENT USED

3.2.1 **Conducted Emission Test Equipment**

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.
EMI Test Receiver	Rohde & Schwarz	ESCI	101045	2024/5/10
AMN	Schwarzbeck	NNLK 8129	8129203	2024/5/11
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100107	2024/5/10
Voltage Probe	Rohde & Schwarz	TK9416	N/A	2024/5/11
AMN	Rohde & Schwarz	ESH3-Z5	100191	2024/5/10

Radiated Emission Test Equipment 3.2.2

EQUIPMENT	MFR	MODEL	SERIAL	LAST CAL.
TYPE		NUMBER	NUMBER	
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	2024/5/10
Pre-Amplifier	HP	8447F	2944A07999	2024/5/11
Bilog Antenna	Schwarzbeck	VULB9163	141	2024/6/26
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	2024/5/12
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1177	2024/5/12
Horn Antenna	Schwarzbeck	BBHA9170	9170-399	2024/5/12
Cable	Schwarzbeck	AK9513	ACRX1	2024/5/11
Cable	Rosenberger	N/A	FP2RX2	2024/5/11
Cable	Schwarzbeck	AK9513	CRPX1	2024/5/11
Cable	Schwarzbeck	AK9513	CRRX2	2024/5/11

3.2.3 **Radio Frequency Test Equipment**

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.
Signal Analyzer	Agilent	N9010A	MY53470879	2024/5/10
Vector Signal Generater	Agilent	N5182B	MY53050878	2024/5/10
Analog Signal Generator	Agilent	N5171B	MY53050553	2024/5/10
RF Control Unit(Power Meter)	Tonscend	JS0806-2	/	2024/5/10
Temperature&Humidi ty Chamber	ESPEC	EL-02KA	12107166	2024/5/10

Remark: Each piece of equipment is scheduled for calibration once a year.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

3.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting mode is programmed.

4 FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

4.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS
	The Certificate Registration Number is L2291.
	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC
	Designation Number: CN1204
	Test Firm Registration Number: 882943
	Accredited by A2LA
	The Certificate Number is 4321.01.
	Accredited by Industry Canada
	The Conformity Assessment Body Identifier is CN0008
Name of Firm	: EMTEK (SHENZHEN) CO., LTD.
Site Location	: Building 69, Majialong Industry Zone,
	Nanshan District, Shenzhen, Guangdong, China
	 The Certificate Number is 4321.01. Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008 EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone,

5 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
All emission, radiated	±3dB
Temperature	±0.5°C
Humidity	±3%

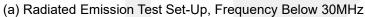
Measurement Uncertainty for a level of Confidence of 95%

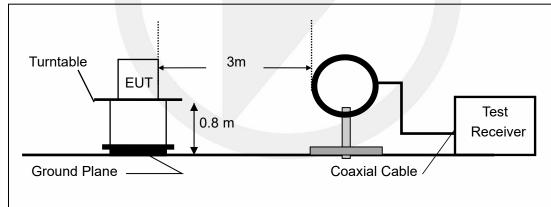
6 SETUP OF EQUIPMENT UNDER TEST

6.1 RADIO FREQUENCY TEST SETUP 1

The component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

6.2 RADIO FREQUENCY TEST SETUP 2

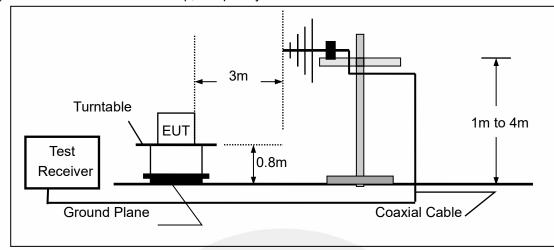

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.


Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

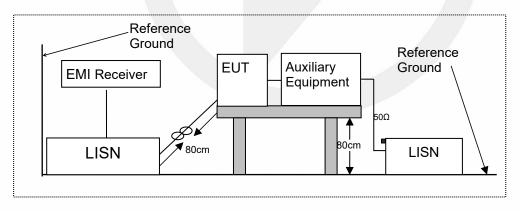
Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).



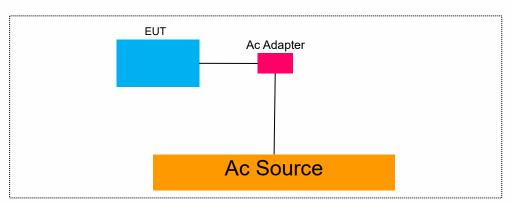
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2411120146W00101R


(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

6.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
	1	1	/

Auxiliary Cable List and Details

Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite	
/	1	1	1	

Auxiliary Equipment List and Details								
Description	Manufacturer	Model	Serial Number					
1	1	1	1					

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. Unless otherwise denoted as EUT in *[Remark]* column , device(s) used in tested system is a support equipment

7 TEST REQUIREMENTS

7.1 OCCUPIED BANDWIDTH

7.1.1 Applicable Standard

According to FCC Part 2.1049

7.1.2 Conformance Limit

No limit requirement.

7.1.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.1.4 Test Procedure

The EUT was operating in transmit mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 1% occupied bandwidth (30Hz).

Set the video bandwidth (VBW) =3 times RBW .

Set Span= approximately 2 to 3 times the occupied bandwidth

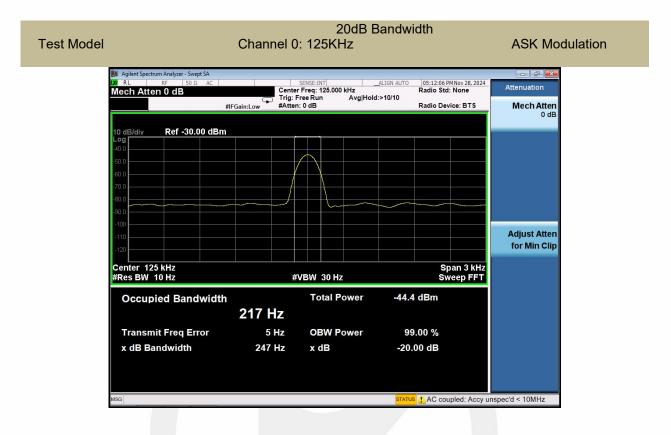
Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 99% down one side of the emission. Reset the markerdelta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 99% bandwidth of the emission.

If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.


Measure and record the results in the test report.

7.1.5 Test Results

Temperature : Humidity :		25℃ 65 %	Test Da Test By		ember 28,20 LHJ	024			
numuny .		05 /0	Test D	ý.	LIIJ				
Modulation Mode	Channel Number	Channel Fr (KH		-20dB Measurement Bandwidth (kHz)	Limit (kHz)	Verdict			
ASK	0	12	5	0.247	N/A	PASS			
Note: N/A (Not Applicable)									

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.209

7.2.2 Conformance Limit

	FCC Part 15.209										
	Field Streng	gth	Field Strength Limitation Frequency tion at 3m								
Frequency	Limitation		Meas	urement Dist							
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)							
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80							
0.490 – 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40							
1.705 – 30.00	30	30m	100* 30	20log 30 + 40							
30.0 - 88.0	100	3m	100	20log 100							
88.0 - 216.0	150	3m	150	20log 150							
216.0 - 960.0	200	3m	200	20log 200							
Above 960.0	500	3m	500	20log 500							

According to FCC Part15.205, Restricted bands

_										
MHz	MHz	MHz	GHz							
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15							
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46							
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75							
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5							
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2							
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5							
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7							
6.26775-6.26825	123-138	2200-2300	14.47-14.5							
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2							
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4							
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12							
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0							
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8							
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5							
12.57675-12.57725	322-335.4	3600-4400	(2)							
13.36-13.41										

Remark: 1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of ξ 15.205, and the emissions located in restricted bands also comply with 15.209 limit.

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

7.2.3 Test Configuration

Test according to clause 6.2 radio frequency test setup 2

7.2.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30KHz)

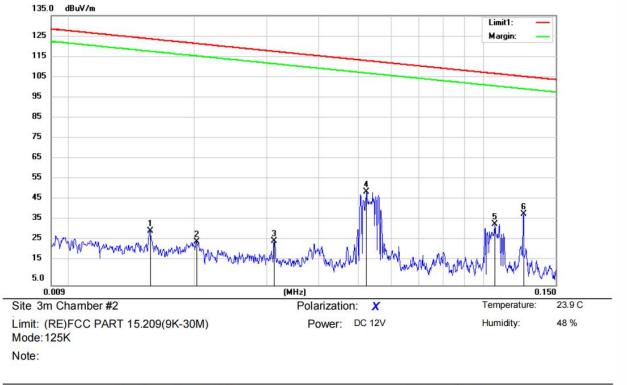
 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

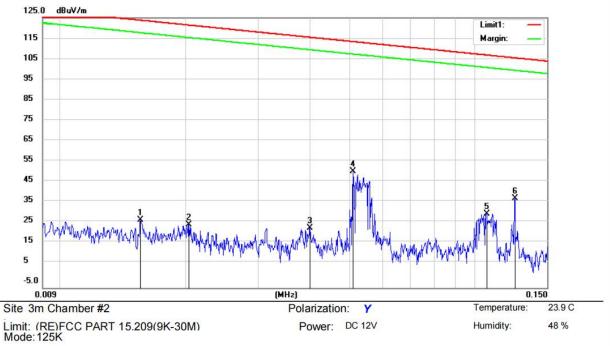
Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.


Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

7.2.5 Test Results

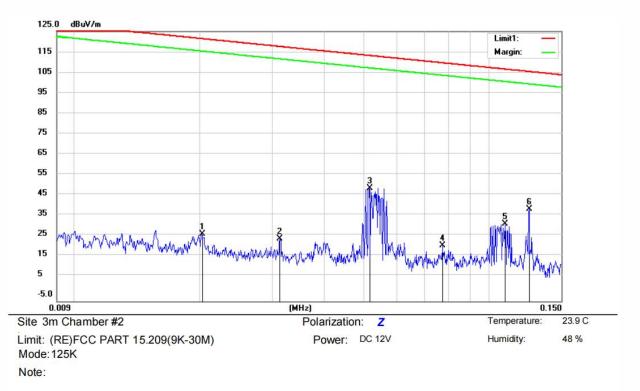
Spurious Emission below 150kHz (9KHz to 150kHz)



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0156	31.19	0.00	31.19	123.72	-92.53	peak			
2	0.0202	26.01	0.00	26.01	121.48	-95.47	peak			
3	0.0312	26.20	0.00	26.20	117.71	-91.51	peak			
4 *	0.0522	49.88	0.00	49.88	113.24	-63.36	peak			
5	0.1067	34.47	0.00	34.47	107.03	-72.56	peak			
6	0.1253	39.23	0.00	39.23	105.64	-66.41	peak			

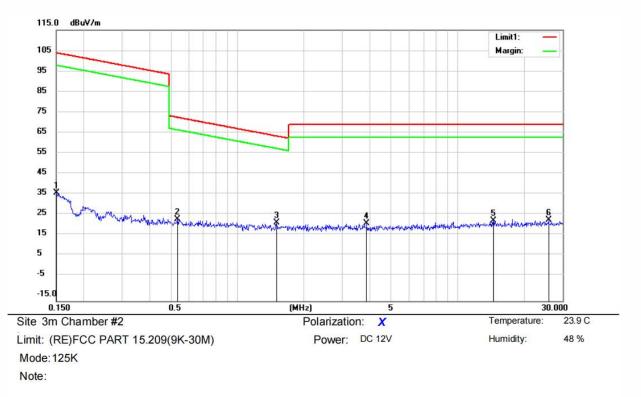
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

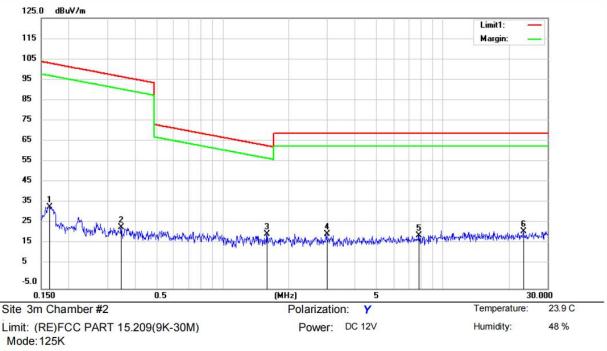
Report No. ENS2411120146W00101R


Note:

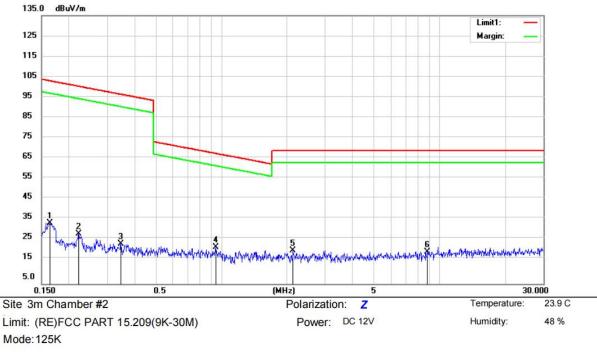
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0155	27.56	0.00	27.56	123.78	-96.22	peak			
2	0.0203	25.32	0.00	25.32	121.44	-96.12	peak			
3	0.0400	23.91	0.00	23.91	115.55	-91.64	peak			
4 *	0.0507	50.97	0.00	50.97	113.49	-62.52	peak			
5	0.1070	30.59	0.00	30.59	107.01	-76.42	peak			
6	0.1253	38.16	0.00	38.16	105.64	-67.48	peak			
							1.05			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn


Report No. ENS2411120146W00101R


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.0202	27.43	0.00	27.43	121.48	-94.05	peak			
2	0.0312	25.00	0.00	25.00	117.71	-92.71	peak			
3 *	0.0514	49.48	0.00	49.48	113.37	-63.89	peak			
4	0.0772	21.71	0.00	21.71	109.84	-88.13	peak			
5	0.1095	32.23	0.00	32.23	106.81	-74.58	peak			
6	0.1253	39.36	0.00	39.36	105.64	-66.28	peak			

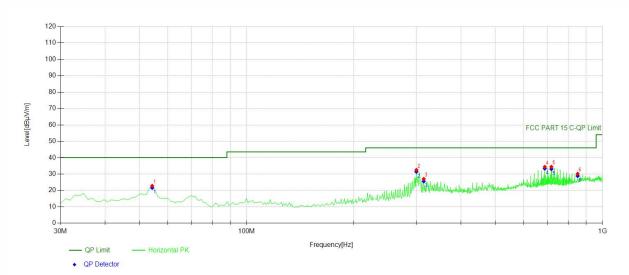
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		0.1508	36.75	0.00	36.75	104.03	-67.28	peak			
2		0.5322	24.13	0.00	24.13	73.08	-48.95	peak			
3	*	1.5033	22.58	0.00	22.58	64.09	- <mark>41</mark> .51	peak			
4		3.8603	22.22	0.00	22.22	69.50	- 4 7.28	peak			
5		14.5171	23.40	0.00	23.40	69.50	-46.10	peak			
6		25.8638	23.99	0.00	23.99	69.50	-45.51	peak			


Note:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	0.1633	34.29	0.00	34.29	103.34	-69.05	peak			
	0.3465	24.34	0.00	24.34	96.81	-72.47	peak			
*	1.5935	21.05	0.00	21.05	63.59	-42.54	peak			
	2.9776	21.08	0.00	21.08	69.50	-48.42	peak			
	7.8102	20.45	0.00	20.45	69.50	-49.05	peak			
	23.2633	22.36	0.00	22.36	69.50	-47.14	peak			
	Mk.	MHz 0.1633 0.3465 * 1.5935 2.9776 7.8102	Mk. Freq. Level MHz dBuV 0.1633 34.29 0.3465 24.34 * 1.5935 21.05 2.9776 21.08 7.8102 20.45	Mk. Freq. Level Factor MHz dBuV dB 0.1633 34.29 0.00 0.3465 24.34 0.00 * 1.5935 21.05 0.00 2.9776 21.08 0.00 7.8102 20.45 0.00	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 0.1633 34.29 0.00 34.29 0.3465 24.34 0.00 24.34 * 1.5935 21.05 0.00 21.05 2.9776 21.08 0.00 20.45	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 0.1633 34.29 0.00 34.29 103.34 0.3465 24.34 0.00 24.34 96.81 * 1.5935 21.05 0.00 21.05 63.59 2.9776 21.08 0.00 21.08 69.50 7.8102 20.45 0.00 20.45 69.50	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 0.1633 34.29 0.00 34.29 103.34 -69.05 peak 0.3465 24.34 0.00 24.34 96.81 -72.47 peak * 1.5935 21.05 0.00 21.05 63.59 -42.54 peak 2.9776 21.08 0.00 21.08 69.50 -48.42 peak 7.8102 20.45 0.00 20.45 69.50 -49.05 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 0.1633 34.29 0.00 34.29 103.34 -69.05 peak 0.3465 24.34 0.00 24.34 96.81 -72.47 peak * 1.5935 21.05 0.00 21.05 63.59 -42.54 peak 2.9776 21.08 0.00 21.08 69.50 -48.42 peak 7.8102 20.45 0.00 20.45 69.50 -49.05 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB Detector cm degree 0.1633 34.29 0.00 34.29 103.34 -69.05 peak - - 0.3465 24.34 0.00 24.34 96.81 -72.47 peak - - * 1.5935 21.05 0.00 21.05 63.59 -42.54 peak - - 2.9776 21.08 0.00 20.45 69.50 -49.05 peak - - 7.8102 20.45 0.00 20.45 69.50 -49.05 peak - -

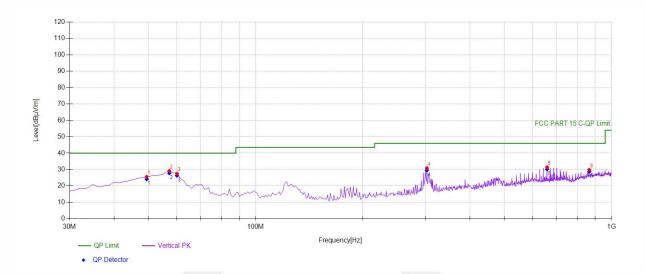
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2411120146W00101R



N	ote:	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	0.1633	34.29	0.00	34.29	103.34	-69.05	peak			
2	0.2220	29.31	0.00	29.31	100.67	-71.36	peak			
3	0.3465	24.34	0.00	24.34	96.81	-72.47	peak			
4 *	0.9431	22.61	0.00	22.61	68.13	-45.52	peak			
5	2.1326	21.24	0.00	21.24	69.50	-48.26	peak			
6	8.8223	20.59	0.00	20.59	69.50	-48.91	peak			


■ Spurious Emission Above 30MHz (30MHz to 1GHz)

Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity	
1	54.2743	39.45	-16.66	22.79	PK	40.00	17.21	Horizontal	
2	299.929	46.49	-13.99	32.50	PK	46.00	13.50	Horizontal	
3	314.494	40.76	-13.77	26.99	PK	46.00	19.01	Horizontal	
4	688.318	40.99	-6.63	34.36	PK	46.00	11.64	Horizontal	
5	718.418	40.59	-6.18	34.41	PK	46.00	11.59	Horizontal	
6	851.441	34.30	-4.15	30.15	PK	46.00	15.85	Horizontal	
				12					

Final Data List						
NO.	O. Freq. [MHz]		QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	
1	54.2743	-16.66	21.59	40.00	18.41	
2	299.9299	-13.99	31.40	46.00	14.60	
3	314.4945	-13.77	25.56	46.00	20.44	
4	688.3183	-6.63	33.35	46.00	12.65	
5	718.4184	-6.18	33.08	46.00	12.92	
6	851.4414	-4.15	28.82	46.00	17.18	

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	49.4194	41.77	-16.17	25.60	PK	40.00	14.40	Vertical
2	57.1872	46.24	-17.06	29.18	PK	40.00	10.82	Vertical
3	60.1001	44.98	-17.46	27.52	PK	40.00	12.48	Vertical
4	302.842	44.84	-13.96	30.88	PK	46.00	15.12	Vertical
5	659.189	38.45	-6.99	31.46	PK	46.00	14.54	Vertical
6	866.006	33.72	-3.80	29.92	PK	46.00	16.08	Vertical

Final Data List							
NO.	NO. Freq. [MHz]		QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]		
1	49.4194	-16.17	24.12	40.00	15.88		
2	57.1872	-17.06	27.80	40.00	12.20		
3	60.1001	-17.46	26.32	40.00	13.68		
4	302.8428	-13.96	29.59	46.00	16.41		
5	659.1892	-6.99	30.17	46.00	15.83		
6	866.006	-3.80	28.81	46.00	17.19		

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Report No. ENS2411120146W00101R

7.3 CONDUCTED EMISSION TEST

7.3.1 Applicable Standard

According to FCC Part 15.207(a)

7.3.2 Conformance Limit

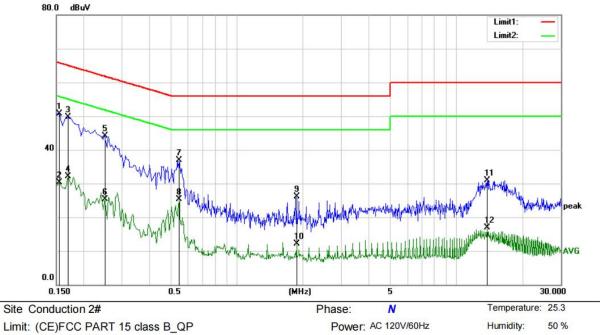
Conducted Emission Limit						
Frequency(MHz)	Quasi-peak	Average				
0.15-0.5	66-56	56-46				
0.5-5.0	56	46				
5.0-30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.3.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

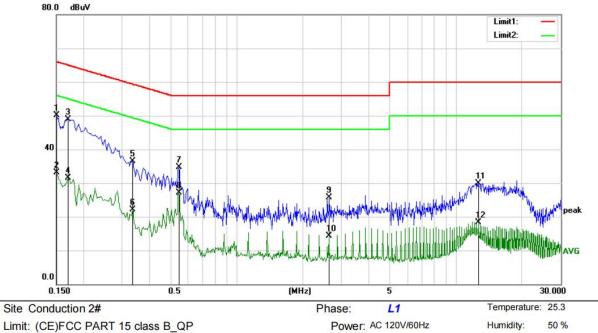
7.3.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

7.3.5 Test Results

Pass

The 120V &240V voltagehave been tested, and the worst result recorded was report as below:



Limit: (CE)FCC PART 15 class B_QP Mode: RF ID(125Khz) Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1550	39.98	10.69	50.67	65.73	-15.06	QP	
2		0.1550	19.56	10.69	30.25	55.73	-25.48	AVG	
3		0.1700	38.94	10.68	49.62	64.96	-15.34	QP	
4		0.1700	21.44	10.68	32.12	54.96	-22.84	AVG	
5		0.2500	33.52	10.68	44.20	61.76	-17.56	QP	
6		0.2500	14.72	10.68	25.40	51.76	-26.36	AVG	
7		0.5450	26.13	10.74	36.87	56.00	-19.13	QP	
8		0.5450	14.50	10.74	25.24	46.00	-20.76	AVG	
9		1.8750	15.39	10.74	26.13	56.00	-29.87	QP	
10		1.8750	1.39	10.74	12.13	46.00	-33.87	AVG	
11		13.8550	20.13	10.73	30.86	60.00	-29.14	QP	
12		13.8550	6.22	10.73	16.95	50.00	-33.05	AVG	

Limit: (CE)FCC PART 15 class Mode: RF ID(125Khz) Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit .	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	39.39	10.69	50.08	66.00	- <mark>15.9</mark> 2	QP	
2		0.1500	22.42	10.69	33.11	56.00	-22.89	AVG	
3		0.1700	38.19	10.68	48.87	64.96	-16.09	QP	
4		0.1700	20.75	10.68	31.43	54.96	-23.53	AVG	
5	-	0.3350	25.86	10.70	36.56	59.33	-22.77	QP	
6		0.3350	11.42	10.70	22.12	49.33	-27.21	AVG	
7		0.5450	23.88	10.74	34.62	56.00	-21.38	QP	
8		0.5450	16.40	10.74	27.14	46.00	-18.86	AVG	
9		2.6250	14.98	10.68	25.66	56.00	-30.34	QP	
10		2.6250	3.59	10.68	14.27	46.00	- <mark>31.73</mark>	AVG	
11	4	12.6050	19.16	10.70	29.86	60.00	-30.14	QP	
12		12.6050	7.60	10.70	18.30	50.00	-31.70	AVG	

8 ANTENNA APPLICATION

8.1.1 Antenna Requirement

Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d) must be measured at the installation site. However, the

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.1.2 Result

The EUT'S antenna is coil antenna, The antenna's gain is 0dBi and meets the requirement. and the antenna can't be replaced by the user, which in accordance to section 15.203.