

in accordance with the requirements of FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

For

900/1800/1900/ Bluetooth Mobile Handset

Model: Konstanze

FCC ID: QDJ-0307KON01

Prepared for

Chi Mei Communication Systems, Inc. 11F, No. 39, Chung Hua Road Sec. 1, Taipei 100, Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc. No. 181, Sec. 1, Tatung Rd., Hsijr City, Taipei Hsien, Taiwan TEL: (02) 8642-2071

FAX: (02) 8642-1150

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

EST RESULT CERTIFICATION	3
UT DESCRIPTION	4
EQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	5
OSIMETRIC ASSESSMENT SYSTEM	6
VALUATION PROCEDURE	10
EASUREMENT UNCERTAINTY	13
XPOSURE LIMIT	14
EASUREMENT RESULTS	15
TEST LIQUID CONFIRMATIONEUT SETUP PHOTOS	16 19
UT EXTERNAL PHOTOS	24
QUIPMENT LIST & CALIBRATION	26
EFERENCES	27
TTACHMENT	28
	UT DESCRIPTION EQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC OSIMETRIC ASSESSMENT SYSTEM

1. TEST RESULT CERTIFICATION

Applicant: Chi Mei Communication Systems, Inc.

11F, No. 39, Chung Hua Road Sec. 1,

Taipei 100, Taiwan, R.O.C.

Equipment Under Test: 900/1800/1900/ Bluetooth Mobile Handset

Model: Konstanze

FCC ID QDJ-0307KON01

Device Category: PORTABLE DEVICES

Exposure Category: GENERAL POPULATION/UNCONTROLLED EXPOSURE

Report Number: B30715208-SAR-FCC

Date of Test: July 25, and Aug 04 - 27, 2003

Test Sample is a: 900/1800/1900/ Bluetooth Mobile Handset

Modulation Type: GSM+GPRS

Operating Mode: Maximum continuous output

 Tx Frequency:
 1850.2 ~ 1909.8 MHz

 Max. O/P Power:
 30.15dBm (GSM)

 (Conducted)
 30.12dBm (GPRS)

Max. SAR (1g): 0.603mW/g (Right Head -Touched mode)

0.639mW/g (GPRS mode)

Application Type: Certification

FCC Rule part(s): § 24

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (released on 6/29/2001 - see Test Report).

I attest to accuracy of the data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for completeness of these measurements and vouch for the qualifications of all persons taking them.

Approved by:

Jonson Lee / Director

Compliance Certification Services Inc.

Reviewed by:

Miro Chueh / Section Manager Compliance Certification Services Inc.

Min Chil

2. EUT DESCRIPTION

Applicant: Chi Mei Communication Systems, Inc.

11F, No. 39, Chung Hua Road Sec. 1,

Taipei 100, Taiwan, R.O.C.

Equipment Under Test: 900/1800/1900/ Bluetooth Mobile Handset

Model: Konstanze

FCC ID QDJ-0307KON01

Device Category: PORTABLE DEVICES

Exposure Category: GENERAL POPULATION/UNCONTROLLED EXPOSURE

Report Number: B30715208-SAR-FCC

Date of Test: July 25 and Aug 04 - 27, 2003

Test Sample is a: 900/1800/1900/ Bluetooth Mobile Handset

Modulation Type: GSM+GPRS

Operating Mode: Maximum continuous output

Tx Frequency: $1850.2 \sim 1909.8 \text{ MHz}$ Max. O/P Power:30.15 dBm (GSM)(Conducted)30.12 dBm (GPRS)

Max. SAR (1g): 0.603 mW/g (Right Head -Touched mode)

0.639mW/g (GPRS mode)

Application Type: Certification

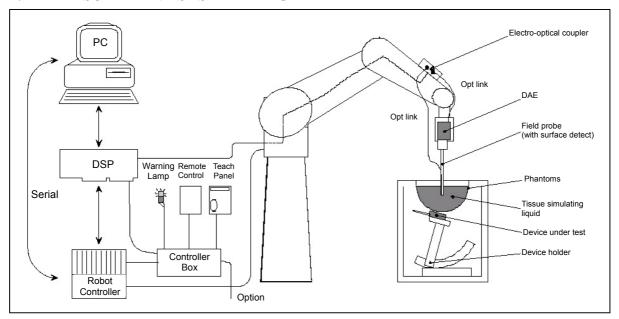
FCC Rule part(s): § 24

Notes:

- 1. Specific Absorption Rate (SAR) is a measure of the rate of energy absorption due to exposure to an RF transmitting source (wireless portable device).
- 2. IEEE/ANSI Std. C95.1-1999 limits are used to determine compliance with FCC ET Docket 93-62

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1999 [6]. According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields," released on Jun 29, 2001 by FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.


4. DOSIMETRIC ASSESSMENT SYSTEM

These measurements were performed with the automated near-field scanning system DASY4 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe ET3DV6 SN: 1762 (manufactured by SPEAG), designed in the classical triangular configuration [3] and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ± 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE P1528 and EN50361.

The Tissue simulation liquid used for each test is in accordance with FCC OET65 supplement C as listed below.

Ingredients				F	requen	ey (MH	(z)			
(%, by weight)	45	50	83	35	91	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

4.1 MEASUREMENT SYSTEM DIAGRAM

The DASY4 system for performing compliance tests consist of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
- 2. An arm extension for accommodating the data acquisition electronics (DAE).
- 3. A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 4. A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 5. A unit to operate the optical surface detector, which is connected to the EOC.
- 6. The Electro-optical coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the PC plug-in card.
- 7. The functions of the PC plug-in card based on a DSP is to perform the time critical task such as signal filtering, surveillance of the robot operation fast movement interrupts.
- 8. A computer operating Windows 95 or larger
- 9. DASY4 software
- 10. Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- 11. The SAM phantom enabling testing left-hand and right-hand usage.
- 12. The device holder for handheld EUT.
- 13. Tissue simulating liquid mixed according to the given recipes (see Application Note).
- 14. System validation dipoles to validate the proper functioning of the system.

4.2 SYSTEM COMPONENTS

ET3DV5 Probe Specification

Construction Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges

Calibration in air from 10 MHz to 2.5 GHz

In brain and muscle simulating tissue at frequencies of $450\ MHz,\,900$

MHz and 1.8 GHz (accuracy of \pm 8%)

Frequency 10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)

Directivity \pm 0.2 dB in brain tissue (rotation around probe axis)

 \pm 0.4 dB in brain tissue (rotation normal probe axis)

Dynamic 5 mW/g to > 100 mW/g;

Range Linearity: ± 0.2 dB

Surface \pm 0.2 mm repeatability in air and clear liquids

Detection over diffuse reflecting surfaces Dimensions Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm Application General dosimetric up to 3 GHz

Compliance tests of mobile phones

Fast automatic scanning in arbitrary phantoms

The SAR measurements were conducted with the dosimetric probe ET3DV6 designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique, with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped when reaching the maximum.

Photograph of the Probe

Inside view of ET3DV6 E-field Probe

E-Field Probe Calibration Process

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAM Phantom

The SAM Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN50361. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: 2 ± 0.2 mm Filling Volume: Approx. 25 liters

Dimensions (H x L x W): $810 \times 1000 \times 500$ mm

Device Holder for Transmitters

In combination with the Generic Twin Phantom V3.0, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [10]. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

SAM Phantom

Device Holder

5. EVALUATION PROCEDURE

5.1 DATA EVALUATION

The DASY4 software automatically executes the following procedure to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i10}, a_{i11}, a_{i12}

Conversion factor ConvFiDiode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can either be found in the component documents or be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$

Where $V_{i} = Compensated signal of channel i (i = x, y, z)$
 $U_{i} = Input signal of channel i (i = x, y, z)$
 $cf = Crest factor of exciting field (DASY parameter)$
 $dcp_{i} = Diode compression point(DASY parameter)$

From the compensated channel can be evaluated:

input signals the primary field data for each

$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

E-field probes:
$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f^2}{f}$$

H-field probes:

Where V_i = Compensated signal of channel i (i = x, y, z)

 $Norm_i = Sensor sensitivity of channel i (i = x, y, z)$

 $\mu V/(V/m)$ 2 for E0field Probes

ConvF = Sensitivity enhancement in solution

 a_{ii} = Sensor sensitivity factors for H-field probes

f = Carrier frequency (GHz)

 E_i = Electric field strength of channel i in V/m H_i = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

where SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [siemens/m]

 ρ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space $\frac{1}{2}$ \frac

 $P_{pwe} = \frac{E_{tot}^2}{3770}$ space $P_{pwe} = H_{tot}^2 \cdot 37.7$

or

where $P_{pwe} = Equivalent$ power density of a plane wave in mW/cm2

 E_{tot} = total electric field strength in V/m H_{tot} = total magnetic field strength in A/m

5.2 SAR EVALUATION PROCEDURE

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the central position was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of the body was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the EUT and the horizontal grid spacing was 10 mm x 10 mm. Based on the data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

- 1. The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm [11]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
- 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions) [11], [12]. The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.
- 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

6. MEASUREMENT UNCERTAINTY

	T	Probablility			Standard	V_1 or
Error Description	Uncertainty Value ±%	distribution	Divisor	C_1 1g	unc.(1g) ±%	$V_{\rm eff}$
Measurement System						011
Probe calibration	±4.8	normal	1	1	±4.8	∞
			_	$(1-Cp)^{1/2}$		
Axial isotropy of probe	±4.6	rectangular	$\sqrt{3}$	2	±1.9	∞
Sph. Isotropy of probe	±9.7	rectangular	$\sqrt{3}$	$(Cp)^{1/2}$	±3.9	∞
Probe linearity	±4.5	rectangular	$\sqrt{3}$	1	±2.7	∞
Detection Limit	±0.9	rectangular	$\sqrt{3}$	1	±0.6	∞
Boundary effects	±8.5	rectangular	$\sqrt{3}$	1	±4.8	∞
Readoutelectronics	±1.0	normal	1	1	±1.0	∞
Response time	±0.9	rectangular	$\sqrt{3}$	1	±0.5	∞
Integration time	±1.2	rectangular	$\sqrt{3}$	1	±0.8	∞
Mech Constrains of robot	±0.5	rectangular	$\sqrt{3}$	1	±0.2	∞
Probe positioning	±2.7	rectangular	$\sqrt{3}$	1	±1.7	∞
Extrap. And integration	±4.0	rectangular	$\sqrt{3}$	1	±2.3	∞
RF ambient conditiona	±0.54	rectangular	$\sqrt{3}$	1	±0.43	∞
Test Sample Related						
Device positioning	±2.2	normal	1	1	±2.23	11
Device holder uncertainty	±5	normal	1	1	±5.0	7
Power drift	±5	rectangular	$\sqrt{3}$	1	±2.9	8
Phantom and Setup						
Phantom uncertainty	±4	rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid cinductivity	±5	rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid cinductivity	±5	rectangular	$\sqrt{3}$	0.6	±3.5/1.7	∞
Liquid permittivity	±5	rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid permittivity	±5	rectangular	$\sqrt{3}$	0.6	±1.7	∞
Combined Standard					±12.14/11.76	
Uncertainty Cavanage Factor for 05%		12			±12.14/11./0	
Coverage Factor for 95% Expaned Standard		kp=2				
Uncertainty					±24.29/23.51	

7. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

<u>Population/Uncontrolled Environments</u> are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

<u>Occupational/Controlled Environments</u> are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 mW/g

8. MEASUREMENT RESULTS

8.1 SYSTEM VALIDATION

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

IEEE P1528 Recommended Reference Value

Frequency (MHz)	1g SAR	10g SAR	Local SAR at Surface (Above Feed Point)	Local SAR at Surface (y = 2cm offset from feed point)
900	10.8	6.57	16.4	5.4
1800	38.1	20.3	69.5	6.8
2450	52.4	24.2	104.2	7.7

System Validation Results

Ambient condition: Temperature: 25.9°C; Relative humidity: 58% RH

	M edium		Param eters Param eters	Target	Measured	Deviation[%]	Limitad[9/1
Type	Temp. [°C]	Dipth [cm]	Parameters	Taiget	Measureu	Deviation[70]	Limiteu[/0]
			Permitivity:	40.00	38.85	-2.88	± 5
Head 1800 MHz	25.40	15.00	Conductivity:	1.40	1.37	-2.13	± 5
1000 11112			1g SAR:	38.10	38.28	0.47	± 5

Ambient condition: Temperature: 26.0°C; Relative humidity: 58% RH

System Validation Dipole: D1800V2 SN: 2d026 Date: Aug 04, 2003

Medium		Parameters	Target	Measured	Daviation[%]	Limited[%]	
Type	Temp. [°C]	Dipth [cm]	1 arameters	Taiget	Measured	Deviation[/0]	Limited[%]
Head 1800 MHz			Permitivity:	40.00	38.64	-3.39	± 5 ± 5 ± 5
	25.40	15.00	Conductivity:	1.40	1.35	-3.34	± 5
			1g SAR:	38.10	39.04	2.47	± 5

Ambient condition: Temperature: 25.8°C; Relative humidity: 58% RH

System Validation Dipole: D1800V2 SN: 2d026 Date: Aug 27, 2003

M edium		Param eters	Target	Measured	Deviation[%]	Limited[%]	
Type	Temp. [°C]	Dipth [cm]	Tarameters Target	Target	Wicasured	Deviation[70]	Limiteu[/0]
Head 1800 MHz			Permitivity:	40.00	38.46	-3.85	± 5
	25.30	15.00	Conductivity:	1.40	1.43	2.29	± 5
			1g SAR:	38.10	38.48	1.00	± 5

8.2 TEST LIQUID CONFIRMATION

Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	Не	ead	Bo	ody
(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	45.3	5.27	48.2	6.00

Note: $\varepsilon_r = relative\ permittivity,\ \sigma = conductivity\ and\ \rho = 1000\ kg/m^3$

Liquid Confirmation Results

Ambient conduction – Temperature: 25.9 °C; Relative humidity: 58% **Date**: July 25, 2003

	Medium		Parameters	Toract	Managurad	Deviation[%]	Limitad[0/]
Туре	Temp. [°C]	Dipth (cm)	Parameters	Target	Measured	Deviation[%]	Limitea[%]
Head	25.50	15.00	Permitivity:	40.00	38.507	-3.73	± 5
1900 MHz			Conductivity:	1.40	1.453	3.79	± 5

Ambient conduction – Temperature: 25.9°C; Relative humidity: 58% **Date**: Aug 04 2003

Medium		Parameters	Target	Maggurad	Deviation[%]	Limitad[0/.]		
Туре	Temp. [°C]	Dipth (cm)	r arameters	Target	Measured	Deviation[/0]	Limiteu[76]	
Head	25.20	15.00	Permitivity:	40.00	38.420	-3.95	± 5	
1900 MHz		13.00	Conductivity:	1.40	1.453	3.75	± 5	

Ambient conduction – Temperature: 25.9°C; Relative humidity: 58% **Date**: Aug 04 2003

	Medium		Parameters	Target	Maggurad	Deviation[%]	Limitad[9/1	
Type	Temp. [°C]	Dipth (cm)	r arameters	Target	Measured	Deviation[/0]	Limited[%]	
Muscle	25.40	15.00	Permitivity:	53.30	51.300	-3.75	± 5	
1900 MHz		15.00	Conductivity:	1.52	1.575	3.62	± 5	

Ambient conduction – Temperature: <u>25.8</u>°C; Relative humidity: <u>58</u>% **Date**: Aug 27 2003

	Medium		Parameters	Target	Maggurad	Deviation[%]	Limitad[0/1	
Туре	Temp. [°C]	Dipth (cm)	r arameters	Target	Measured	Deviation[/0]	Limitea[%]	
Head	25.30	15.00	Permitivity:	40.00	38.654	-3.36	± 5	
1900 MHz		13.00	Conductivity:	1.40	1.462	4.44	± 5	

EUT TUNE-UP PROCEDURE

The following procedures had been used to prepare the EUT for the SAR test.

• To setup the desire channel frequency and the maximum output power. A Radio Communication Tester "R&S, Type CMU 200" was used to program the EUT.

```
i. GSM Mode:

SM Mobile Station

GSM 1900 - Circuit Switched

- PCL "0"

Channel Frequency

512 1850.2

661 1880.0

810 1909.8
```

ii. GPRS Mode:

SM Mobile Station GSM 1900 - GPRS Class 10 - PCL "0"

Channel	Frequency
512	1850.2
661	1880.0
810	1909.8

 Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurements, before and after the SAR measurements was done.

Since the EUT has Bluetooth module, we confirm the worst case of SAR with bluetooth Act.

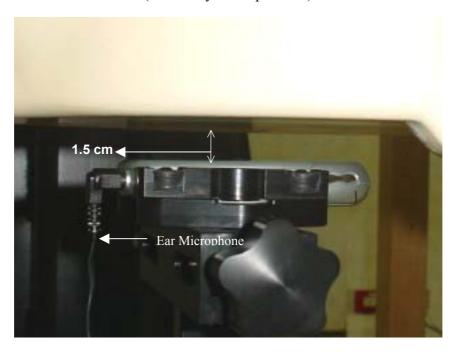
8.3 EUT SETUP PHOTOS

EUT Setup Configuration 1

EUT Setup Configuration 1 (Right Head - Touched position)

EUT Setup Configuration 1 (Right Head - Tilted position)

EUT Setup Configuration 2 (Left Head - Touched position)



EUT Setup Configuration 2 (Left Head - Tilted position)

EUT Setup Configuration 3 (GSM & GPRS Mode) (Flat/Body-worn position)

Note(s):

- 1. Separation distance of $\underline{1.5}$ cm between the back of the EUT and flat phantom.
- 2. The Ear-microphone wire connected to the phone to simulate hands-free operation in a body-worn configuration.

8.4 SAR MEASUREMENT RESULT

Modulation T	ype: <u>GSM</u> (E	outy Cycle =	= <u>12.5</u> %, Cr	est Factor: 8)				
EUT Set-up C	onfiguration 1	l - Right I	Head	Depth of liqui	d: <u>15.0</u> cm		Date: July 2	25, 2003
EUT Set-up Co	up Configuration Fi		Frequency		Conducted power [dBm] (Peak)		SAR (mW/g)	Limit (mW/g)
EUT Position	Antenna	Channel	MHz	Before	After	[°C]	(III W/g)	(III VV/g,
		512	1850.2	30.12	30.02	25.5	0.603	
Touched	Fixed	661	1880.0	29.68	29.60	25.5	0.572	1.6
		810	1909.8	30.15	30.04	25.5	0.487	
		512	1850.2	30.11	30.02	25.5	0.367	1.6
Tilted	Fixed	661	1880.0	29.68	29.62	25.5	0.372	
		810	1909.8	30.15	30.10	25.5	0.312	
EUT Set-up Co	onfiguration 2	2 - Left He	ead				Date: Aug	04, 2003
EUT Set-up Co	onfiguration	Freq	uency	1	oower [dBm]	Liquid Temp	SAR (mW/g)	Limit (mW/g)
EUT Position	Antenna	Channel	MHz	Before	After	[°C]	(111 11/6)	(III W/B)
		512	1850.2	30.10	30.05	25.2	0.499	
Touched	Fixed	661	1880.0	29.66	29.60	25.2	0.419	1.6
		810	1909.8	30.14	30.07	25.2	0.326	
		512	1850.2	30.12	30.05	25.2	0.204	
Tilted	Fixed	661	1880.0	29.67	29.61	25.2	0.191	1.6
		810	1909.8	30.15	30.08	25.2	0.147	

EUT Set-up C	onfiguration 3	B - Body/Fl	at (GSM M	lode)	-		Date: Aug	.04, 2003
EUT Set-up	conditions	Freq	uency	Conducted po		Liquid Temp	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	Before	After	[°C]	(mW/g)	(mW/g)
		512	1850.2	30.11	30.07	25.4	0.482	
1.5	Fixed	661	1880.0	29.66	29.60	25.4	0.485	1.6
		810	1909.8	30.14	30.07	25.4	0.380	,
EUT Set-up C	onfiguration 3	B - Body/Fl	at (GPRS I	Mode- class 10)		-	Date: Aug.	04, 2003
EUT Set-up C	onfiguration 3	B - Body/Fl	at (GPRS I	Mode - class 10)	Duty	cycle= <u>25</u> %	, Crest Fact	or: <u>4</u>
EUT Set-up	conditions	Frequency		Conducted power [dBm] (Peak)		Liquid Temp	SAR	Limit
Sep. [cm]	Antenna	Channel	MHz	Before	After	[°C]	(mW/g)	(mW/g)
		512	1850.2	30.10	30.04	25.4	0.639	
1.5	Fixed	661	1880.0	29.63	29.58	25.4	0639	1.6
		810	1909.8	30.12	30.07	25.4	0.515	
Note (s): Pleas	se refer to atta	chment for	the result pro	esentation in plot	t format.			

Modulation T	ype: <u>GSM</u> (E	outy Cycle =	= <u>12.5</u> %, Cr	est Factor: 8) V	With bluetootl	n act		
EUT Set-up C	onfiguration :	l - Right I	Head	Depth of liqui	d: <u>15.0</u> cm		Date: Aug 2	7, 2003
EUT Set-up Co	(Peak) Temp				SAR (mW/g)	Limit (mW/g)		
EUT Position	Antenna	Channel	MHz	Before	After	[°C]	(111 117 / 6)	(III W/g,
Touched	Fixed	512	1850.2	30.12	30.08	25.5	0.607	1.6

9. EUT EXTERNAL PHOTOS

10. EQUIPMENT LIST & CALIBRATION

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Due
S-Parameter Network Analyzer	Agilent	E8358A	US40280243	03/24/04
Electronic Probe kit	Hewlett Packard	85070A	N/A	N/A
3.5mm electronic Calibration Kit	Agilent	85093C	US01400208	01/22/04
Power Meter	Boonton	4531	13061	01/10/04
Power Sensor	Boonton	56218	2240	01/10/04
Power Meter	Agilent	E4416A	GB41291611	03/15/04
Power Sensor	Agilent	E9327A	US40441097	03/15/04
Thermometer	Amarell	4046	23641	12/12/04
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	1100.0008.02	N/A
Signal Generator	Agilent	83630B	3844A01022	01/15/04
Amplifier	Mini-Circuit	ZHL-1724HL N	N/A	N/A
DC Power generator	ABM	8301HD		N/A
Data Acquisition Electronics (DAE)	SPEAG	DAE3	558	03/07/04
Dosimetric E-Field Probe	SPEAG	ET3DV6	1762	03/31/04
900 MHz System Validation Dipole	SPEAG	D900V2	179	03/31/04
1800 MHz System Validation Dipole	SPEAG	D1800V2	2d026	04/01/04
2450 MHz System Validation Dipole	SPEAG	D2450V2	728	03/05/04
Probe Alignment Unit	SPEAG	LB (V2)	348	N/A
Robot	Staubli	RX90B L	F02/5T69A1/A/01	N/A
SAM Twin Phantom V4.0	SPEAG	N/A	N/A	N/A
Devices Holder	SPEAG	N/A	N/A	N/A
Head 835 MHz	CCS	H835A	N/A	N/A
Muscle 835 MHz	CCS	M835A	N/A	N/A
Head 900 MHz	CCS	H900A	N/A	N/A
Muscle 900 MHz	CCS	M900A	N/A	N/A
Head 1800 MHz	CCS	H1800A	N/A	N/A
Muscle 1800 MHz	CCS	M1800A	N/A	N/A
Head 1900 MHz	CCS	H1900A	N/A	N/A
Muscle 1900 MHz	CCS	M1900A	N/A	N/A
Head 2450 MHz	CCS	H2450A	N/A	N/A
Muscle 2450 MHz	CCS	M2450A	N/A	N/A

11. REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radio frequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radio frequency electromagnetic fields", Tech. Rep., Federal Communication Commission, Office of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-field scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM 97, Dubrovnik, October 15 {17, 1997, pp. 120 {124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172 {175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

12. ATTACHMENT

Exhibit	Content
1	Data Acquisition Electronics (DAE)-DAE3, S/N: 558
2	Dosimetric E-Field Probe - ET3DV6, S/N: 1762
3	Validation Dipole – D1800V2, S/N: 2d062
4	System Performance Check Plots
5	SAR Test Plots

End of Report

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CALIBRATION C	ERTIFICATI		A POLICY OF THE PARTY OF THE PA
Object(s)	DAE3 - SN:558		STEPS OF STREET
Calibration procedure(s)	QA CAL-06.v2 Calibration proc	edure for the data acquisit	ion unit (DAE)
Calibration date:	March 07, 2003		
Condition of the calibrated item	In Tolerance (ad	ccording to the specific cal	ibration document)
This calibration statement documer 17025 international standard.	its traceability of M&TE o	used in the calibration procedures and o	conformity of the procedures with the ISO/IEC
All calibrations have been conducte	d in the closed laborator	y facility: environment temperature 22	v/- 2 degrees Celsius and humidity < 75%.
Calibration Equipment used (M&TE	critical for calibration)		
Model Type	ID#	Cal Date	Scheduled Calibration
Fluke Process Calibrator Type 702	SN: 6295803	3-Sep-01	Sep-03
Ta.			
	Name	Function	Signature
Calibrated by:	End Hainfeld	Technician	9
Approved by:	Fin Bornholt	R&D Director	7. Brukelf
			Date issued: March 07, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

1. DC Voltage Measurement

DA - Converter Values from DAE

High Range: $1LSB = 6.1 \mu V$, full range = 400 mVLow Range: 1LSB = 61 nV, full range = 4 mV

Software Set-up: Calibration time: 3 sec Measuring time: 3 sec

Setup	X	Y	Z
High Range	405.010098	404.9037428	405.0817835
Low Range	3.972	3.95185	3.96828
Connector Position		86°	-

High Range	Input	Reading in µV	% Error	
Channel X + Input	200mV	200000	0.00	
	20mV	20003.4	0.02	
Channel X - Input	20mV	-19993	-0.04	
Channel Y + Input	200mV	200001	0.00	
	20mV	20002.7	0.01	
Channel Y - Input	20mV	-19993	-0.04	
Channel Z + Input	200mV	200000	0.00	
	20mV	20000.8	0.00	
Channel Z - Input	20mV	-19997.7	-0.01	

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	2000.2	0.01
	0.2mV	200.04	0.02
Channel X - Input	0.2mV	-200.81	0.41
Channel Y + Input	2mV	2000.1	0.00
	0.2mV	199.47	-0.27
Channel Y - Input	0.2mV	-201.01	0.50
Channel Z + Input	2mV	1999.9	0.00
	0.2mV	198.68	-0.66
Channel Z - Input	0.2mV	-201.1	0.55

2. Common mode sensitivity

Software Set-up

Calibration time: High/Low Range

3 sec, Measuring time: 3 sec

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	-1.0284	-1.5716
	- 200mV	3.9204	1.3725
Channel Y	200mV	6.7686	5.874
	- 200mV	-6.8145	-8.0898
Channel Z	200mV	2.1943	2.766
	- 200mV	-2.52	-4.6218

3. Channel separation

Software Set-up

Calibration time: High Range

3 sec, Measuring time:

3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV		0.88082	0.19177
Channel Y	200mV	0.049124		0.25676
Channel Z	200mV	-2.1226	-0.89508	-

4. AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16492	16236
Channel Y	16307	15690
Channel Z	16461	16033

5. Input Offset Measurement

Measured after 15 min warm-up time of the Data Acquisition Electronic. Every Measurement is preceded by a calibration cycle.

Software set-up:

Calibration time:

3 sec

Measuring time:

3 sec

Number of measurements: 100, Low Range

Input 10MQ

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	-0.52	-1.64	0.60	0.43
Channel Y	-2.05	-3.65	0.06	0.51
Channel Z	-0.34	-2.05	0.43	0.37

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.04	-0.84	1.09	0.41
Channel Y	-0.77	-2.08	0.17	0.40
Channel Z	-1.01	-1.68	-0.38	0.24

6. Input Offset Current

in fA	Input Offset Current
Channel X	< 25
Channel Y	< 25
Channel Z	< 25

7. Input Resistance

	Calibrating	Measuring
Channel X	200 kΩ	200 MΩ
Channel Y	200 kΩ	200 ΜΩ
Channel Z	200 kΩ	200 MΩ

8. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.66 V
Supply (- Vcc)	-7.53 V

9. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.000	5.83	14.1
Supply (- Vcc)	-0.011	-7.86	-9.13

10. Functional test

Touch async pulse 1	ok
Touch async pulse 2	ok
Touch status bit 1	ok
Touch status bit 2	ok
Remote power off	ok
Remote analog Power control	ok
Modification Status	B-C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

C&C (Auden)

Object(s)	ET3DV6 - SN:178		
Calibration procedure(s)	QA CAL-01.v2 Calibration proced	ure for dosimetric E-field probes	3
Calibration date:	March 31, 2003		
Condition of the calibrated item	In Tolerance (acco	ording to the specific calibration	document)
17025 international standard.		n the calibration procedures and conformity of the	
17025 international standard.	d in the closed laboratory facil	ity: environment temperature 22 +/- 2 degrees (
17025 international standard. All calibrations have been conducte	d in the closed laboratory facil		
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C	d in the closed laboratory feol critical for calibration)	ity: environment temperature 22 +/- 2 degrees (Cal Date 4-Aug-99 (in house check Aug-02)	Celsius and humidity < 75%, Scheduled Calibration In house check; Aug-05
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A	d in the closed laboratory feel critical for calibration) ID # US3642U01700 MY41495277	Cal Date 4-Aug-99 (in house check Aug-02)	Celsius and humidity < 75%, Scheduled Calibration In house check: Aug-05 Mar-03
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A	d in the closed laboratory facilities of calibration) ID # US3842U01700 MY41495277 MY41092180	Cel Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02	Celsius and humidity < 75%. Scheduled Calibration In house check: Aug-05 Mar-03 Bep-03
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	d in the closed laboratory facilities of celibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874	Cal Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02	Scheduled Calibration In house check; Aug-05 Mar-03 Bep-03 Bep-03
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	d in the closed laboratory facilities or celibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	Cal Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02 13-Sep-02 3-May-00	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03
I7025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	d in the closed laboratory facilities of celibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874	Cal Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02	Scheduled Calibration In house check; Aug-05 Mar-03 Bep-03 Bep-03
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B	d in the closed laboratory facilities or celibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426	Cal Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02 13-Sep-02 3-May-00	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03
17025 international standard. All calibrations have been conducte Calibration Equipment used (M&TE Model Type RF generator HP 8684C Power sensor E4412A Power sensor HP 8481A Power meter EPM E4419B Network Analyzer HP 8753E	d in the closed laboratory facility oritical for calibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US38432426 SN: 6295803	Cel Date 4-Aug-99 (in house check Aug-02) Mar-02 18-Sep-02 13-Sep-02 3-May-00 3-Sep-01	Scheduled Calibration In house check: Aug-05 Mar-03 Sep-03 Sep-03 In house check: May 03 Sep-03

Date issued: April 2, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1762

Manufactured: Last calibration: January 20, 2003 March 31, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

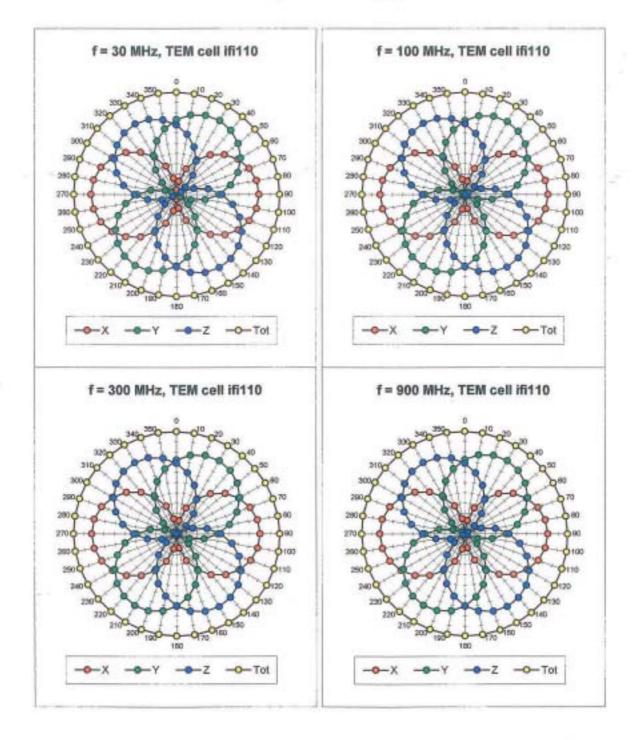
March 31, 2003 ET3DV6 SN:1762

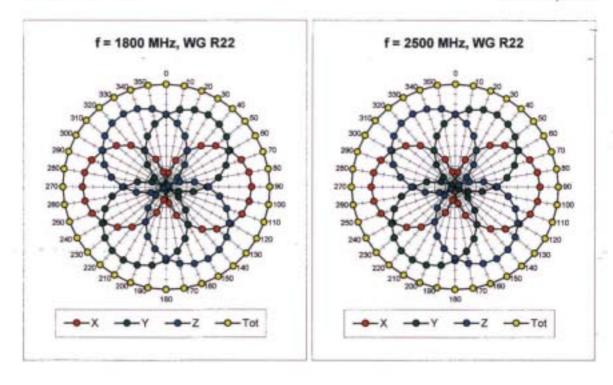
DASY - Parameters of Probe: ET3DV6 SN:1762

Sensitivity in Free Space		Diode Compression		
NormX	1.90 µV/(V/m) ²	DCP X	96	mV
NormY	1.78 µV/(V/m) ²	DCP Y	96	mV
NormZ	1.82 μV/(V/m) ²	DCP Z	96	mV

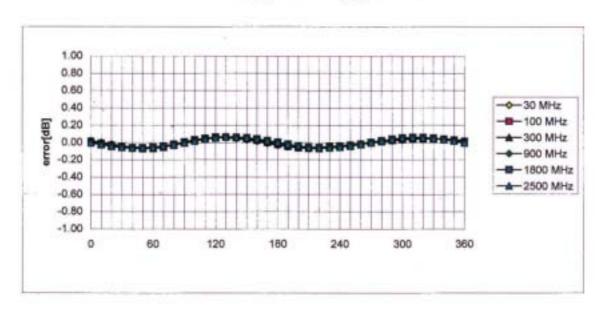
Sensitivity in Tissue Simulating Liquid

Head	900 MHz		E ₇ = 41.5 ± 5%	σ=	0.97 ± 5% i	mho/m
Head	835 MHz		$E_{\rm F} = 41.5 \pm 5\%$	σ=	0.90 ± 5% i	mho/m
	ConvF X	6.7	± 9.5% (k=2)		Boundary e	effect:
	ConvF Y	6.7	± 9.5% (k=2)		Alpha	0.67
	ConvF Z	6.7	± 9.5% (k=2)		Depth	1.74
Head	1800 MHz		ε_r = 40.0 ± 5%	σ=	1.40 ± 5% i	mho/m
Head	1900 MHz		$e_r = 40.0 \pm 5\%$	α =	1.40 ± 5% i	mho/m
	ConvF X	5.4	± 9.5% (k=2)		Boundary e	effect:
	ConvF Y	5.4	± 9.5% (k=2)		Alpha	0.50
	ConvF Z	5.4	± 9.5% (k=2)		Depth	2.63

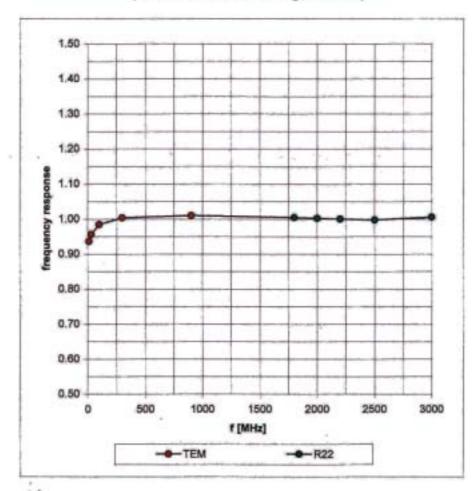

Boundary Effect


Head	900	MHz	Typical SAR gradient: 5	% per mm	
	Probe Tip to	o Bounda	ary	1 mm	2 mm
	SAR _{be} [%]	Without	Correction Algorithm	8.8	4.5
	SAR _{be} [%]	With Co	orrection Algorithm	0.1	0.2
Head	1800	MHz	Typical SAR gradient: 10	% per mm	
	Probe Tip to	o Bounds	ary	1 mm	2 mm
	SAR ₉₀ [%]	Without	t Correction Algorithm	13.8	9.3
	SAR _{be} [%]	With Co	orrection Algorithm	0.2	0.1

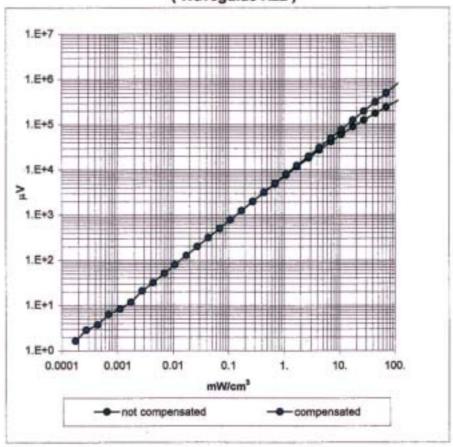
Sensor Offset

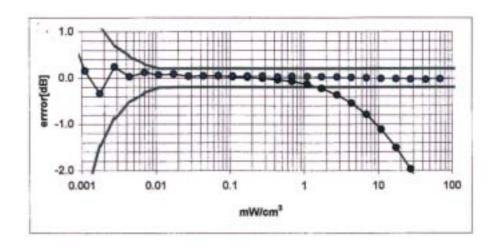

Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	1.4 ± 0.2	mm

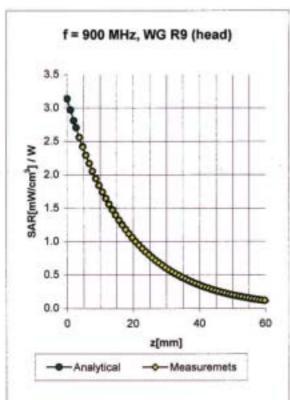
Receiving Pattern (ϕ), $\theta = 0^{\circ}$

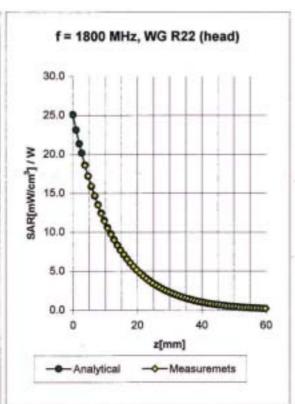


Isotropy Error (ϕ), $\theta = 0^{\circ}$

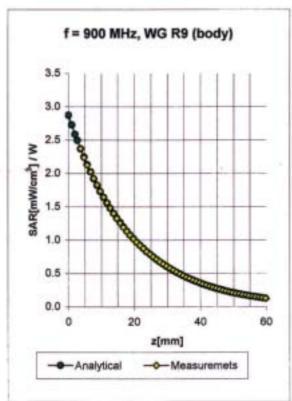

Frequency Response of E-Field

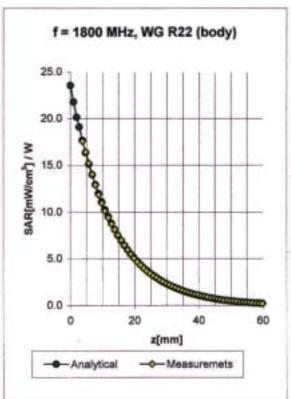

(TEM-Cell:ifi110, Waveguide R22)


Dynamic Range f(SAR_{brain})


(Waveguide R22)

Conversion Factor Assessment

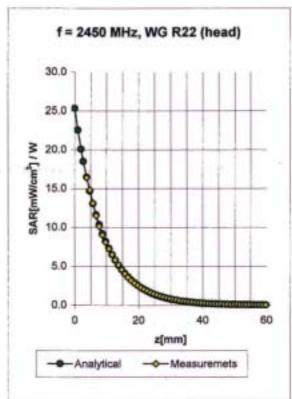


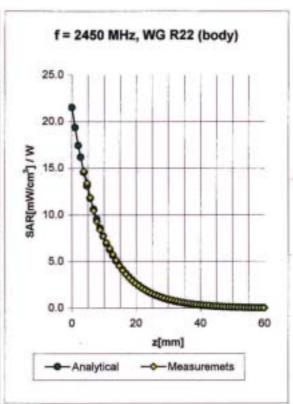


Head	900 MHz		$e_r = 41.5 \pm 5\%$	σ=	0.97 ± 5% n	nho/m
Head	835 MHz		$\varepsilon_{\rm r}$ = 41.5 ± 5%	σ=	0.90 ± 5% n	nho/m
	ConvF X	6.7	± 9.5% (k=2)		Boundary el	ffect:
	ConvF Y	6.7	± 9.5% (k=2)		Alpha	0.67
	ConvF Z	6.7	± 9.5% (k=2)		Depth	1.74

Head	1800 MHz		$\varepsilon_r = 40.0 \pm 5\%$	a =	1.40 ± 5% m	nho/m
Head	1900 MHz		ϵ_r = 40.0 ± 5%	σ=	1.40 ± 5% m	nho/m
	ConvF X	5.4	± 9.5% (k=2)		Boundary ef	fect:
	ConvF Y	5.4	± 9.5% (k=2)		Alpha	0.50
	ConvF Z	5.4	± 9.5% (k=2)		Depth	2.63

Conversion Factor Assessment

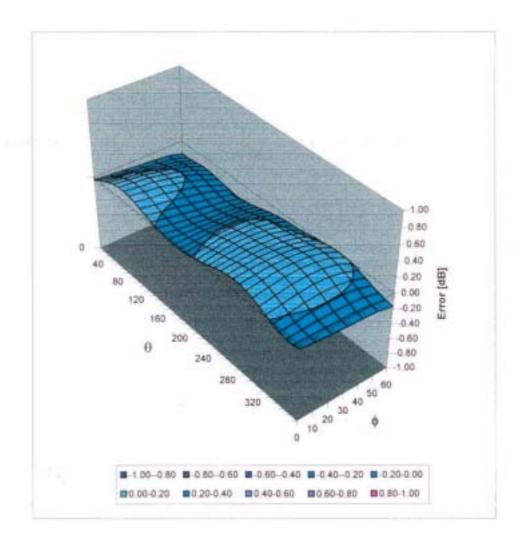




Body	900 MHz		$\varepsilon_{\rm r}$ = 55.0 ± 5%	g = 1.05 ± 5% mi	ho/m
Body	835 MHz		ϵ_r = 55.2 ± 5%	σ = 0.97 ± 5% mi	ho/m
	ConvF X	6.5	± 9.5% (k=2)	Boundary eff	ect:
	ConvF Y	6.5	± 9.5% (k=2)	Alpha	0.43
	ConvF Z	6.5	± 9.5% (k=2)	Depth	2.34

Body	1800 MHz	$v_r = 53.3 \pm 5\%$	$\sigma = 1.52 \pm 5\% \text{ mho/m}$
Body	1900 MHz	$\varepsilon_r = 53.3 \pm 5\%$	σ = 1.52 ± 5% mho/m
	ConvF X	5.0 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	5.0 ± 9.5% (k=2)	Alpha 0.57
	ConvF Z	5.0 ± 9.5% (k=2)	Depth 2.65

Conversion Factor Assessment



Head	2450	MHz		$\epsilon_{\rm r}$ = 39.2 ± 5%	σ = 1.80 ± 5% m	ho/m
	ConvF X		5.1	± 8.9% (k=2)	Boundary ef	fect:
	ConvF Y		5.1	± 8.9% (k=2)	Alpha	1.32
	ConvF Z		5.1	± 8.9% (k=2)	Depth	1.61
-		*				
Body	2450	MHz		$\varepsilon_r = 52.7 \pm 5\%$	σ = 1.95 ± 5% m	ho/m
	ConvF X		4.6	± 8.9% (k=2)	Boundary ef	fect:
	ConvF Y		4.6	± 8.9% (k=2)	Alpha	1.39
	ConvF Z		4.6	± 8.9% (k=2)	Depth	1.60

Deviation from Isotropy in HSL

Error (θ,ϕ) , f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

C&C (Auden)

Object(s)	D1800V2 - SN:20	1062	
Calibration procedure(s)	QA CAL-05.v2 Calibration proces	dure for dipole validation kit	ts
Calibration date:	April 1, 2003		
Condition of the calibrated item	In Tolerance (acc	ording to the specific calibr	ration document)
This calibration statement docum 17025 international standard. All calibrations have been conduc-		sility: environment temperature 22 +/- 2 de	
17025 international standard, All calibrations have been conduct Calibration Equipment used (M&	oted in the closed laboratory fa	<u>}</u>	
17025 international standard, All calibrations have been conductory Calibration Equipment used (M& Model Type RF generator R&S SML-03	oted in the closed laboratory fac TE critical for calibration)	cility: environment temperature 22 +/- 2 d	egrees Celsius and humidity < 75%.
17025 international standard, All calibrations have been conduct Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A	TE critical for calibration) ID # 100698 MY41092317	Cal Date 27-Mar-2002 18-Oct-02	egrees Celsius and humidity < 75%. Scheduled Celibration In house check: Mar-05 Oct-04
17025 international standard, All calibrations have been conduct Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A	TE critical for calibration) ID # 100698 MY41092317 US37292783	Cal Date 27-Mar-2002 18-Oct-02 30-Oct-02	Scheduled Celibration In house check: Mar-05 Oct-04 Oct-03
17025 international standard, All calibrations have been conduct Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442	TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704	Cal Date 27-Mar-2002 18-Oct-02 30-Oct-02	Scheduled Celibration In house check: Mar-05 Oct-04 Oct-03 Oct-03
17025 international standard.	TE critical for calibration) ID # 100698 MY41092317 US37292783	Cal Date 27-Mar-2002 18-Oct-02 30-Oct-02	Scheduled Celibration In house check: Mar-05 Oct-04 Oct-03
17025 international standard, All calibrations have been conduct Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442	TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37480704	Cal Date 27-Mar-2002 18-Oct-02 30-Oct-02	Scheduled Celibration In house check: Mar-05 Oct-04 Oct-03 Oct-03
17025 international standard, All calibrations have been conduct Calibration Equipment used (M& Model Type RF generator R&S SML-03 Power sensor HP 8481A Power sensor HP 8481A Power meter EPM E442	TE critical for calibration) ID # 100698 MY41092317 US37292783 GB37490704 US38432426	Cal Date 27-Mar-2002 18-Oct-02 30-Oct-02 3-May-00	Scheduled Calibration In house check: Mar-05 Oct-04 Oct-03 Oct-03 In house check: May 03

Date issued: April 2, 2003

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1800V2

Serial: 2d062

Manufactured:

January 28, 2003

Calibrated:

April 1, 2003

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating solution of the following electrical parameters at 1800 MHz:

Relative Dielectricity 39.2 \pm 5% Conductivity 1.36 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.3 at 1800 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \text{ }\%$. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 39.2 mW/g \pm 16.8 % (k=2)¹

averaged over 10 cm³ (10 g) of tissue: 20.3 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:

1.208 ns

(one direction)

Transmission factor:

0.993

(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1800 MHz:

 $Re\{Z\} = 49.6 \Omega$

 $Im \{Z\} = -1.2 \Omega$

Return Loss at 1800 MHz

-37.7 dB

4. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 04/01/03 12:53:01

Test Laboratory: SPEAG, Zurich, Switzerland

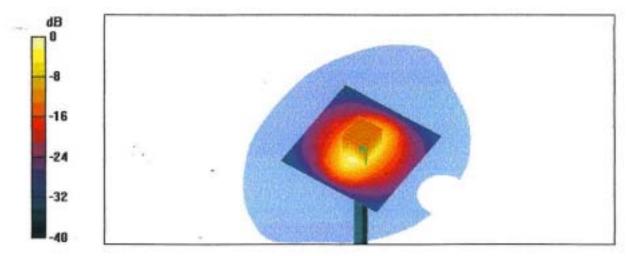
File Name: SN2d062 SN1507 HSL1800 010403.da4

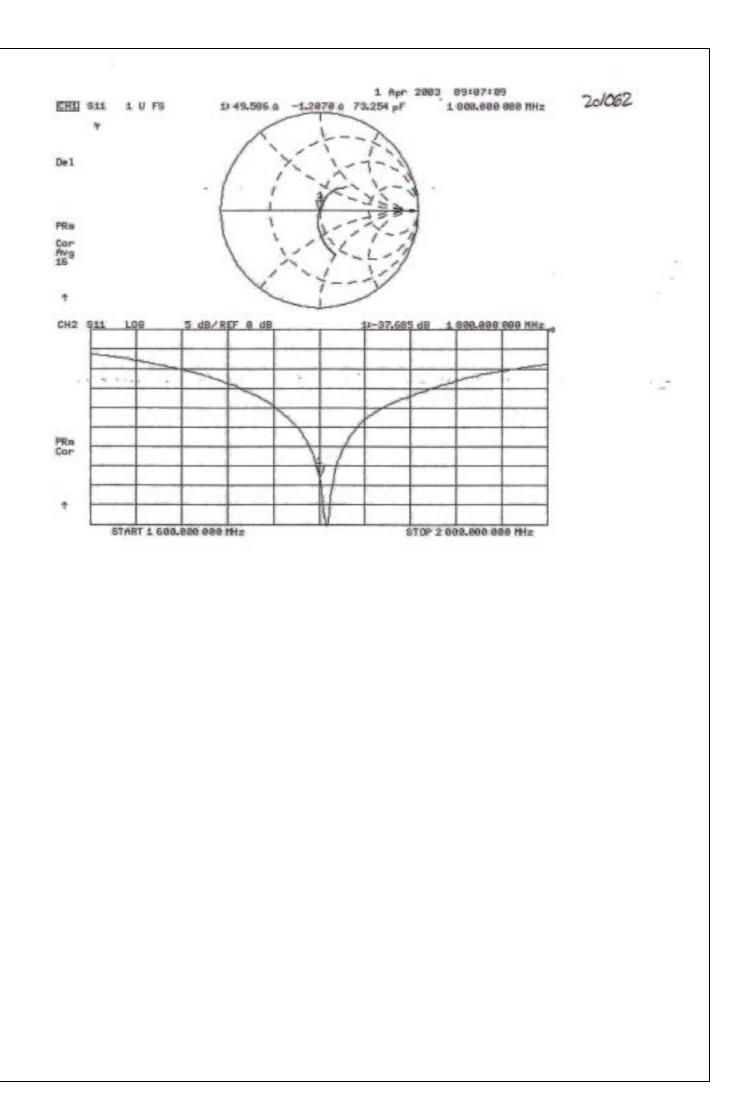
DUT: Dipole 1800 MHz; Serial: D1800V2 - SN2d062

Program: Dipole Calibration

Communication System: CW-1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL 1800 MHz; ($\sigma = 1.36 \text{ mho/m}$, $\varepsilon_r = 39.22$, $\rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section


DASY4 Configuration:


- Probe: ET3DV6 SN1507; ConvF(5.3, 5.3, 5.3); Calibrated: 1/18/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 1/16/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006
- Measurement SW: DASY4, V4.1 Build 33; Postprocessing SW: SEMCAD, V1.6 Build 109

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93 V/m Peak SAR = 16.2 W/kg

SAR(1 g) = 9.56 mW/g; SAR(10 g) = 5.08 mW/g

Power Drift = 0.007 dB

Date/Time: 07/25/03 10:21:11

Test Laboratory: Compliance Certification Services Inc.

File Name: D1800V2 SN-3.da4

D1800V2 SN-3

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d062 Program: System Performance Check at1800MHz

Communication System: CW1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL1800 (σ = 1.37017 mho/m, ϵ_r = 38.8462, ρ = 1000 kg/m³)

Air Temperature 25.9 deg C; Liquid Temperature 25.4 deg C

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 93.6 V/m

Power Drift = 0.02 dB

Maximum value of SAR = 7.92 mW/g

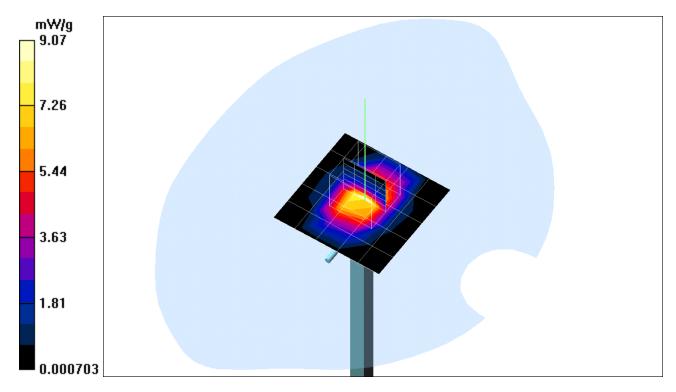
Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.57 mW/g; SAR(10 g) = 5.01 mW/g

Reference Value = 93.6 V/m

Power Drift = 0.02 dB


Maximum value of SAR = 10.8 mW/g


Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 93.6 V/m

Power Drift = 0.005 dB

Maximum value of SAR = 9.07 mW/g

Date/Time: 08/04/03 11:49:13

Test Laboratory: Compliance Certification Services Inc.

File Name: D1800V2 SN-3.da4

D1800V2 SN-3

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d062 Program: System Performance Check at1800MHz

Communication System: CW1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL1800 (σ = 1.35329 mho/m, ϵ_r = 38.643, ρ = 1000 kg/m³)

Phantom section: Flat Section Air Temp 26 deg C; Liquid Temp 25.4 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 94.2 V/m

Power Drift = 0.05 dB

Maximum value of SAR = 8.62 mW/g

Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm,

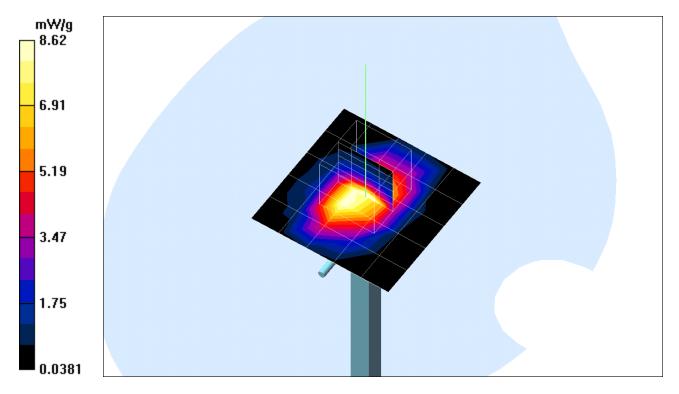
dz=5mm

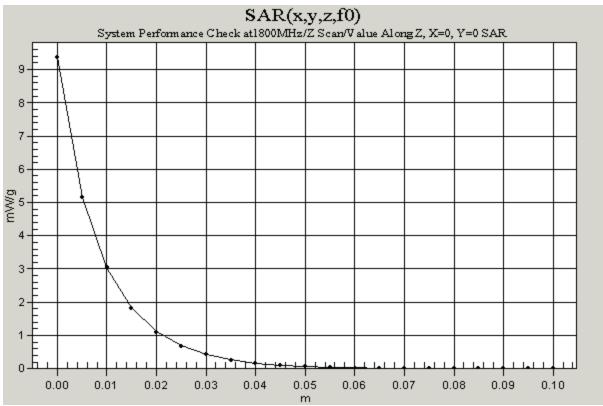
Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 9.76 mW/g; SAR(10 g) = 5.16 mW/g

Reference Value = 94.2 V/m

Power Drift = 0.05 dB


Maximum value of SAR = 11 mW/g


Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 94.2 V/m

Power Drift = 0.04 dB

Maximum value of SAR = 9.38 mW/g

Date/Time: 08/27/03 10:47:14

Test Laboratory: Compliance Certification Services Inc.

File Name: D1800V2 SN-3.da4

D1800V2 SN-3

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d062 Program: System Performance Check at 1800MHz

Communication System: CW1800; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium: HSL1800 ($\sigma = 1.43205 \text{ mho/m}, \, \varepsilon_r = 38.4583, \, \rho = 1000 \text{ kg/m}^3$)

Phantom section: Flat Section Air Temp 25.8 deg C; Liquid Temp 25.3 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 34; Type: SAM V4.0; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

Pin=250mW,d=10mm/Area Scan (6x6x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 91.3 V/m

Power Drift = 0.09 dB

Maximum value of SAR = 8.25 mW/g

Pin=250mW,d=10mm/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

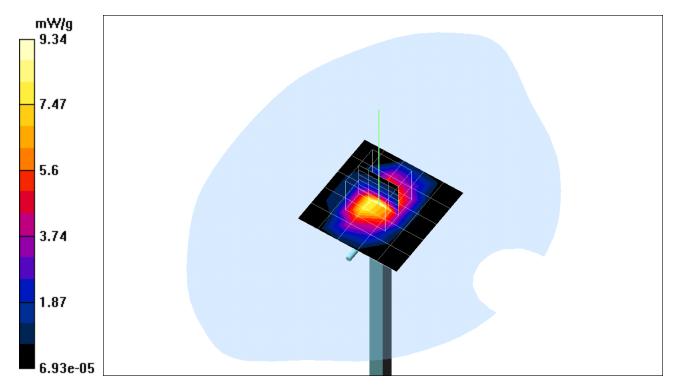
Reference Value = 91.3 V/m

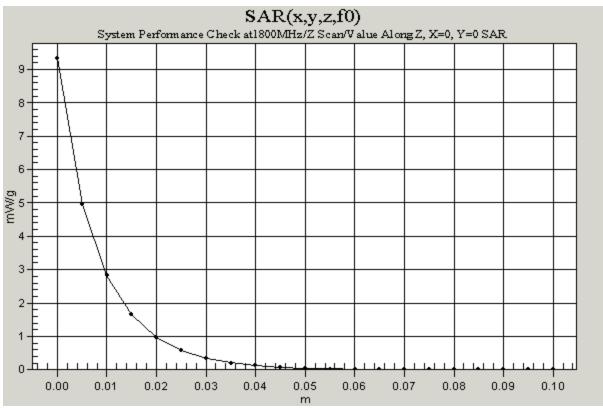
Power Drift = 0.08 dB

Maximum value of SAR = 9.34 mW/g

Pin=250mW,d=10mm/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm,

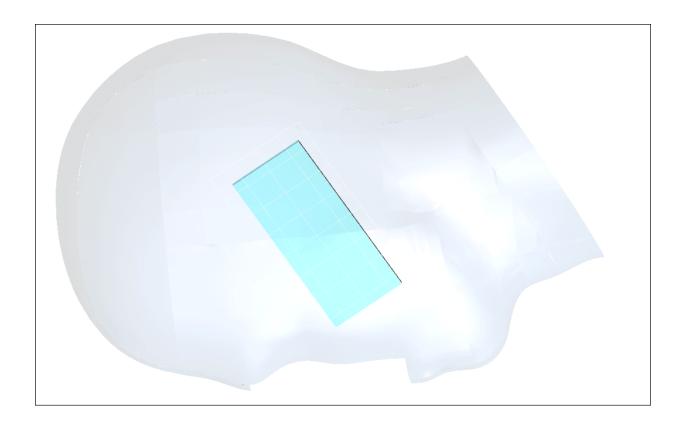
dz=5mm


Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.62 mW/g; SAR(10 g) = 4.99 mW/g

Reference Value = 91.3 V/m

Power Drift = 0.09 dB


Maximum value of SAR = 10.8 mW/g

Date/Time: 07/25/03 14:06:18

RIGHT-HEAD TOUCH

Date/Time: 07/25/03 12:04:04

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze

Program: right

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

touch 512/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.4 V/m

Power Drift = 0.2 dB

Maximum value of SAR = 0.632 mW/g

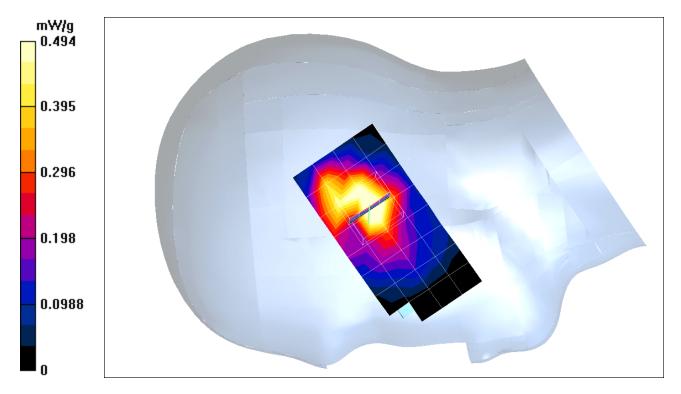
touch 512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

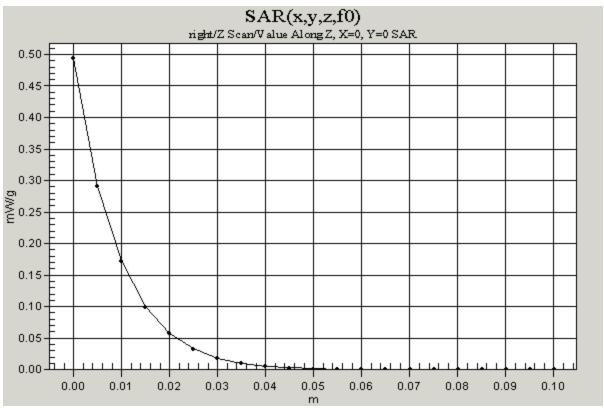
Peak SAR (extrapolated) = 0.965 W/kg

SAR(1 g) = 0.603 mW/g; SAR(10 g) = 0.33 mW/g

Reference Value = 15.4 V/m

Power Drift = 0.2 dB


Maximum value of SAR = 0.665 mW/g


touch 512/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 15.4 V/m

Power Drift = 0.2 dB

Maximum value of SAR = 0.494 mW/g

Date/Time: 07/25/03 12:49:39

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze; Serial:

Program: right

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

touch 661/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 15.1 V/m

Power Drift = -0.07 dB

Maximum value of SAR = 0.597 mW/g

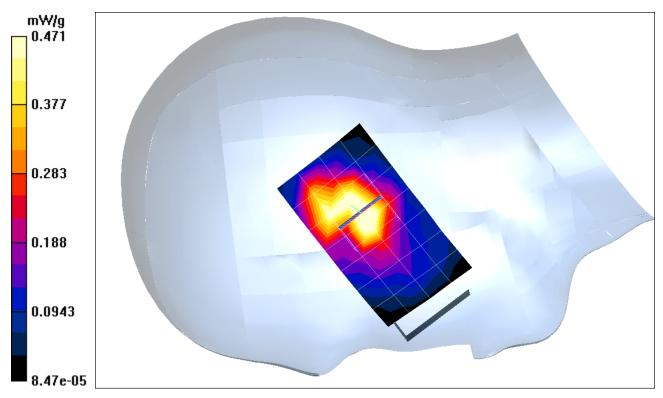
touch 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

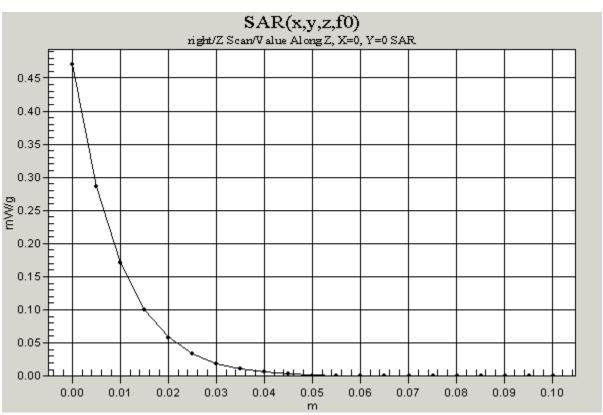
Peak SAR (extrapolated) = 0.924 W/kg

SAR(1 g) = 0.572 mW/g; SAR(10 g) = 0.313 mW/g

Reference Value = 15.1 V/m

Power Drift = -0.07 dB


Maximum value of SAR = 0.625 mW/g


touch 661/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 15.1 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.471 mW/g

Date/Time: 07/25/03 12:49:39

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze; Serial:

Program: right

Communication System: GSM1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

touch 810/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 13.4 V/m

Power Drift = -0.04 dB

Maximum value of SAR = 0.503 mW/g

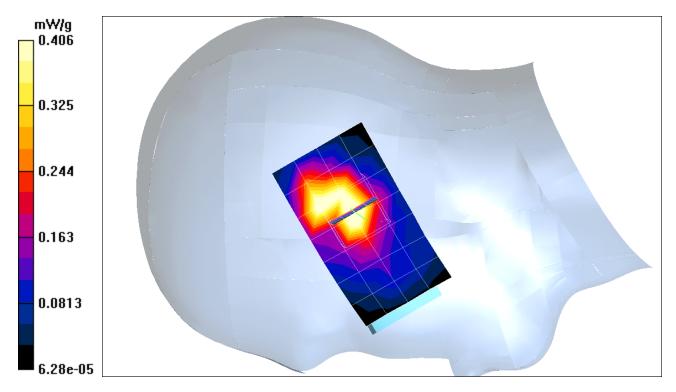
touch 810/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

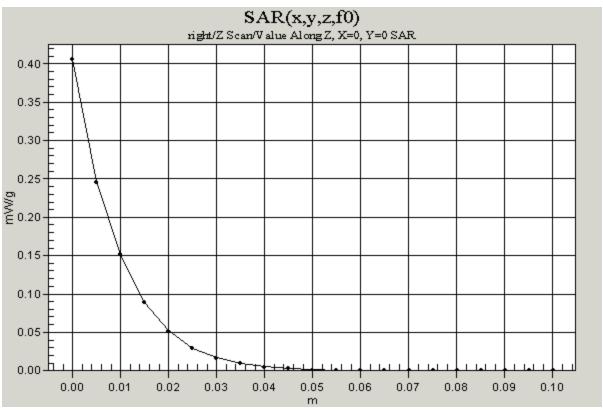
Reference Value = 13.4 V/m

Power Drift = -0.08 dB

Maximum value of SAR = 0.406 mW/g

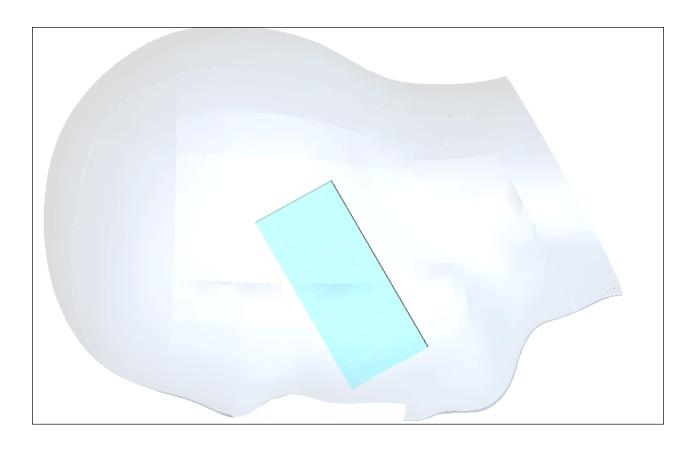
touch 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm


Peak SAR (extrapolated) = 0.808 W/kg


SAR(1 g) = 0.487 mW/g; SAR(10 g) = 0.267 mW/g

Reference Value = 13.4 V/m

Power Drift = -0.04 dB


Maximum value of SAR = 0.526 mW/g

Date/Time: 07/25/03 14:06:18

RIGHT-HEAD TILTE

Date/Time: 07/25/03 13:15:52

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze; Serial:

Program: right

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

tilte 512/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 13.1 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.398 mW/g

tilte 512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Peak SAR (extrapolated) = 0.651 W/kg

SAR(1 g) = 0.367 mW/g; SAR(10 g) = 0.189 mW/g

Reference Value = 13.1 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.424 mW/g

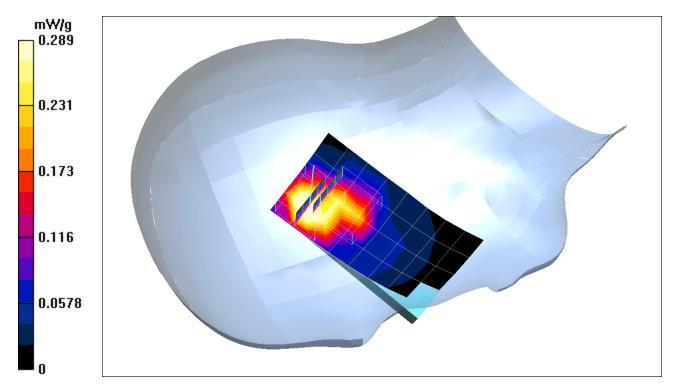
tilte 512/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

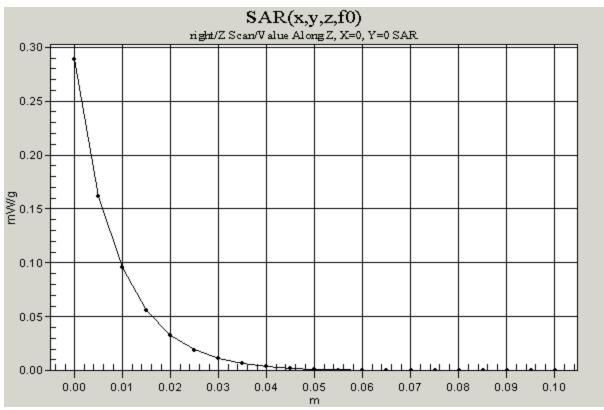
Peak SAR (extrapolated) = 0.583 W/kg

SAR(1 g) = 0.298 mW/g; SAR(10 g) = 0.154 mW/g

Reference Value = 13.1 V/m

Power Drift = -0.1 dB


Maximum value of SAR = 0.37 mW/g


tilte 512/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 13.1 V/m

Power Drift = -0.09 dB

Maximum value of SAR = 0.289 mW/g

Date/Time: 07/25/03 13:43:00

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze; Serial:

Program: right

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

tilte 661/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 12.9 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.422 mW/g

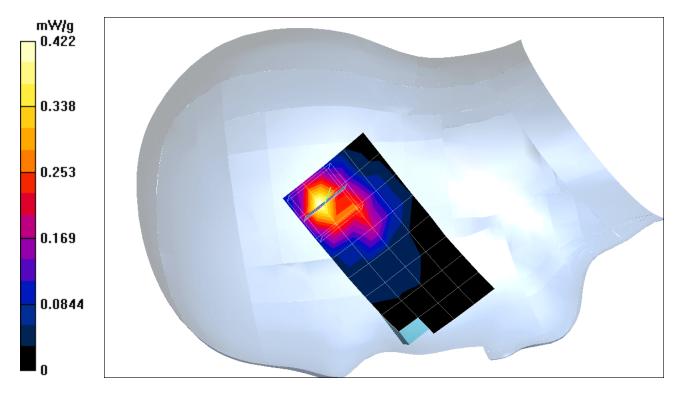
tilte 661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

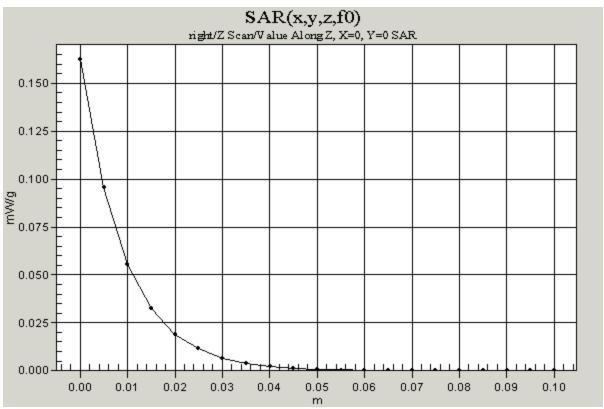
Peak SAR (extrapolated) = 0.655 W/kg

SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.192 mW/g

Reference Value = 12.9 V/m

Power Drift = -0.1 dB


Maximum value of SAR = 0.429 mW/g


tilte 661/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 12.9 V/m

Power Drift = -0.2 dB

Maximum value of SAR = 0.163 mW/g

Date/Time: 07/25/03 14:06:18

Test Laboratory: Compliance Certification Services Inc.

File Name: gsm1900-right.da4

gsm1900-right

DUT: konstanze; Type: konstanze; Serial:

Program: right

Communication System: GSM1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8 Medium: HSL1900 (σ = 1.453 mho/m, ϵ $_{r}$ = 38.5071, ρ = 1000 kg/m³)

Phantom section: Right Section Air Temp 25.9 deg C; Liquid Temp 25.5 deg C

DASY4 Configuration:

- Probe: ET3DV6 SN1762; ConvF(5.4, 5.4, 5.4); Calibrated: 3/31/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn558; Calibrated: 3/7/2003
- Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1271
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 115

tilte 810/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Reference Value = 12 V/m

Power Drift = -0.07 dB

Maximum value of SAR = 0.344 mW/g

tilte 810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7.5mm, dy=7.5mm, dz=5mm

Peak SAR (extrapolated) = 0.548 W/kg

SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.163 mW/g

Reference Value = 12 V/m

Power Drift = -0.07 dB

Maximum value of SAR = 0.349 mW/g

tilte 810/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Reference Value = 12 V/m

Power Drift = -0.1 dB

Maximum value of SAR = 0.237 mW/g