

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN: $1016\,$

Communication System: UID 0 - CW; Frequency: 3500 MHz, Frequency: 3400 MHz, Frequency: 3600 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 3.33$ S/m; $\epsilon_r = 50.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 3400 MHz; $\sigma = 3.23$ S/m; $\varepsilon_r = 50.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 3600 MHz; σ = 3.43 S/m; ϵ_r = 50.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.46, 7.46, 7.46) @ 3500 MHz, ConvF(7.46, 7.46, 7.46) @ 3400 MHz, ConvF(7.31, 7.31, 7.31) @ 3600 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan ,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.24 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 6.4 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 74.9%

Maximum value of SAR (measured) = 12.0 W/kg

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3400MHz/Zoom Scan ,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.85 V/m; Power Drift = -0.05 dB

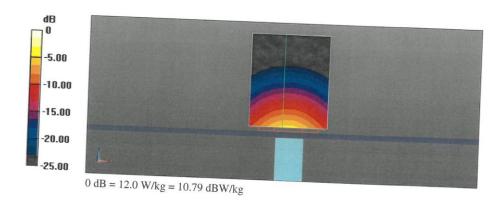
Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 6.4 W/kg; SAR(10 g) = 2.38 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

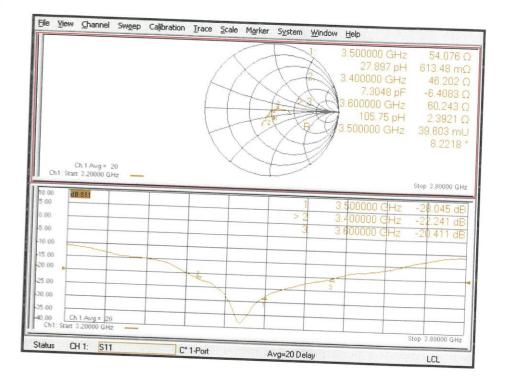
Ratio of SAR at M2 to SAR at M1 = 75.3%

Maximum value of SAR (measured) = 12.0 W/kg


Certificate No: D3500V2-1016_Jul20

Page 11 of 13

Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3600MHz/Zoom Scan , dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.04 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 6.17 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.4% Maximum value of SAR (measured) = 11.6 W/kg



Certificate No: D3500V2-1016_Jul20

Page 12 of 13

Impedance Measurement Plot for Body TSL

Certificate No: D3500V2-1016_Jul20

Page 13 of 13

5G Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client CTTL-BJ (Auden)

Certificate No: D5GHzV2-1060_Jul20

Calibration procedure(s) QA CAL-22.v5 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: July 27, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards DB Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) SN: 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. 217-03104) Apr-21 SR: 3503 31-Dec-19 (No. 247-03104) Apr-21 SR: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Feb-19) In house check: Oct-18 (Power sensor HP 8481A SN: MY41092317 O7-Oct-15 (in house check Oct-18) In house check: Oct-18 (Power Sensor HP 8481A SN: MY41092317 SN: US41080477 31-Mar-14 (in house check Oct-18) In house check: Oct-18 (Power Sensor HP 8481A SN: MY41092317 Name Function Signature	Dbject	D5GHzV2 - SN:1	060	
Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: July 27, 2020 Chis calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards DB# Cal Date (Certificate No.) Scheduled Calibration Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-291 SN: 103244 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3033 31-Dec-19 (No. EX3-3503_Dec19) Dec-20 Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Peb-19) In house check: Oct-18 SN: WY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-18 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-18 Network Analyzer Agilent E8358A SN: US3108477 31-Mar-14 (in house check Oct-19) In house check: Oct-18 In house check: Oct-18 Network Analyzer Agilent E8358A	55,000	DOGITEVE OIV.	000	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03101) Apr-21 Reference Probe EX3DV4 SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-18) In house check: Oct-2 Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-18) In house check: Oct-3 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-3 Network Analyzer Agilent E8358A Name Function Signature	Calibration procedure(s)		edure for SAR Validation Sources	between 3-10 GHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP SN: 104778 01-Apr-20 (No. 217-03100/03101) Apr-21 Prower sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Prower sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03104) Apr-21 Reference 20 dB Attenuator SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Prower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature	Calibration date:	July 27, 2020		
Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration	This calibration certificate docume	nts the traceability to nati	ional standards, which realize the physical un	its of measurements (SI).
Calibration Equipment used (M&TE critical for calibration)	The measurements and the uncert	ainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
Power meter NRP	All calibrations have been conduct	ed in the closed laborator	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
SN: 104778	Calibration Equipment used (M&TE	E critical for calibration)		
Power sensor NRP-Z91 SN: 103244 01-Apr-20 (No. 217-03100) Apr-21 Power sensor NRP-Z91 SN: 103245 01-Apr-20 (No. 217-03101) Apr-21 Reference 20 dB Attenuator SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21 Type-N mismatch combination SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21 Reference Probe EX3DV4 SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20 DAE4 SN: 601 27-Dec-19 (No. DAE4-601_Dec19) Dec-20 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Feb-19) In house check: Oct-2 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature	Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
SN: 103245	Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
SN: BH9394 (20k) 31-Mar-20 (No. 217-03106) Apr-21	Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
SN: 310982 / 06327 31-Mar-20 (No. 217-03104) Apr-21	Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
SN: 3503 31-Dec-19 (No. EX3-3503_Dec19) Dec-20	Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Date	***			
D # Check Date (in house) Scheduled Check				
No. SN: GB39512475 SN: GB39512475 SN: GB39512475 SN: US37292783 O7-Oct-15 (in house check Oct-18) In house check: Oct-2 Oct-2 Or-Oct-15 (in house check Oct-18) In house check: Oct-2 Oct-2 Or-Oct-15 (in house check Oct-18) In house check: Oct-2 Or-Oct-15 (in house check Oct-18) In house check: Oct-2 Or-Oct-15 (in house check Oct-18) In house check: Oct-2	DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-18) In house check: Oct-2 (ort-2 ort-2 or	Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A SN: MY41092317 O7-Oct-15 (in house check Oct-18) In house check: Oct-2 In h	Power meter E4419B			In house check: Oct-20
RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-18) In house check: Oct-2 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature				In house check: Oct-20
Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-19) In house check: Oct-2 Name Function Signature			지하는 1 시간 하는 아이지 않는데 가장 하는데 하는데 되었다면 하는데 하는데 하는데 없는데 없는데 되었다.	In house check: Oct-20
Name Function Signature				In house check: Oct-20
11.	Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house check: Oct-20
Calibrated by: Michael Weber Laboratory Technician		Name	Function	Signature
	Calibrated by:	Michael Weber	Laboratory Technician	M. Webet
Approved by: Katja Pokovic Technical Manager	Approved by:	Katja Pokovic	Technical Manager	elle

Certificate No: D5GHzV2-1060_Jul20

Page 1 of 23

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1060_Jul20

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.47 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.3 ± 6 %	4.57 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 4 of 23

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

The following parameters and salediations were app.	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.0 ± 6 %	4.77 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 5 of 23

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

the following parameters and datediations were appropriate	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 6 of 23

Body TSL parameters at 5200 MHz The following parameters and calculations were applied.

tie following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.30 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

ne following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.7 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.8 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 7 of 23

Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

The following parameters and earlies and earlies appear	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.60 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.5 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.87 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 8 of 23

Body TSL parameters at 5600 MHz The following parameters and calculations were applied.

tie following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	6.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.72 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.22 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Page 9 of 23

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	6.29 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.42 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1060_Jul20

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	48.8 Ω - 6.5 jΩ	
Return Loss	- 23.6 dB	

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.0 Ω - 4.6 jΩ	
Return Loss	- 25.7 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	47.2 Ω - 3.5 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	49.8 Ω - 3.6 jΩ
Return Loss	- 28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	54.4 Ω + 0.4 j Ω
Return Loss	- 27.5 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.1 Ω - 1.3 j Ω	
Return Loss	- 32.3 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.2 Ω - 3.1 jΩ
Return Loss	- 29.6 dB

Certificate No: D5GHzV2-1060_Jul20

Page 11 of 23

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	48.4 Ω - 5.5 jΩ	
Return Loss	- 24.6 dB	

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	47.2 Ω - 3.2 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	47.0 Ω - 2.0 jΩ
Return Loss	- 28.5 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 2.4 jΩ	
Return Loss	- 32.3 dB	

Certificate No: D5GHzV2-1060_Jul20

Page 12 of 23

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$54.5~\Omega + 0.4~\mathrm{j}\Omega$	
Return Loss	- 27.3 dB	

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	52.5 Ω - 0.8 jΩ
Return Loss	- 32.0 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.1 Ω - 2.4 jΩ
Return Loss	- 30.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D5GHzV2-1060_Jul20

Page 13 of 23

DASY5 Validation Report for Head TSL

Date: 20.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.47$ S/m; $\epsilon_r=35.4;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=4.52$ S/m; $\epsilon_r=35.4;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5250 MHz; $\sigma=4.52$ S/m; $\epsilon_r=35.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.57$ S/m; $\epsilon_r=35.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.77$ S/m; $\epsilon_r=35.9$; $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.88$ S/m; $\epsilon_r=34.9;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5750 MHz; $\sigma=5.03$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.09$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.09$ S/m; $\epsilon_r=34.6;$ $\rho=1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.61 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.4 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.7%

Maximum value of SAR (measured) = 18.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 79.07 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 28.2 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.30 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 69.5%

Maximum value of SAR (measured) = 18.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 14 of 23

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.56 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.33 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 68.3%

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.44 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.42 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 65.9%

Maximum value of SAR (measured) = 20.7 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 78.89 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 66.8%

Maximum value of SAR (measured) = 20.2 W/kg

 $Dipole\ Calibration\ for\ Head\ Tissue/Pin=100mW,\ dist=10mm,\ f=5750\ MHz/Zoom\ Scan,$

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.69 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 19.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

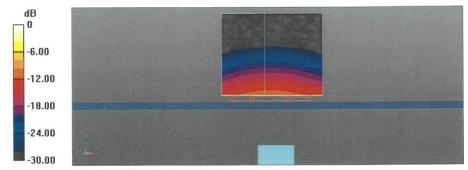
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.77 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.28 W/kg

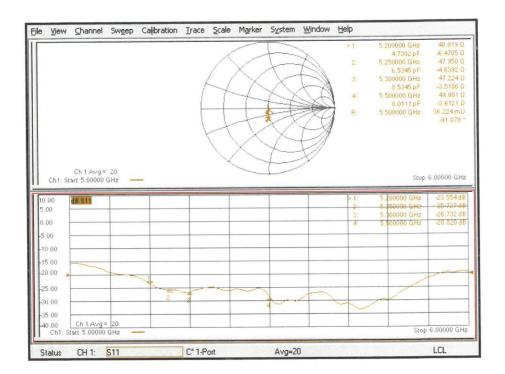
Smallest distance from peaks to all points 3 dB below = 7.2 mm


Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 20.1 W/kg

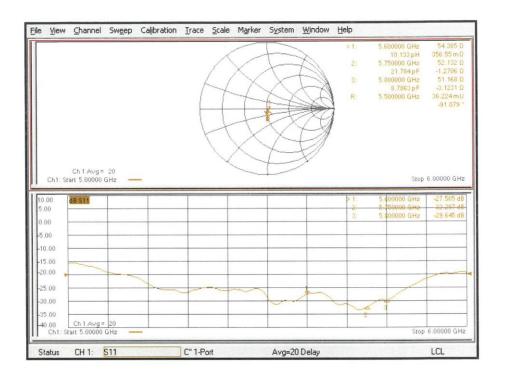
Certificate No: D5GHzV2-1060_Jul20

Page 15 of 23


0 dB = 20.7 W/kg = 13.16 dBW/kg

Certificate No: D5GHzV2-1060_Jul20

Page 16 of 23


Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz)

Certificate No: D5GHzV2-1060_Jul20

Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz)

Certificate No: D5GHzV2-1060_Jul20

Page 18 of 23

DASY5 Validation Report for Body TSL

Date: 27.07.2020

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.46$ S/m; $\varepsilon_r = 47.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 5.53$ S/m; $\varepsilon_r = 47.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.6$ S/m; $\varepsilon_r = 47.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.87$ S/m; $\varepsilon_r = 47.2$; $\rho = 1000$ kg/m³.

Medium parameters used: f = 5500 MHz; σ = 5.87 S/m; ϵ_r = 47.2; ρ = 1000 kg/m³ , Medium parameters used: f = 5600 MHz; σ = 6.01 S/m; ϵ_r = 47; ρ = 1000 kg/m³ ,

Medium parameters used: f = 5750 MHz; σ = 6.22 S/m; ϵ_r = 46.8; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.29 S/m; ϵ_r = 46.7; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.29, 5.29, 5.29) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(5.23, 5.23, 5.23) @ 5300 MHz, ConvF(4.84, 4.84, 4.84) @ 5500 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.58 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 7.3 W/kg; SAR(10 g) = 2.04 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 67.4%

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.59 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.09 W/kg

Smallest distance from peaks to all points 3 dB below = 6.9 mm

Ratio of SAR at M2 to SAR at M1 = 66.5%

Maximum value of SAR (measured) = 17.4 W/kg

Certificate No: D5GHzV2-1060_Jul20

Page 19 of 23

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.12 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.1 W/kg

SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.06 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 66.1%

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.41 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 33.0 W/kg

SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.2%

Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.25 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.15 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63.4%

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.67 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.11 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 18.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

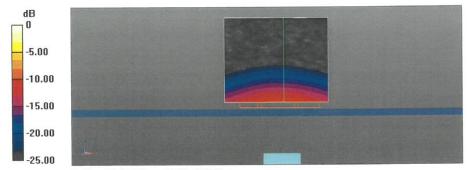
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.55 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 32.7 W/kg

SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.04 W/kg

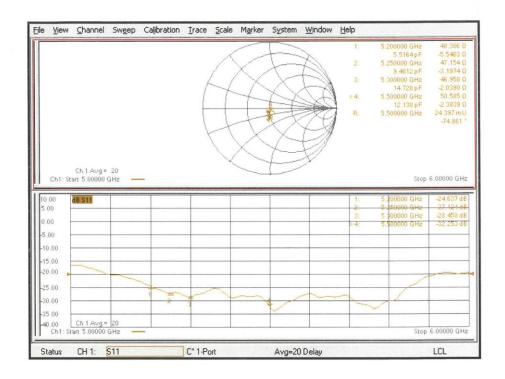
Smallest distance from peaks to all points 3 dB below = 7.2 mm


Ratio of SAR at M2 to SAR at M1 = 62.5%

Maximum value of SAR (measured) = 18.2 W/kg

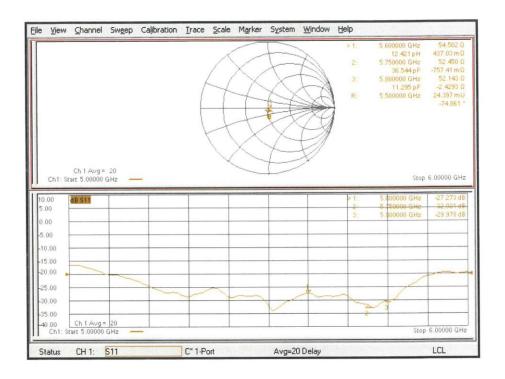
Certificate No: D5GHzV2-1060_Jul20

Page 20 of 23


Certificate No: D5GHzV2-1060_Jul20

Page 21 of 23

Impedance Measurement Plot for Body TSL (5200, 5250, 5300, 5500 MHz)



Certificate No: D5GHzV2-1060_Jul20

Page 22 of 23

Impedance Measurement Plot for Body TSL (5600, 5750, 5800 MHz)

ANNEX I Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2020-09-29 through 2021-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program