FCC Report

Application Purpose : Original grant

Applicant Name: : Sun Cupid Technology (HK) Ltd.

FCC ID : 2ADIN-NUUX5

Equipment Type : LTE mobile phone

Model Name : X5, NUU_X5

Report Number: FCC17030156A-4

Standard(S) : FCC Part 15 Subpart B

Date Of Receipt : March 13, 2017

Date Of Issue : April 06, 2017

Test By :

(Daisy Qin)

Reviewed By :

(Sol Oin)

Authorized by :

<u>(</u>Michal Ling)

Prepared by : QTC Certification & Testing Co., Ltd.

2nd Floor, Bl Building, Fengyeyuan Industrial Plant,,

Liuxian 2st. Road, Xin'an Street, Bao'an

District,,Shenzhen,518000

Registration Number: 588523

				Page 2 of 5
	ISE RECORD			
Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	April 06, 2017	Valid	Original Report

Table of Contents	Page
1. GENERAL INFORMATION	4
2. TEST DESCRIPTION	6
2.1 MEASUREMENT UNCERTAINTY	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 CONFIGURATION OF SYSTEM UNDER TEST	8
2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	9
3. SUMMARY OF TEST RESULTS	10
4. MEASUREMENT INSTRUMENTS	11
5. EMC EMISSION TEST	12
5.1 CONDUCTED EMISSION MEASUREMENT	12
5.1.1 POWER LINE CONDUCTED EMISSION LIMITS	12
5.1.2 TEST PROCEDURE	13
5.1.3 DEVIATION FROM TEST STANDARD	13
5.1.4 TEST SETUP	13
5.1.5 EUT OPERATING CONDITIONS	13
5.1.6 TEST RESULTS	14
5.2 RADIATED EMISSION MEASUREMENT	24
5.2.1 RADIATED EMISSION LIMITS	24
5.2.2 TEST PROCEDURE	25
5.2.3 DEVIATION FROM TEST STANDARD	25
5.2.4 TEST SETUP	26
5.2.5 EUT OPERATING CONDITIONS	26
5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)	27
5.2.5.2 TEST RESULTS (1GHZ TO 6GHZ)	37
6. EUT TEST PHOTO	40
7. PHOTOGRAPHS OF EUT	44

1. GENERAL INFORMATION

	[
Test Model	X5, NUU_X5
Applicant	Sun Cupid Technology (HK) Ltd.
Address	16/F,CEO Tower,77 Wing Hong Street,Cheung Sha Wan,Hong Kong
Manufacturer	Name:Sun cupid(Shen Zhen) Electronic Ltd
Address	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7
Equipment Type	LTE mobile phone
Brand Name	NUU
Hardware	MTEK6750
Software	X5-AM-02
Battery information:	Li-Polymer Battery : 366282 Voltage: 3.8V Capacity: 2950mAh Limited Charge Voltage: 4.35V
Adapter Information:	Adapter: HNEM050200UE Input: AC 100~240V 50/60Hz 0.35A Output: DC 5.0V===2.0A
Data of receipt	March 13, 2017
Date of test	March 13, 2017 to April 05 , 2017
Deviation	None
Condition of Test Sample	Normal

Equipment Type	Trade Name	Test Model	Mode difference
LTE mobile phone	NUU	X5	Model is not the same,
LTE mobile phone	NUU	NUU_X5	The main measurement model X5

We hereby certify that:
The above equipment was tested by QTC Certification & Testing Co., Ltd.
2nd Floor,Bl Building,Fengyeyuan Industrial Plant,, Liuxian 2st. Road, Xin'an Street, Bao'an
District,,Shenzhen,518000
Registration Number: 588523
The data evaluation, test procedures, and equipment configurations shown in this report were made in
accordance with the procedures given in ANSI C 63.4:2014. The sample tested as described in this report
is in compliance with the FCC Rules Part15 Subpart B.
The test results of this report relate only to the tested sample identified in this report.

2. TEST DESCRIPTION

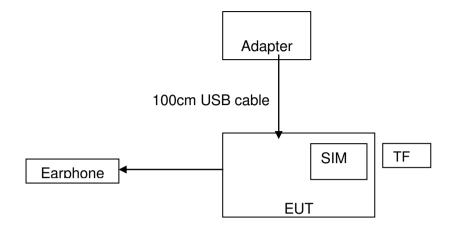
2.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$

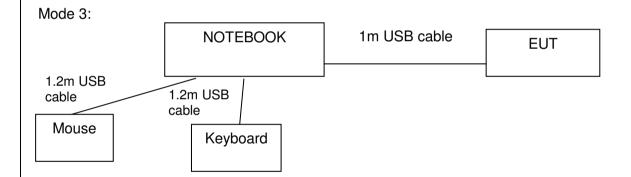
No.	Item	Uncertainty
1	Conducted Emission Test	±3.2dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.7dB
5	All emissions, radiated(>1G)	±4.7dB
6	Temperature	±0.5°C
7	Humidity	±2%

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Pretest Mode Description		
Mode 1	Video Recording	
Model 2	Video Playing	
Mode 3	Exchange data with computer	
Mode 4	GPS	
Mode 5	FM	

For Conducted Emission			
Final Test Mode Test with Keyboard and Mouse			
Mode 1 Video Recording			
Model 2 Video Playing			
Mode 3 Exchange data with computer			
Mode 4 GPS			
Mode 5 FM			


For Radiated Emission			
Final Test Mode Test with Keyboard and Mouse			
Mode 1 Video Recording			
Model 2 Video Playing			
Mode 3 Exchange data with computer			
Mode 4 GPS			
Mode 5 FM			

2.3 CONFIGURATION OF SYSTEM UNDER TEST

Mode 1&2&4&5:

(EUT: LTE mobile phone)

(EUT: LTE mobile phone)

I/O Port of EUT				
I/O Port Type Q'TY Cable Tested with				
Power	1	1m USB cable, unshielded	1	
Earphone	1	1m USB cable, unshielded	1	

2.4 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	/	HNEM050200UE	/	/
2	Keyboard	HP	SK-2880	435302-AA-	/
3	Mouse	DELL	MS111-1	/	/

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in Length column.

3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 , Subpart B					
Standard Section	Test Item	Judgment	Remark		
15.107	CONDUCTED EMISSION	PASS			
15.109	RADIATED EMISSION	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

4. MEASUREMENT INSTRUMENTS

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibrated	Calibrated until
ESCI Test Receiver	R&S	ESCI	100005	08/19/2016	08/18/2017
LISN	AFJ	LS16	16010222119	08/19/2016	08/18/2017
LISN(EUT)	Mestec	AN3016	04/10040	08/19/2016	08/18/2017
pre-amplifier	CDSI	PAP-1G18-38		08/19/2016	08/18/2017
System Controller	СТ	SC100	-	08/19/2016	08/18/2017
Bi-log Antenna	Chase	CBL6111C	2576	08/19/2016	08/18/2017
Spectrum analyzer	R&S	FSU26	200409	08/19/2016	08/18/2017
Horn Antenna	SCHWARZBECK	9120D	1141	08/19/2016	08/18/2017
Bi-log Antenna	SCHWAREBECK	VULB9163	9163/340	08/19/2016	08/18/2017
Pre Amplifier	H.P.	HP8447E	2945A02715	10/13/2016	10/12/2017
9*6*6 Anechoic				08/21/2016	08/20/2017

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

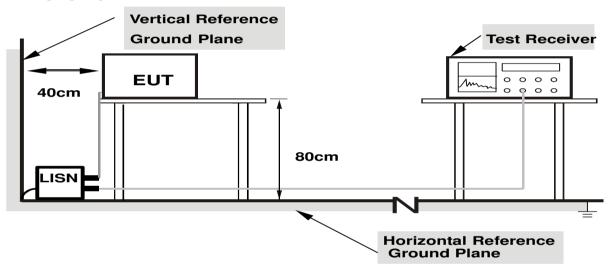
FREQUENCY (MHz)	Class A	(dBuV)	Class B	Standard	
PREQUENCY (MINZ)	Quasi-peak	Average	Quasi-peak	Average	Stariuaru
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting				
Attenuation	10 dB				
Start Frequency	0.15 MHz				
Stop Frequency	30 MHz				
IF Bandwidth	9 kHz				


5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation

5.1.4 TEST SETUP

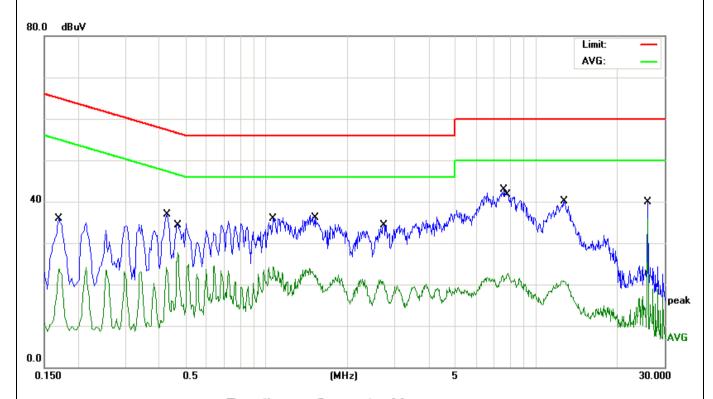
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

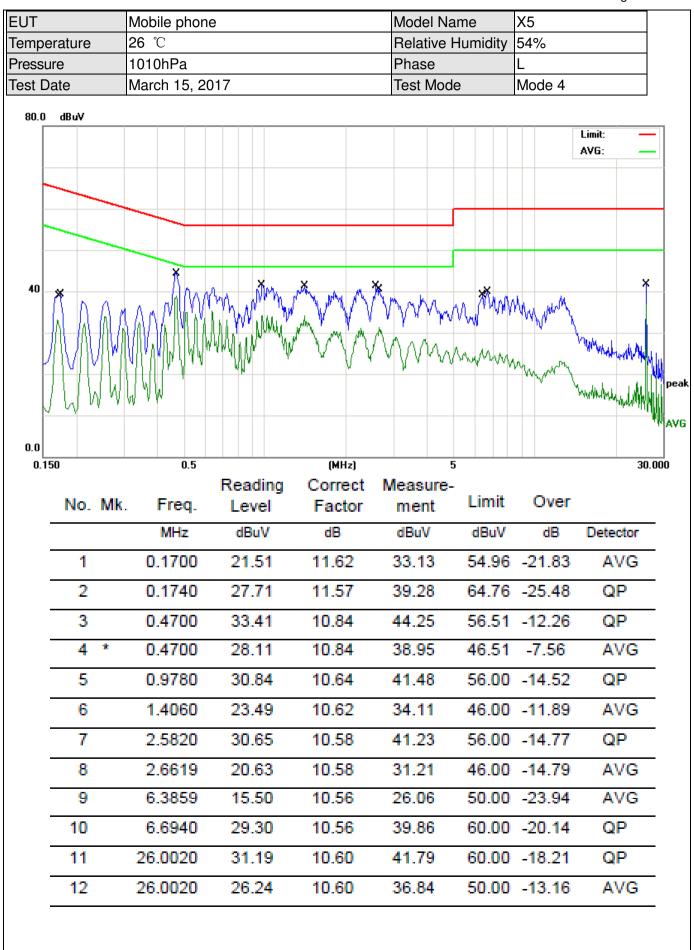
5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.1.6 TEST RESULTS EUT X5 Mobile phone Model Name Temperature 26 ℃ Relative Humidity 54% 1010hPa Pressure Phase Test Date March 15, 2017 Test Mode Mode 1 80.0 dBuV Limit: AVG: 40 0.0 0.5 (MHz) 30.000 0.150 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dBuV dBuV dB dB. Detector 0.1700 28 16 11.62 39.78 64.96 -25.18 OP 1 0.1700 54.96 -20.91 2 22.43 11.62 34.05 AVG 3 39.45 0.466028.61 10.84 46.58 -7.13AVG 4 0.4700 33.87 10.84 44.71 56.51 -11.80 QP 5 1.0580 24.14 10.63 34.77 46.00 -11.23AVG 6 1.0620 31.17 10.63 41.80 56.00 -14.20 QP 10.582.6460 QP 7 30.47 41.05 56.00 -14.95 3.1060 18.28 10.57 28.85 46.00 -17.15 AVG 8 9 6.4420 15.06 10.56 25.62 50.00 -24.38 AVG 10 6.5420 29.14 10.56 39.70 60.00 -20.30 QP 11 26,0020 31.39 10.60 41.99 60.00 -18.01 QP 12 26.0020 27.18 10.60 37.78 50.00 -12.22 AVG


EUT		Mobile phon	ie		Model N	lame	X5	
Tempe	erature	26 ℃			Relative	Humidity	54%	
Pressu	ire	1010hPa			Phase		N	
Test D	ate	March 15, 2	017		Test Mo	de	Mode	1
80.0	dB uV							Limit: — AVG: —
40				Many Mark Mark Mark Mark Mark Mark Mark Mark		and the second		
0.150		0.5		(MHz)	5			30.000
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
_	1	0.1700	24.29	11.62	35.91	64.96	-29.05	QP
_	2	0.1700	12.70	11.62	24.32	54.96	-30.64	AVG
_	3	0.4300	25.57	10.90	36.47	57.25	-20.78	QP
_	4	0.4660	15.76	10.84	26.60	46.58		AVG
_	5	1.0980	13.59	10.62				
		1 . 100 mm to 100 mm						
_				10.62	36 69	56.00	-19 31	(JP
- -	6	1.1420	26.07	10.62	36.69	56.00 46.00		
- - -	6 7	1.1420 2.7659	26.07 10.64	10.57	21.21	46.00	-24.79	AVG
- - -	6 7 8	1.1420 2.7659 4.0100	26.07 10.64 25.78	10.57 10.55	21.21 36.33	46.00 56.00	-24.79 -19.67	AVG
- - - -	6 7 8 9	1.1420 2.7659 4.0100 7.5780	26.07 10.64 25.78 12.16	10.57 10.55 10.57	21.21 36.33 22.73	46.00 56.00 50.00	-24.79 -19.67 -27.27	AVG QP AVG
- - - -	6 7 8	1.1420 2.7659 4.0100 7.5780 7.8660	26.07 10.64 25.78 12.16 32.00	10.57 10.55 10.57 10.58	21.21 36.33 22.73 42.58	46.00 56.00 50.00 60.00	-24.79 -19.67 -27.27 -17.42	AVG QP AVG QP
- - - -	6 7 8 9	1.1420 2.7659 4.0100 7.5780	26.07 10.64 25.78 12.16	10.57 10.55 10.57	21.21 36.33 22.73	46.00 56.00 50.00 60.00	-24.79 -19.67 -27.27 -17.42	AVG QP AVG QP

EUT	Mobile phor	ne		Model Nam	е	X5	
Temperature	26 ℃			Relative Hu	midity	54%	
Pressure	1010hPa			Phase		L	
Test Date	March 15, 2	2017		Test Mode		Mode 2	
80.0 dBuV							
						AV(
40					W WWW.	May mare they had	
0.0 0.150	0.5	Reading	(MHz) Correct	5 Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	t Over	
	MHz	dBuV	dB	dBuV	dBu\	/ dB	Detector
1	0.1700	27.88	11.62	39.50	64.9	6 -25.46	QP
2	0.1700	22.50	11.62	34.12	54.9	6 -20.84	AVG
3	0.2540	23.79	11.13	34.92	51.6	2 -16.70	AVG
4 *	0.4660	28.82	10.84	39.66	46.5	8 -6.92	AVG
5	0.4700	33.83	10.84	44.67	56.5	1 -11.84	QP
6	1.0580	31.82	10.63	42.45	56.0	0 -13.55	QP
7	1.0580	24.20	10.63	34.83	46.0	0 -11.17	AVG
8	2.6500	30.97	10.58	41.55	56.0	0 -14.45	QP
9	2.7300	20.37	10.58	30.95	46.0	0 -15.05	AVG
			10.57	39.36	60.0	0 -20.64	QP
10	6.7740	28.79	10.57	33.30			
10 11	6.7740 6.8340	14.45	10.57	25.02		0 -24.98	AVG


3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	peak
Pressure 1010hPa	X peak
Test Date March 15, 2017 Test Mode Mode 2) peak
80.0 dBuV Limit: AVG: 0.0 0.150 0.5 Reading Correct Measure- No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Dete 1 0.1660 25.46 11.68 37.14 65.15 -28.01 Q 2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	peak
No. Mk. Freq. Level Factor Measure- House MHz dBuV dB dBuV dBuV dB Dete 1 0.1660 25.46 11.68 37.14 65.15 -28.01 Q 2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	peak
No. Mk. Freq. Level Level Level Factor Factor Factor Measure- ment Limit Over 1 0.1660 25.46 11.68 37.14 65.15 -28.01 Q 2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	AVG
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Dete 1 0.1660 25.46 11.68 37.14 65.15 -28.01 Q 2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	30.000
1 0.1660 25.46 11.68 37.14 65.15 -28.01 Q 2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	
2 0.1700 12.78 11.62 24.40 54.96 -30.56 A 3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q	tor
3 0.4260 25.88 10.90 36.78 57.33 -20.55 Q)
	/G
4 0.4660 15.44 10.84 26.28 46.58 -20.30 A)
	/G
5 1.0540 13.66 10.63 24.29 46.00 -21.71 A	/G
6 * 1.5339 26.76 10.60 37.36 56.00 -18.64 Q)
7 2.3460 10.90 10.58 21.48 46.00 -24.52 A	/G
8 6.5020 29.77 10.56 40.33 60.00 -19.67 Q	
9 6.6500 11.76 10.56 22.32 50.00 -27.68 A)
10 18.1580 26.05 10.61 36.66 60.00 -23.34 Q	/G
11 18.1580 10.52 10.61 21.13 50.00 -28.87 A	/G
12 25.7180 15.86 10.60 26.46 60.00 -33.54 Q	/G

EUT			Mob	ile pho	ne			Mod	lel Na	me	X5	<u> </u>		
	peratur	<u></u>	26 °							Humidity				
Press			1010)hPa				Pha		•	L			
Test	Date		Marc	ch 15,	2017			Test	Mode	9	Mc	ode 3		
80.	.O dBuV	,												
0 0.	о авич	•											imit: —	
		_												_
40				X.		. **	DA.	x					×	
40		A AV						$\sqrt{\Lambda}$	$\mathcal{W}_{\mathcal{N}}$		WW	WWW.	~^dduJh.du.>du	
		MM		M M	у '\ <u>\</u>		· V	· · / v	YVV	*	Wa _{VA}	John War Carlot	Acceptalar Mary Mary	pea
0.0														"MAV
n														
	.150			0.5		- C	(MHz)		5				30.	.000
_		Mk.	F	req.		ding vel	(MHz) Correct Facto		sure ent		iit	Over		.000
_		Mk.			Rea Le	_	Correc	r m	sure	} _		Over		
- -		Mk.	M	req.	Rea Le	vel	Correc Facto	r m	sure ent	e- Lim	ıV	dB	Detect	or
- -		Mk.	0.1	req. //Hz	Rea Le dB	vel uV	Correc Facto dB	r m dB 39.	sure ent	Lim dBu	ιV 96	dB	Detect QP	or
- - -	No.	Mk.	0.1 0.1	req. MHz 1700	Rea Le dB 28	vel uV .01	Correct Facto dB 11.62	r me dB 39.	ent uV .63	Lim dBu 64.	ıV 96 96	dB -25.33	Detect QP AV	or G
- - -	No.	Mk.	0.1 0.1 0.4	req. MHz 1700	Rea Le dB 28 21	vel uV .01 .67	Correct Factor dB 11.62	39. 33.	ent iuV .63	Lim dBu 64.	JV 96 96 51	dB -25.33 -21.67	Detect QP AV	or G
- - -	No. 1 2		0.1 0.1 0.4 0.4	ireq. MHz 1700 1700	Rea Le dB 28 21	vel uV .01 .67 .86	Correct Facto dB 11.62 11.62 10.84	39. 33. 44. 39.	ent ent .63 .29	64.5 54.5 56.4	96 96 51	dB -25.33 -21.67 -11.81	Detect QP AV QP AV	or G
- - - -	No. 1 2 3 4		0.1 0.4 0.4 1.0	ireq. MHz 1700 1700 1700	Rea Le' dB 28 21 33 28	vel uV .01 .67 .86	Correct Facto dB 11.62 11.62 10.84 10.84	39. 33. 44. 39.	.63 .70	54. 56. 56.	96 96 51 51	dB -25.33 -21.67 -11.81 -6.82	Detect QP AV QP AV	G G
- - -	No. 1 2 3 4		0.1 0.4 0.4 1.0	ireq. MHz 1700 1700 1700 1700 1700	Rea Le dB 28 21 33 28 31 23	vel uV .01 .67 .86 .85	Correct Factor dB 11.62 11.62 10.84 10.63	39. 33. 44. 39. 42.	.63 .70 .69	54.5 56.5 56.46.46.	96 96 51 51 00	dB -25.33 -21.67 -11.81 -6.82 -13.97	Detect QP AV QP AV	G G
- - - -	No. 1 2 3 4 5		0.1 0.4 0.4 1.0 1.0	ireq. MHz 1700 1700 1700 1700 0300 0660	Rea Le dB 28 21 33 28 31 23	.01 .67 .86 .85 .40	Correct Factor dB 11.62 11.62 10.84 10.63 10.63	r med dB 39. 33. 44. 39. 42. 34. 31.	.63 .70 .69	54. 56. 46. 46.	96 96 51 51 00	dB -25.33 -21.67 -11.81 -6.82 -13.97 -11.49	Detect QP AV QP AV AV	G G G
- - - -	No. 1 2 3 4 5 6 7		0.1 0.4 0.4 1.0 2.2	ireq. MHz 1700 1700 1700 1700 1300 1660 2340	Rea Le dB 28 21 33 28 31 23 20	vel uV .01 .67 .86 .85 .40	Correct Factor dB 11.62 11.62 10.84 10.63 10.63 10.58	r med dB 39. 33. 44. 39. 42. 34. 31. 41.	.63 .70 .69 .51	54. 56. 46. 46. 56.	96 96 51 51 00 00	dB -25.33 -21.67 -11.81 -6.82 -13.97 -11.49	Detect QP AV QP AV AV	G G
- - -	No. 1 2 3 4 5 6 7		0.1 0.4 0.4 1.0 2.2 2.5 6.3	ireq. MHz 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700 1700	Rea Le' dB 28 21 33 28 31 23 20 30	vel uV .01 .67 .86 .85 .40 .88	Correct Factor dB 11.62 11.62 10.84 10.63 10.58 10.58	39. 33. 44. 39. 42. 34. 31. 41.	.63 .29 .70 .69 .51	54. 56. 56. 46. 56. 56.	96 96 51 51 00 00	dB -25.33 -21.67 -11.81 -6.82 -13.97 -11.49 -14.90	Detect QP AV QP AV QP AV	G G G
-	No. 1 2 3 4 5 6 7 8		0.1 0.4 0.4 1.0 2.2 2.5 6.3	req. MHz 1700 1	Rea Le dB 28 21 33 28 31 23 20 30 15	vel uV .01 .67 .86 .85 .40 .88 .52 .46	Correct Factor dB 11.62 11.62 10.84 10.63 10.58 10.58 10.56	7 med dB 39. 33. 44. 39. 42. 34. 31. 41. 25. 39.	.63 .29 .70 .69 .51 .10	54. 56. 46. 46. 56. 60.	96 96 51 51 00 00 00	dB -25.33 -21.67 -11.81 -6.82 -13.97 -14.90 -14.96 -24.16	Detect QP AV QP AV QP AV QP	G G G

EUT	Mobile phone	Model Name	X5
Temperature	26 ℃	Relative Humidity	54%
Pressure	1010hPa	Phase	N
Test Date	March 15, 2017	Test Mode	Mode 3

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1700	24.28	11.62	35.90	64.96	-29.06	QP
2		0.1700	12.14	11.62	23.76	54.96	-31.20	AVG
3		0.4300	26.08	10.90	36.98	57.25	-20.27	QP
4		0.4700	16.81	10.84	27.65	46.51	-18.86	AVG
5		1.0620	13.68	10.63	24.31	46.00	-21.69	AVG
6		1.5260	25.48	10.60	36.08	56.00	-19.92	QP
7		2.7100	10.04	10.58	20.62	46.00	-25.38	AVG
8		7.6420	32.29	10.57	42.86	60.00	-17.14	QP
9		7.8620	12.03	10.58	22.61	50.00	-27.39	AVG
10		12.7620	29.52	10.60	40.12	60.00	-19.88	QP
11		26.0020	29.25	10.60	39.85	60.00	-20.15	QP
12	*	26.0020	25.38	10.60	35.98	50.00	-14.02	AVG

EU	Γ	Mobile pho	ne		Model N	lame	X5			
Гen	perature	26 ℃			Relative	Humidity	54%	54%		
	ssure	1010hPa			Phase		N			
es	t Date	March 15, 2017 Test Mode		de	Mode 4					
80.0	dBuV							imit: —		
0.0				Maryard Maria Maria						
0.	150	0.5		(MHz)	5			30.000		
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
•		MHz	dBuV	dB	dBuV	dBuV	dB	Detector		
•	1	0.1700	24.94	11.62	36.56	64.96	-28.40	QP		
-	2	0.1700	13.05	11.62	24.67	54.96	-30.29	AVG		
•	3	0.4260	26.47	10.90	37.37	57.33	-19.96	QP		
•	4	0.4700	16.42	10.84	27.26	46.51	-19.25	AVG		
•	5	1.0620	14.37	10.63	25.00	46.00	-21.00	AVG		
•	6	1.1460	26.19	10.62	36.81	56.00	-19.19	QP		
•	7	2.3179	11.66	10.58	22.24	46.00	-23.76	AVG		
•	8	3.1700	24.18	10.57	34.75		-21.25	QP		
	9	8.0340	11.39	10.58	21.97		-28.03	AVG		
•						60.00		QP		
	10	12 4980	29.63	10.58	40.71					
•	10	12.4980 26.0020	29.63	10.58	40.21 39.63		-20.37	QP		

EUT	Mobile phor	ie		Model Nar	me	X5	
Temperature	26 ℃			Relative H	umidity	54%	
Pressure	1010hPa			Phase		L	
Test Date	March 15, 2	017		Test Mode		Mode 5	
80.0 dBuV							.imit: —
40				M MM.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	May market	VANON AVIOLEM DE
0.0	0.5		(1411-)	5			20.000
0.150	0.5	Reading	(MHz) Correct	Measure-			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1700	27.76	11.62	39.38	64.96	-25.58	QP
2	0.1700	21.55	11.62	33.17	54.96	-21.79	AVG
3 *	0.4700	28.02	10.84	38.86	46.51	-7.65	AVG
4	0.4740	33.15	10.83	43.98	56.44	-12.46	QP
5	1.3619	22.49	10.62	33.11	46.00	-12.89	AVG
6	1.4340	32.05	10.62	42.67	56.00	-13.33	QP
7	2.2780	20.28	10.58	30.86	46.00	-15.14	AVG
8	2.9739	28.42	10.57	38.99	56.00	-17.01	QP
9	6.3620	15.47	10.56	26.03	50.00	-23.97	AVG
10	6.6580	29.31	10.56	39.87	60.00	-20.13	QP
11	25.9980	31.00	10.60	41.60	60.00	-18.40	QP

EUT	Mobile phon	e		Model Na	ame	X5	
Temperature	26 ℃			Relative	Humidity	54%	
Pressure	1010hPa			Phase		N	
Test Date	March 15, 20	017		Test Mod	de	Mode 5	
80.0 dBuV							
							imit: —
40					JANA MANANA	X _N	×
T X X A	18. AA ÅA ALP	VICTOR OF MANAGEMENT	MATERIAL SAME SAME	2. pr. 4. / 1. / 1. / 1. / 1. / 1. / 1. / 1.	UV) ^r	My J	.h
	<u> </u>	1 ·	. Augusti	V Y .		γ.	Athenia .
Y A WAWAM			Married Married	1 A A A A A A A		, ~/^4\h	"MadawAHANA
	\	MANIMA	VV	V A MAGA.	*\p\#	NM I	
L M M M	[10] [1]						2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
0.0			441.3				20.00
0.150	0.5	Desdies	(MHz)	5			30.00
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1700	24.25	11.62	35.87	64.96	-29.09	QP
2	0.1700	12.27	11.62	23.89		-31.07	
3	0.2140	12.59	11.18	23.77		-29.27	
4	0.4300	26.03	10.90	36.93		-20.32	QP
5	0.6419	14.03		24.80			
	1.4860	26.10		36.72			
7		11.53					
	1.8540		10.60	22.13		-23.87	
8	6.6140	12.07	10.56	22.63		-27.37	
9	7.6660	32.56	10.57			-16.87	
10	12.0060	28.86	10.58	39.44	60.00	-20.56	QP
11	26.0020	29.13	10.60	39.73	60.00	-20.27	QP

5.2 RADIATED EMISSION MEASUREMENT

5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

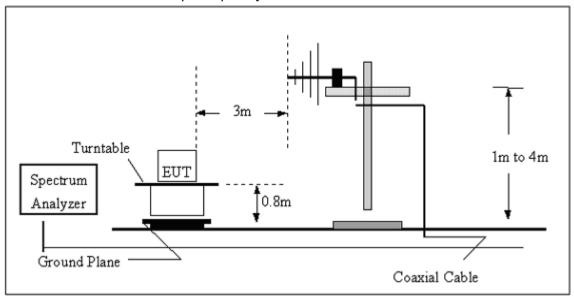
EDEOLIENCY (MH-)	Limit (dBuV/m) (at 3M)	
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

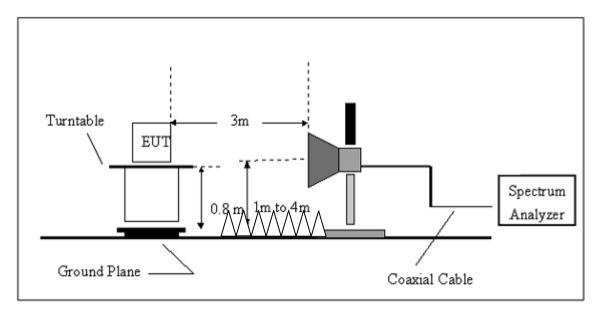
- (1) The limit for radiated test was performed according to FCC PART 15B.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting	
Attenuation	Attenuation Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted	4 1 1 1 4 1 1 1 6 1 4 1 1 1 6 1	
band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average	

Receiver Parameter	Parameter Setting	
Attenuation Auto		
Start ~ Stop Frequency 9kHz~150kHz / RB 200Hz for QP		
Start ~ Stop Frequency 150kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	


5.2.2 TEST PROCEDURE

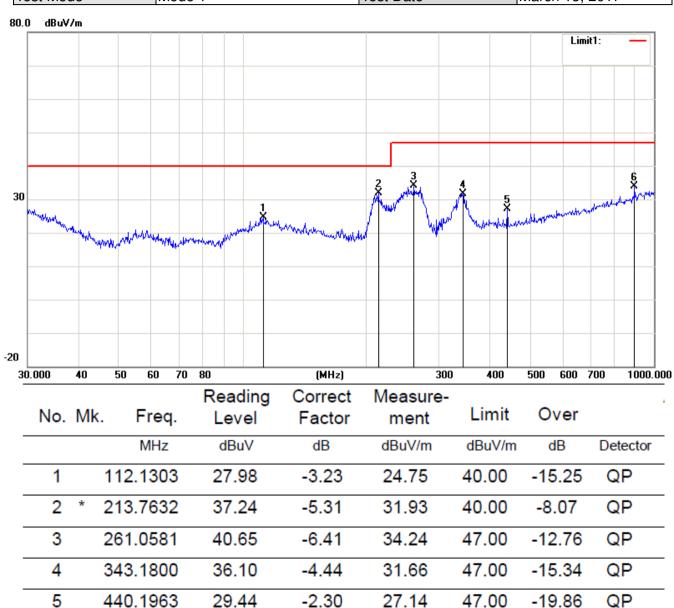
- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.


e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement
performed. f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported
5.2.3 DEVIATION FROM TEST STANDARD
No deviation

5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz



5.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.2.5.1 TEST RESULTS (BETWEEN 30M – 1000 MHZ)

EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Horizontal
Test Mode	Mode 1	Test Date	March 15, 2017

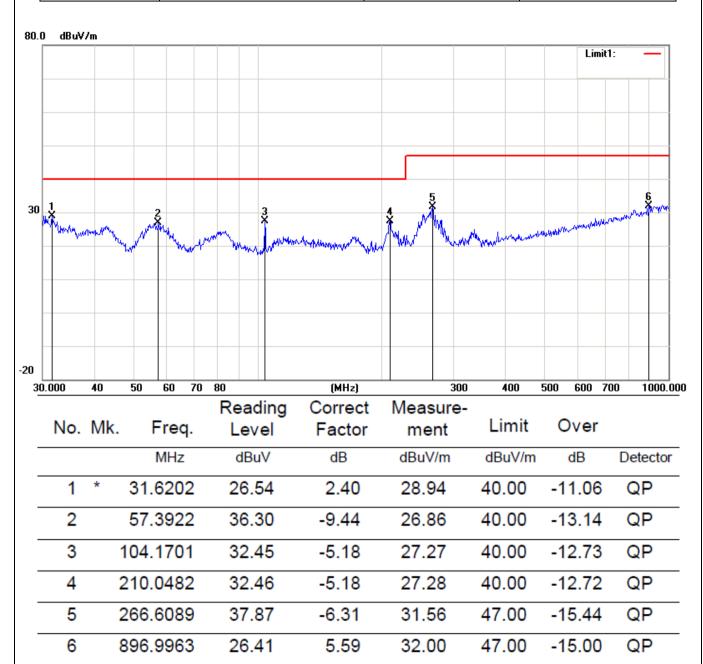
5.59

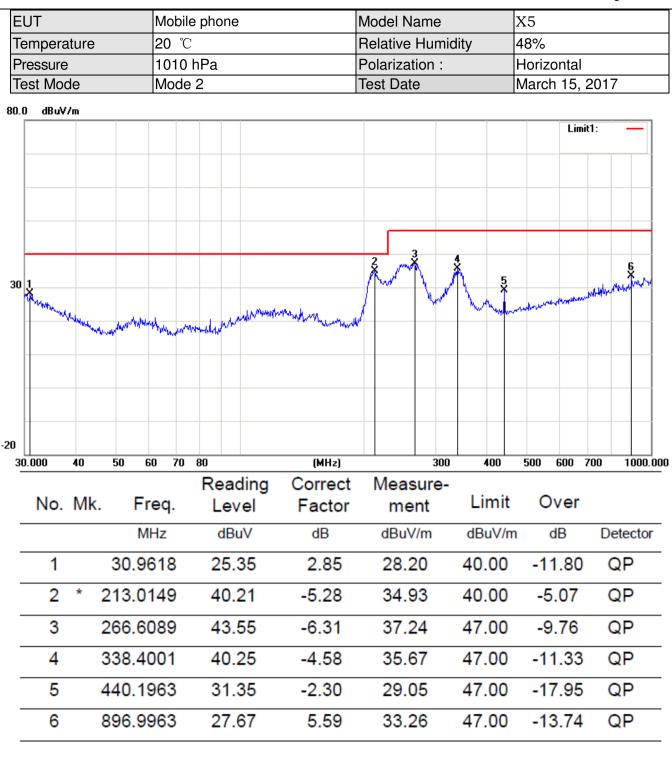
33.80

47.00

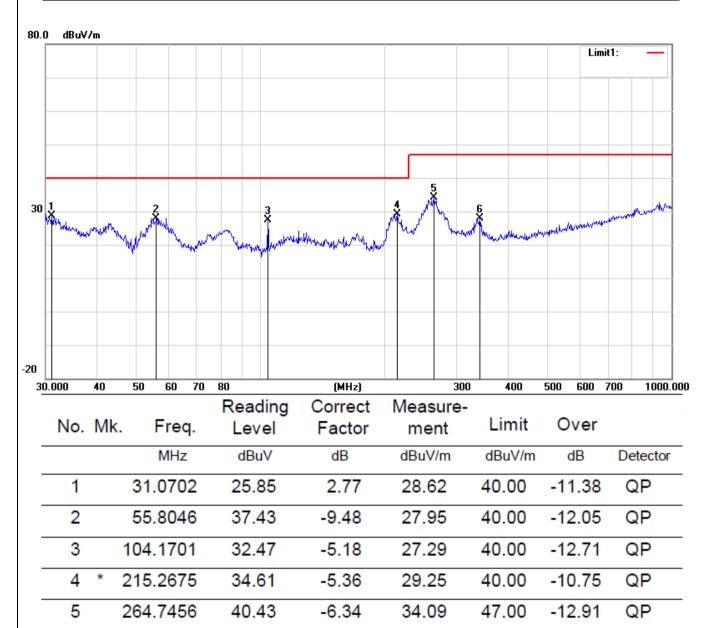
-13.20

QΡ


Report No.: FCC17030156A-4


896.9963

28.21


6

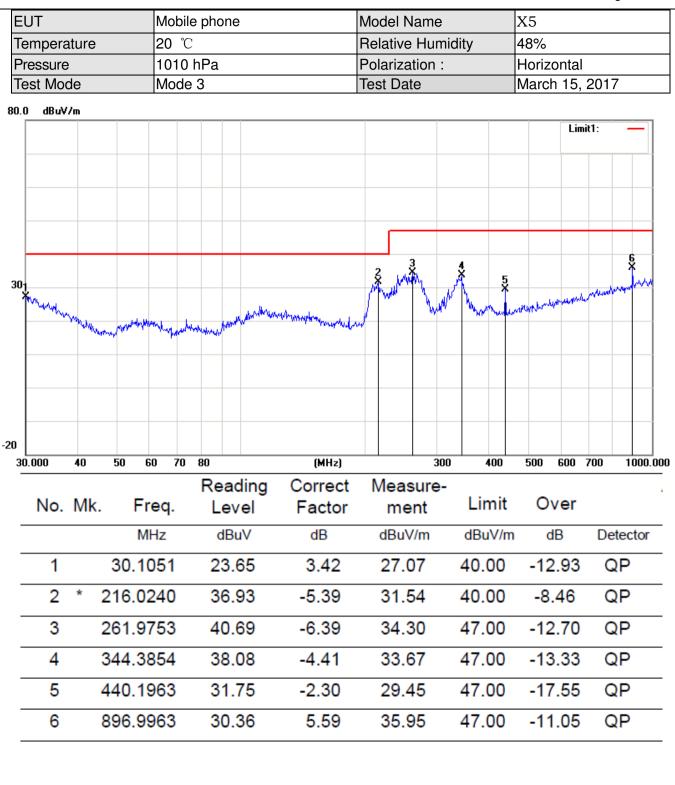
EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 1	Test Date	March 15, 2017

EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 2	Test Date	March 15, 2017

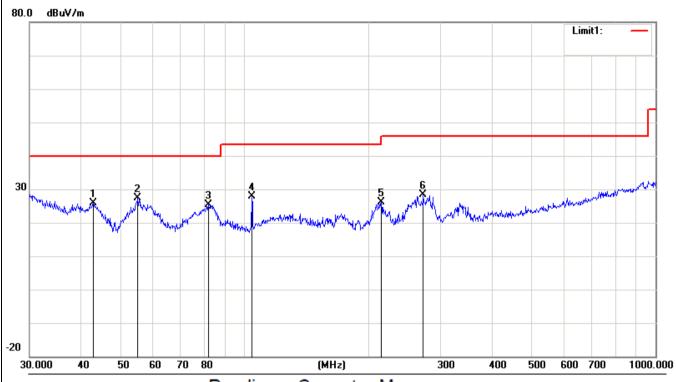
-4.49

47.00

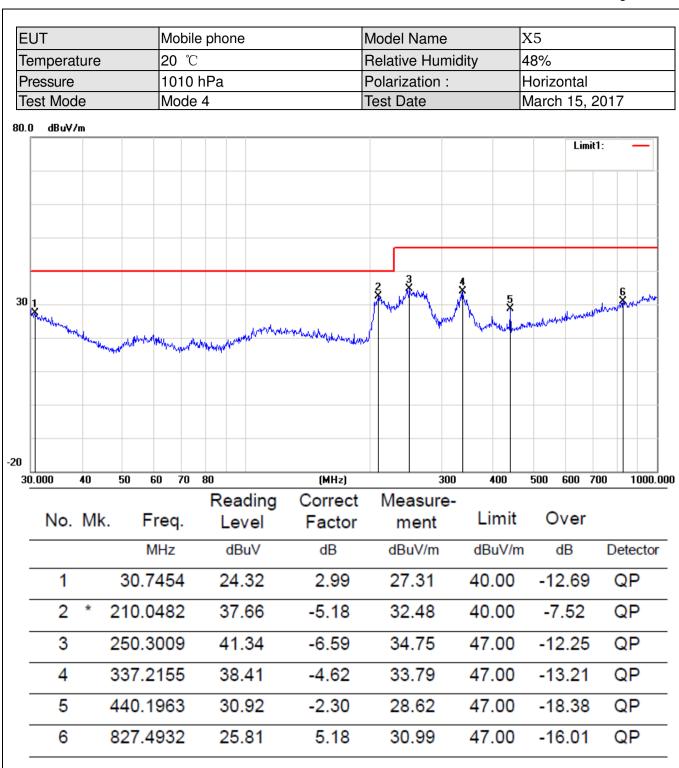
27.76

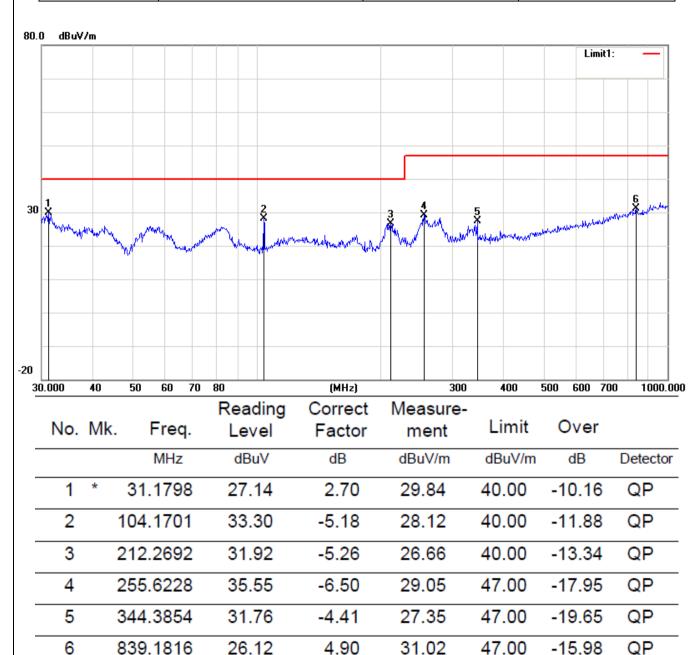

-19.24

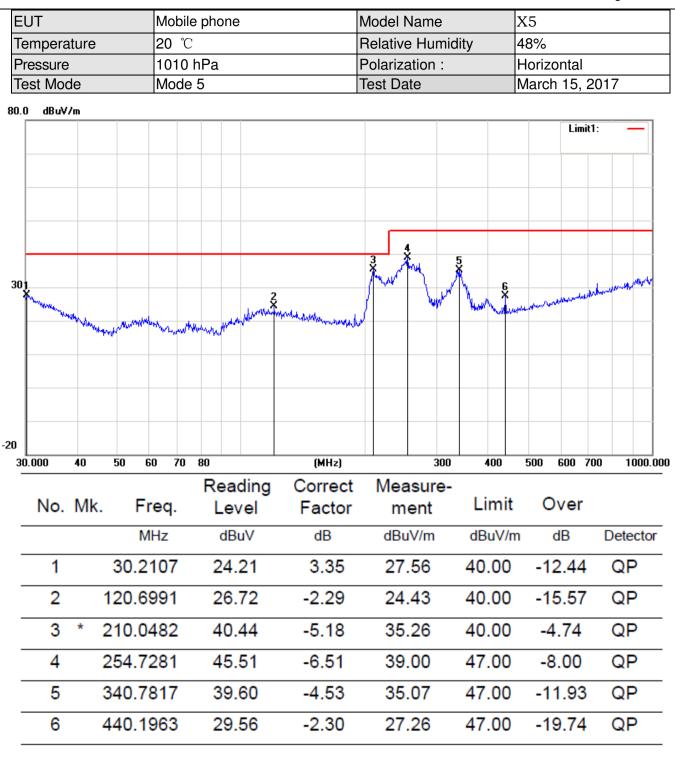
QΡ


341.9786

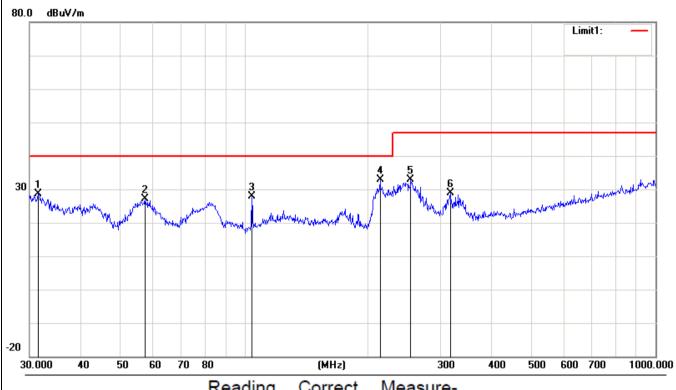
32.25


6


EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 3	Test Date	March 15, 2017



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		42.8997	31.20	-5.36	25.84	40.00	-14.16	QP
2	*	55.0274	36.82	-9.50	27.32	40.00	-12.68	QP
3		81.7831	33.13	-7.82	25.31	40.00	-14.69	QP
4		104.1701	32.97	-5.18	27.79	43.50	-15.71	QP
5		215.2675	31.47	-5.36	26.11	43.50	-17.39	QP
6	-	272.2776	34.70	-6.22	28.48	46.00	-17.52	QP



EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 4	Test Date	March 15, 2017

EUT	Mobile phone	Model Name	X5
Temperature	20 ℃	Relative Humidity	48%
Pressure	1010 hPa	Polarization:	Vertical
Test Mode	Mode 5	Test Date	March 15, 2017

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		31.5091	26.14	2.47	28.61	40.00	-11.39	QP
2		57.1914	36.67	-9.46	27.21	40.00	-12.79	QP
3		104.1701	33.04	-5.18	27.86	40.00	-12.14	QP
4	*	213.7632	38.22	-5.31	32.91	40.00	-7.09	QP
5		253.8367	39.39	-6.53	32.86	47.00	-14.14	QP
6		316.5889	33.27	-4.44	28.83	47.00	-18.17	QP

5.2.5.2 TEST RESULTS (1GHZ TO 6GHZ)

EUT	Mobile phone	Model Name	X5
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 1
Test Date	March 15, 2017		

Freq.	Ant.	Emission		Limit		Over(dB)		
(MHz)	Pol.	Level(Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV	
1632.45	V	60.01	41.74	74	54	-13.99	-12.26	
2829.27	V	58.38	39.17	74	54	-15.62	-14.83	
1684.52	Н	59.75	39.02	74	54	-14.25	-14.98	
2831.6	Н	58.51	39.51	74	54	-15.49	-14.49	

Remark

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X5
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 2
Test Date	March 15, 2017		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1583.35	V	58.47	39.24	74	54	-15.53	-14.76
2641.52	V	59.81	39.37	74	54	-14.19	-14.63
1628.42	Н	59.02	39.22	74	54	-14.98	-14.78
2810.39	Н	58.49	39.49	74	54	-15.51	-14.51

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X5
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 3
Test Date	March 15, 2017		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBuV/m)		ı(dBuV/m)	
	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	58.92	39.06	74	54	-15.08	-14.94
2652.38	V	59.81	40.66	74	54	-14.19	-13.34
1699.33	Н	60.00	40.41	74	54	-14.00	-13.59
2739.42	Н	59.51	40.51	74	54	-14.49	-13.49

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

EUT	Mobile phone	Model Name	X5
Temperature	120 (Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 4
Test Date	March 15, 2017		

Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)		3m(dBuV/m)			
	H/V	PK	AV	PK	AV	PK	AV
1583.35	V	58.68	41.86	74	54	-15.32	-12.14
2641.52	V	59.35	39.70	74	54	-14.65	-14.30
1628.42	Н	59.76	40.38	74	54	-14.24	-13.62
2810.39	Н	59.87	40.87	74	54	-14.13	-13.13

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

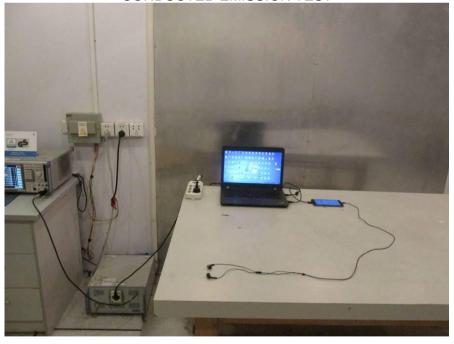
All the x/y/z orientation has been investigated, and only worst case is presented in this report.

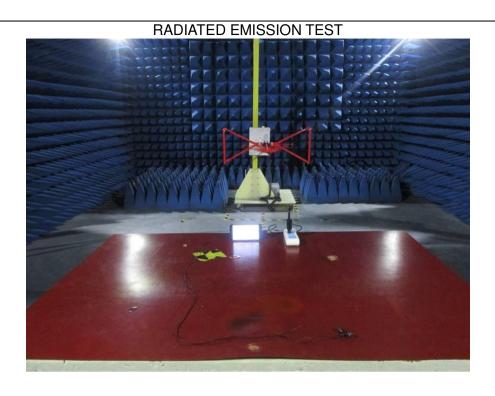
EUT	Mobile phone	Model Name	X5
Temperature	120 (*	Relative Humidity	48%
Pressure	1010 hPa	Test Mode	Mode 5
Test Date	March 15, 2017		

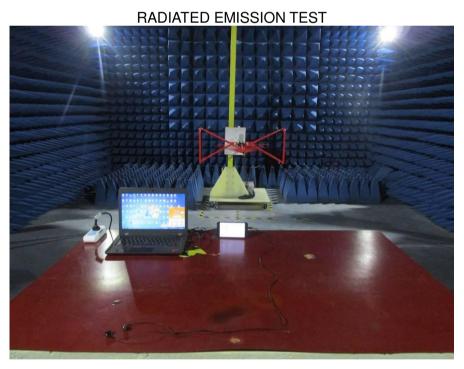
Freq.	Ant.	Emission		Limit		Over(dB)	
(MHz)	Pol.	Level(dBuV)	3m(dBu\	3m(dBuV/m)		
	H/V	PK	AV	PK	AV	PK	AV
1577.35	V	58.33	40.00	74	54	-15.67	-14.00
2652.38	V	59.64	40.68	74	54	-14.36	-13.32
1699.33	Н	58.91	39.90	74	54	-15.09	-14.10
2739.42	Н	59.46	40.46	74	54	-14.54	-13.54

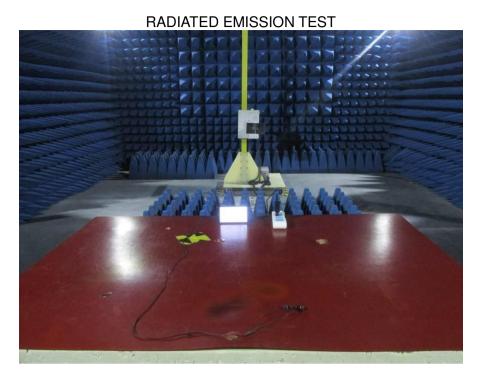
Remark:

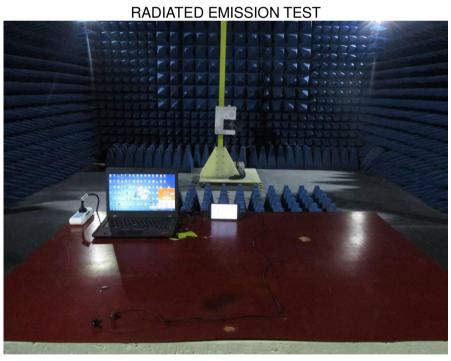
All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss - Pre-amplifier.

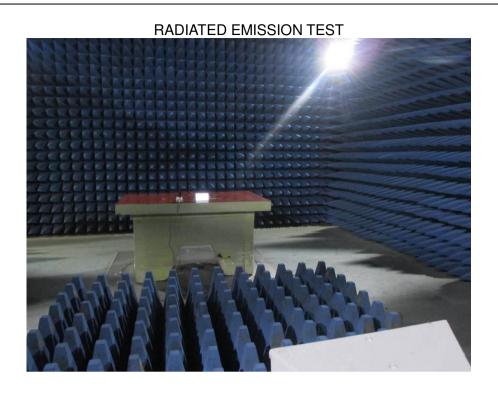

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

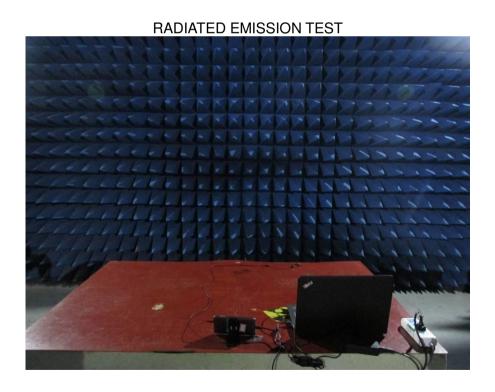

6. EUT TEST PHOTO

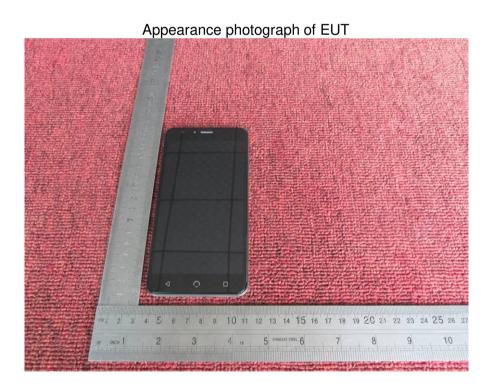




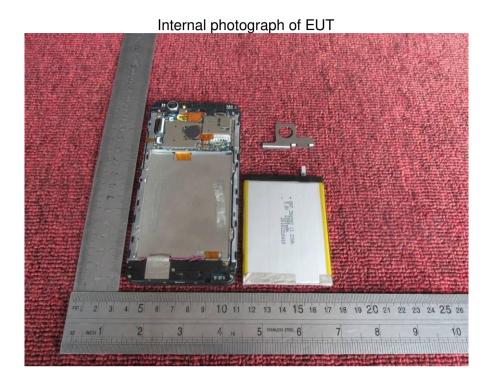

CONDUCTED EMISSION TEST

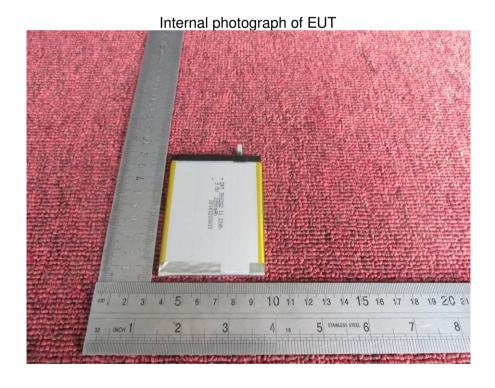


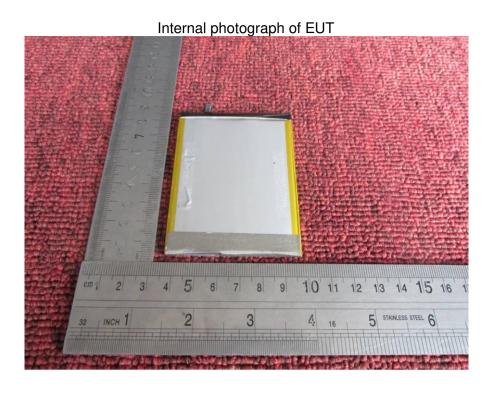


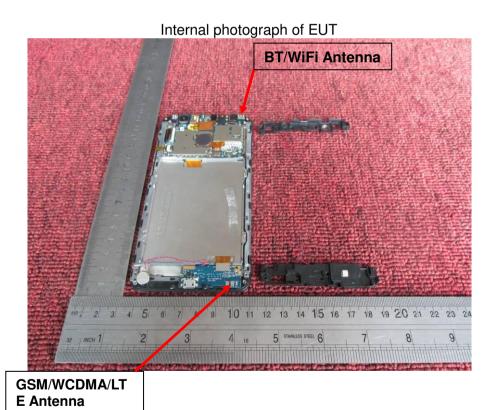


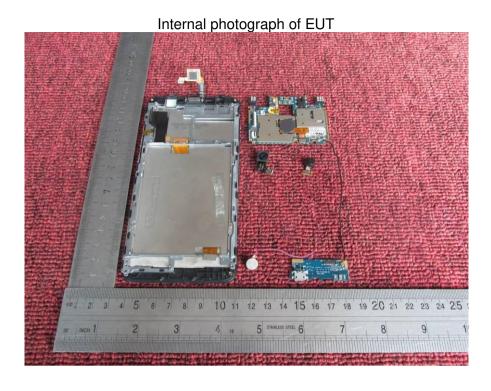
7. PHOTOGRAPHS OF EUT

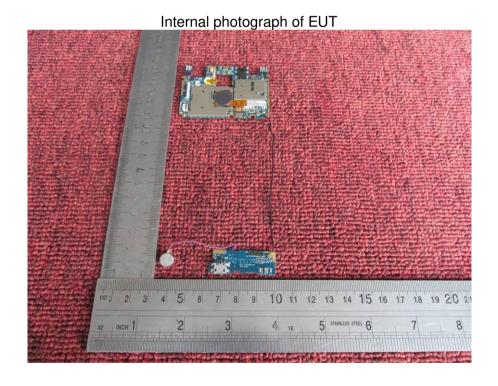


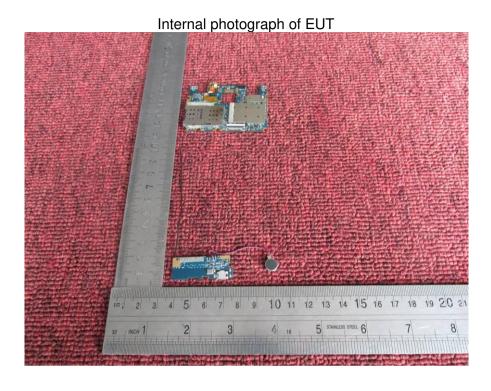


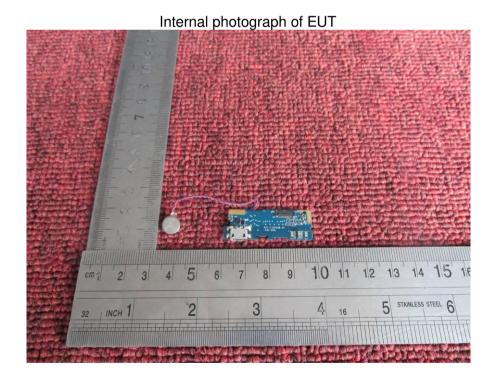


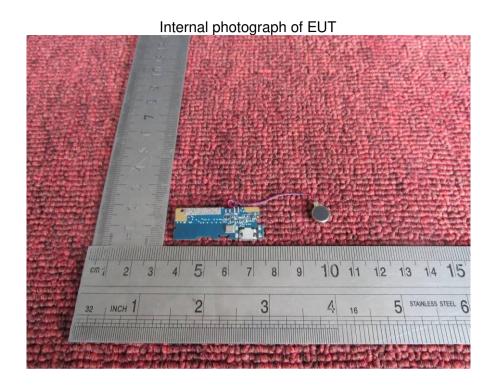


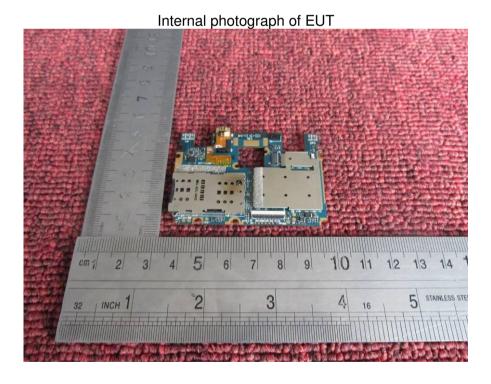


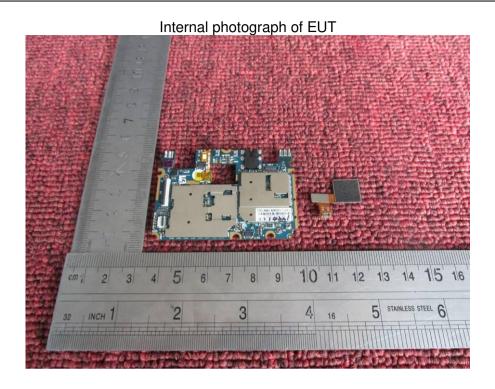


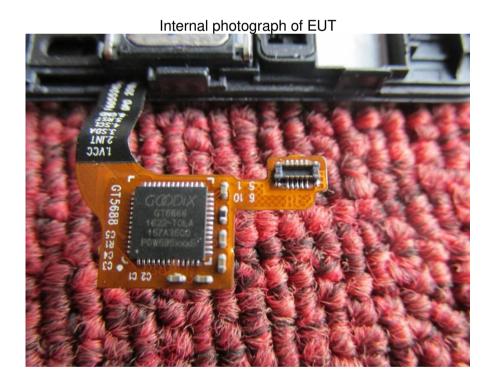


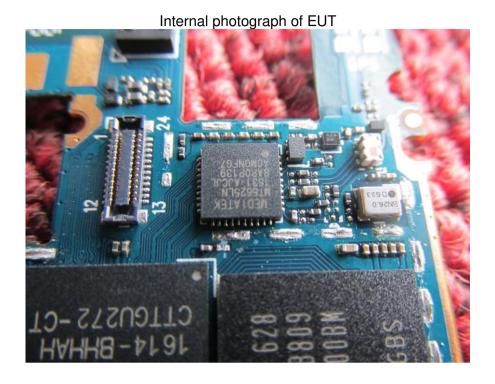


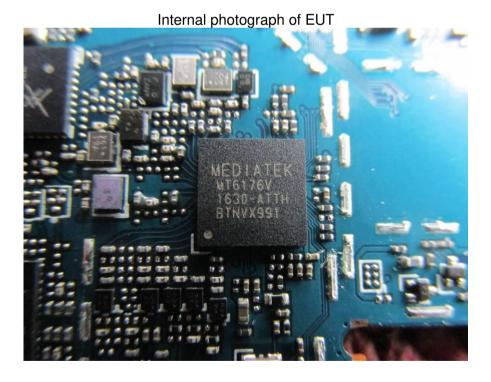


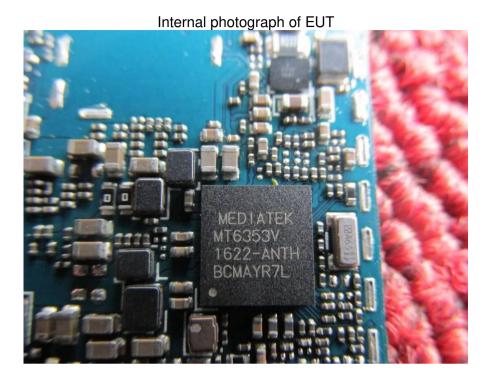


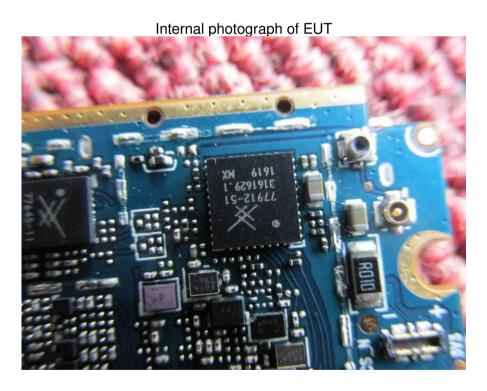












---END OF REPORT---