

TEST REPORT

Report No.:	8234EU012110W1		
Applicant:	Shenzhen Gaoyi Electronic Co.,Ltd		
Address:	Room 701 7th Floor, Building F, Huafeng Industrial Zone, Hangcheng Road Xixiang Town, Bao An District, Shenzhen, China		
Product Name:	Wireless Car Charger		
Model No.:	X34 (refer to clause 2.4)		
Trademark:	N/A		
FCC ID:	2A6IU-X34		
Test Standard(s):	47 CFR Part 15 Subpart C		
Date of Receipt:	Oct. 21, 2024		
Test Date:	Oct. 21, 2024 – Nov. 06, 2024		
Date of Issue:	Nov. 11, 2024		

ISSUED BY: SHENZHEN EU TESTING LABORATORY LIMITED

Prepared by:

Reviewed and Approved by:

* * *

TING LABOR

PPROVED

Mikoy zhu

Mikey Zhu/ Engineer

Sally zhang

Sally Zhang/ Manager

SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China

Revision Record

Report Version	Issued Date	Description	Status
V0	Nov. 11, 2024	Original	Valid

SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China

Table of Contents

1	COVER PAGE1			
2	GENI	GENERAL INFORMATION		
	2.1 2.2 2.3 2.4 2.5	MANUFACTURER INFORMATION		
3	TEST	SUMMARY	. 6	
	3.1 3.2 3.3	TEST STANDARD TEST VERDICT TEST LABORATORY	. 6	
4	TEST	CONFIGURATION	. 7	
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8	TEST ENVIRONMENT TEST EQUIPMENT DESCRIPTION OF SUPPORT UNIT TEST MODE DESCRIPTION OF CALCULATION MEASUREMENT UNCERTAINTY DEVIATION FROM STANDARDS ABNORMALITIES FROM STANDARD CONDITION	. 7 . 8 . 8 . 8 . 9 . 9	
5	TEST	TITEMS	10	
	5.1	ANTENNA REQUIREMENT. 5.1.1 Test Requirement. 5.1.2 Antenna Anti-Replacement Construction. 5.1.3 Antenna Gain .	10 10	
	5.2	CONDUCTED EMISSION AT AC POWER LINE		
		 5.2.1 Test Requirement	11 11	
	5.3	EMISSIONS BANDWIDTH	12	
		 5.3.1 Test Requirement	12 13	
	5.4	FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND RADIATED EMISSION	-	
		5.4.1 Test Requirement	16 17 17	
	5.5	FREQUENCY STABILITY		
		5.5.1 Test Requirement	24 25 25	
ANNE ANNE ANNE	EX B	TEST SETUP PHOTOS EXTERNAL PHOTOS INTERNAL PHOTOS	26	

SHENZHEN EU TESTING LABORATORY LIMITED

2 General Information

2.1 Applicant Information

Applicant	Shenzhen Gaoyi Electronic Co.,Ltd
Address	Room 701 7th Floor, Building F, Huafeng Industrial Zone, Hangcheng Road Xixiang Town, Bao An District, Shenzhen, China

2.2 Manufacturer Information

Manufacturer	Dongguan Gaoyi Electronic Co.,Ltd
Address	No.4, Changsheng Street, Tianmei Village, Huangjiang Town, Dongguan City, Guangdong Province, China

2.3 Factory Information

Factory	Dongguan Gaoyi Electronic Co.,Ltd
Address	No.4, Changsheng Street, Tianmei Village, Huangjiang Town, Dongguan City, Guangdong Province, China

2.4 General Description of E.U.T.

Product Name	Wireless Car Charger		
Model No. Under Test	X34		
List Model No.	X34C, X34-QI2, 34A, X34B, X34D, X34S		
Description of Model differentiation	All models are same with electrical parameters and internal circuit structure, but only differ in appearance colors and model name. (this information provided by the customer)		
Rating(s)	Input: 5.0V===3.0A/9.0V===2.22A Wireless Charger Output: 5W/7.5W/10W/15W		
Product Type	Mobile Portable Fix Location		
Test Sample No.	-1/2(Normal Sample), -2/2(Engineering Sample)		
Hardware Version	N/A		
Software Version	N/A		
Remark	For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.		

SHENZHEN EU TESTING LABORATORY LIMITED

2.5 Technical Information of E.U.T.

Technology Used Wireless Power Transfer

The requirement for the following technical information of the EUT was tested in this report:

Technology	WPT
Operating Frequency	110.1-205KHz
Modulation Type	FSK
Antenna Type	Inductive Loop Antenna
Antenna Gain(Peak)	0 dBi
	The above information are declared by the applicant, EU-LAB is not responsible
Remark	for the information accuracy provided by the applicant.

SHENZHEN EU TESTING LABORATORY LIMITED

Test Summary 3

3.1 Test Standard

The tests were performed according to following standards:

No.	Identity	Document Title
1	47 CFR Part 15, Subpart C	Intentional radiators of radio frequency equipment
2	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices

Remark:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product maybe which result in lowering the emission/immunity should be checked to ensure compliance has been maintained.

3.2 Test Verdict

No.	Description	FCC Part No.	Verdict	Remark
1	Antenna Requirement	15.203	Pass	
2	Conducted Emission at AC Power Line	15.207	N/A	
3 Emissions Bandwidth		15.215	Pass	
4 Radiated Emissions		15.209 /15.215(b)	Pass	
Note: (1) "N/A" denotes test is not applicable in this Test Report				

(1) "N/A" denotes test is not applicable in this Test Report.

3.3 Test Laboratory

3.3 Test Laboratory	
Test Laboratory	Shenzhen EU Testing Laboratory Limited
Address101, Building B1, Fuqiao Fourth Area, Qiaotou Commun Subdistrict, Baoan District, Shenzhen, Guangdong, Chin	
Designation Number	CN1368
Test Firm Registration Number	952583

4 Test Configuration

4.1 Test Environment

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	30% to 60%	
Atmospheric Pressure	86 kPa to 106 kPa	
Temperature	NT (Normal Temperature)	+15℃ to +35℃
Working Voltage of the EUT	NV (Normal Voltage)	24 V

4.2 Test Equipment

Conducted Emission at AC power line					
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	EE-004	2024/01/09	2025/01/08
EMI Test Receiver	Rohde & Schwarz	ESCI	EE-005	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-014	N.C.R	N.C.R
		1.1			

Radiated Emission and	Radiated Emission and RF Test				
Equipment	Manufacturer	Model No	Serial No	Cal Date	Cal Due Date
EMI Test Receiver	ROHDE & SCHWARZ	ESPI	EE-006	2024/01/09	2025/01/08
Bilog Broadband Antenna	SCHWARZBECK	VULB 9163	EE-007	2023/01/14	2026/01/13
Double Ridged Horn Antenna	A-INFOMW	LB-10180-NF	EE-008	2023/01/12	2026/01/11
Pre-amplifier	Agilent	8447D	EE-009	2024/01/09	2025/01/08
Pre-amplifier	Agilent	8449B	EE-010	2024/01/09	2025/01/08
MXA Signal Analyzer	Agilent	N9020A	EE-011	2024/01/09	2025/01/08
MXG RF Vector Signal Generator	Agilent	N5182A	EE-012	2024/01/09	2025/01/08
Test Software	Farad	EZ-EMC	EE-015	N.C.R	N.C.R
MIMO Power Measurement Module	TSTPASS	TSPS 2023R	EE-016	2024/01/09	2025/01/08
RF Test Software	TSTPASS	TS32893 V2.0	EE-017	N.C.R	N.C.R
Wideband Radio Communication Tester	ROHDE & SCHWARZ	CMW500	EE-402	2024/02/15	2025/02/14
Loop Antenna	TESEQ	HLA6121	EE-403	2024/02/15	2025/02/14
MXG RF Analog Signal Generator	Agilent	N5181A	EE-406	2024/02/15	2025/02/14
Constant Temperature Humidity Chamber	Guangxin	GXP-401	ES-002	2024/07/30	2025/07/29

SHENZHEN EU TESTING LABORATORY LIMITED

4.3 **Description of Support Unit**

No.	Title	Manufacturer	Model No.	Serial No.
1	DC Power Source	QJE	QJ3020E	
2	Wireless Charging Load	YBZ	ID-ZWX	
3	Mobile Phone	OnePlus	ACE2	

Test Mode 4.4

To investigate the maximum EMI emission characteristics generates from EUT, the test system was prescanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned bellow was evaluated respectively.

No.	Description	Remark
TM1	Wireless Output (5W)	
TM2	Wireless Output (7.5W)	
TM3	Wireless Output (10W)	
TM4	Wireless Output (15W)	
TM5	Standby	
Note:		

1. All the conditions have been tested. It is found that TM4 is the worst mode, and the data in the report only reflects the worst mode.

4.5 **Description of Calculation**

4.5.1. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS (dBuV/m) = RA (dBuV) + AF (dB/m) + CL (dB) - AG (dB)

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

4.5.2. Disturbance Calculation

The AC mains conducted disturbance is calculated by adding the 10dB Pulse Limiter and Cable Factor and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CD (dBuV) = RA (dBuV) + PL (dB) + CL (dB)

Where CD = Conducted Disturbance	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	PL = 10 dB Pulse Limiter Factor

4.6 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

) dB
) dB (Horizontal)
) dB (Vertical)
) dB (Horizontal)
) dB (Vertical)
5 dB (Horizontal)
l dB (Vertical)

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Condition

None.

5 Test Items

5.1 Antenna requirement

5.1.1 Test Requirement

Test Requirement	According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point- to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.
------------------	---

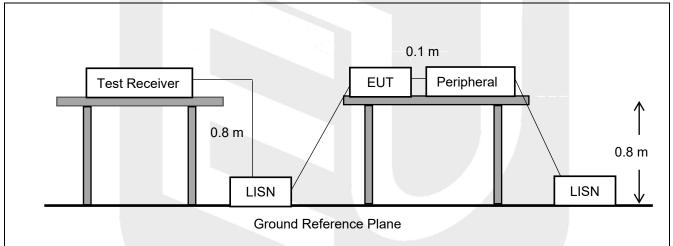
5.1.2 Antenna Anti-Replacement Construction

The Antenna Anti-Replacement as following method:

Protected Method	Description
The antenna is embedded in the product.	The EUT has a permanently and irreplaceable inductive loop antenna.

5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi.



5.2 Conducted Emission at AC Power Line

5.2.1 Test Requirement

Test Requirement:	Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).		
	Frequency of emission (MHz)	Conducted limit (dBµV)	
		Quasi-peak	Average
<u> </u>	0.15-0.5	66 to 56*	56 to 46*
Test Limit	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of the frequency.		
Test Method	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices.		

5.2.2 Test Setup Diagram

5.2.3 Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and connected to the AC mains through Line Impedance Stability Network (L.I.S.N). This provided a 50ohm coupling impedance for the tested equipment. Both sides of AC line are investigated to find out the maximum conducted emission according to the test standard regulations during conducted emission measurement.

The bandwidth of the field strength meter (R&S Test Receiver ESCI) is set at 9kHz in 150kHz~30MHz. The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

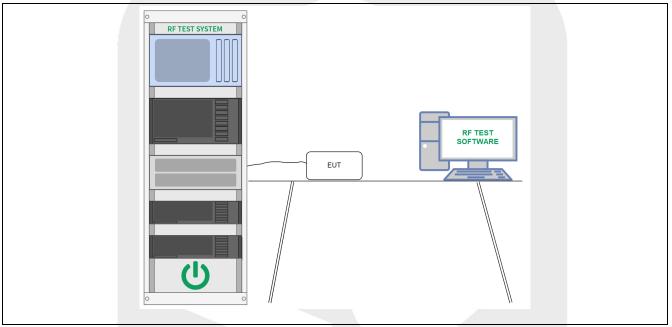
5.2.4 Test Data

Not applicable.

The EUT can't be connected to AC power line, so there is no need to conduct this test item.

SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China



5.3 Emissions Bandwidth

5.3.1 Test Requirement

Test Requirement	Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method	ANSI C63.10-2020, section 6.9.2 Occupied bandwidth—relative measurement procedure

5.3.2 Test Setup Diagram

SHENZHEN EU TESTING LABORATORY LIMITED

5.3.3 Test Procedure

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Steps a) through c) might require iteration to adjust within the specified tolerances.

e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the −20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the

reference value.

f) Set detection mode to peak and trace mode to maxhold.

g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).

h) Determine the "-xx dB down amplitude" using [(reference value) -xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument.

i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j).

j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth.

k)The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

5.3.4 Test Data

PASS.

Please refer to the following pages.

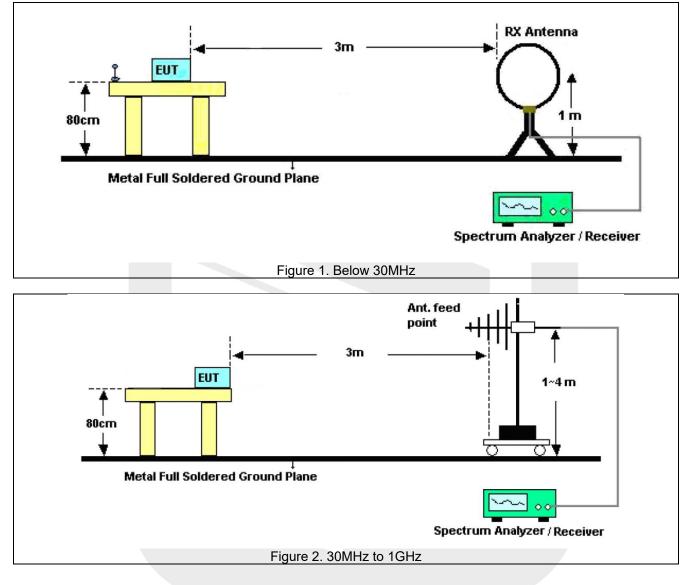
SHENZHEN EU TESTING LABORATORY LIMITED

Frequency	20dB bandwidth	99% bandwidth	Result
(KHz)	(kHz)	(kHz)	
138.5	2.835	2.440	Pass

Keysight Spectrum Analyzer - Occupied BW RF 50 Ω AC		ENSE:PULSE	ALIGN OFF	06:08:06 PM O	ct 25, 2024	
Center Freq 138.500 kHz	Cente	er Freq: 138.500 kHz	Hold:>10/10	Radio Std: No		Trace/Detector
		n: 10 dB		Radio Device	: BTS	
10 dB/div Ref 10.00 dBm Log			<u>i</u>			
0.00						Clear Write
-10.0						Clear write
-20.0						
-30.0						Average
-40.0					`	Average
-60.0						
-70.0						Max Hold
-80.0						Maxinoid
Center 138.5 kHz				Snan	10 kHz	
#Res BW 1 kHz	#	¢VBW 3 kHz		Sweep 1	12.4 ms	Min Hold
Occupied Bandwidth		Total Powe	r _155	dBm		
		Total Fowe	-4.50	ubm		
	2.440 kHz					Detector Average►
Transmit Freq Error	841 Hz	% of OBW I	Power 99	.00 %	A	<u>uto</u> Man
x dB Bandwidth	2.835 kHz	x dB	-20.	00 dB		
				_		
MSG					_	

SHENZHEN EU TESTING LABORATORY LIMITED

5.4 Field Strength of Fundamental Emissions and Radiated Emission


5.4.1 Test Requirement

Test Requirement	FCC §15.225; FCC §15.	209					
rest Requirement		According to FCC section 15.225, for <30 MHz, Radiated emissions were					
	e e e e e e e e e e e e e e e e e e e						
		measured according to ANSI C63.4. The EUT was set to transmit at the highest					
		output power. The EUT was set 10 meter away from the measuring antenna. The					
		loop antenna was positioned 1 meter above the ground from the center of the loop.					
		The measuring bandwidth was set to 10 kHz. (Note: During testing the receive					
		antenna was rotated about its axis to maximize the emission from the EUT)					
		There was no detected Restricted bands and Radiated spurious emission below					
		30MHz. The 30m limit was converted to 3m Limit using square factor(x) as it was					
		found by measurements as follows;					
	,	$3 \text{ m Limit}(dB\mu V/m) = 20\log(X)+40\log(30/3)=20\log(15848)+40\log(30/3)=124dB\mu V$					
			here in this Subpart, the emissions from an intentional				
	radiator shall not exceed						
	Frequency range			Field Strength@3m			
	(MHz)	μV/m	dBµV/m	dBµV/m			
	Below 13.110	30	29.5	69.5			
	13.110 ~ 13.410	106	40.5	80.5			
	13.410 ~ 13.553	334	50.5	90.5			
	13.553 ~13.567	15848	84	124			
	13.567 ~ 13.710	334	50.5	90.5			
	13.710 ~14.010	106	40.5	80.5			
		30	29.5	69.5			
	Above 14 010						
Test Limit	Above 14.010 NOTE: 1. Field Strength (dBµV 2. In the emission table	//m) = 20*log[Fie	eld Strength (µV/m)].			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC sectio	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex	eld Strength (μV/m nter limit applies a cept as provided e)]. t the band edges. elsewhere in this subpart,			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato	eld Strength (μV/m nter limit applies a cept as provided e)]. t the band edges. elsewhere in this subpart,			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table:	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed)]. t the band edges. elsewhere in this subpart, l the field strength levels			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: Field stren	eld Strength (μV/m hter limit applies a cept as provided e or shall not exceed gth)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table:	eld Strength (μV/m hter limit applies a cept as provided e or shall not exceed gth)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: Field stren	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter))]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following Frequency (MHz)	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: Field stren (microvolts	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z))]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters)			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kh 30	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z))]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 30 100 **	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z))]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an im- specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 30 100 ** 150 **	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z))]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 30 100 ** 150 ** 200 **	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z))]. t the band edges. elsewhere in this subpart, t the field strength levels Measurement distance (meters) 300 30 30 30 30 30 31 3 3 3 3 3			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 **	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) Z) Hz))]. t the band edges. elsewhere in this subpart, t the field strength levels Measurement distance (meters) 300 30 30 30 30 30 31 3 3 3 3 3 3 3 3 3			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss)]. t the band edges. elsewhere in this subpart, l the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC sectio the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in radiators operating under	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table: Field stren (microvolts 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located	b)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an inspecified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in radiators operating under 54-72 MHz, 76-88 MHz,	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f er this section sh 174-216 MHz of	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f er this section sh 174-216 MHz of	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in- specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in- radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in- §§ 15.231 and 15.241.	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f er this section sh 174-216 MHz of	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is	//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex tentional radiato table: 2400/F(kH 24000/F(kH 24000/F(kH 30 100 ** 150 ** 200 ** 500 paragraph (g), f er this section sh 174-216 MHz of	eld Strength (µV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He)]. t the band edges. elsewhere in this subpart, I the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in- specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in- radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in- §§ 15.231 and 15.241.	f'(m) = 20*log[Fields above, the tights above,	eld Strength (µV/m nter limit applies at cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He er other sections o	a)]. t the band edges. elsewhere in this subpart, t the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			
Test Limit	NOTE: 1. Field Strength (dBµV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an in- specified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in- radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is §§ 15.231 and 15.241. NOTE:	<pre>//m) = 20*log[Fie s above, the tigh n 15.209 (a), ex itentional radiato table:</pre>	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He er other sections o	a)]. t the band edges. elsewhere in this subpart, t the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 3			
Test Limit	NOTE: 1. Field Strength (dBμV 2. In the emission table FCC §15.225(d) According to FCC section the emissions from an inspecified in the following Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is §§ 15.231 and 15.241. NOTE: 1. Field Strength (dBµ)	V/m) = 20*log[Fields above, the tights above,	eld Strength (μV/m nter limit applies a cept as provided e or shall not exceed gth s/meter) z) Hz) undamental emiss all not be located r 470-806 MHz. He er other sections o	a)]. t the band edges. elsewhere in this subpart, t the field strength levels Measurement distance (meters) 300 30 30 30 30 30 30 30 30 30 30 30 30			

SHENZHEN EU TESTING LABORATORY LIMITED

5.4.2 Test Setup Diagram

SHENZHEN EU TESTING LABORATORY LIMITED

5.4.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

For 9kHz to 150kHz, Set the spectrum analyzer as:

RBW = 200Hz, VBW =1kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For 150kHz to 30MHz, Set the spectrum analyzer as: RBW = 9KHz, VBW =30kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

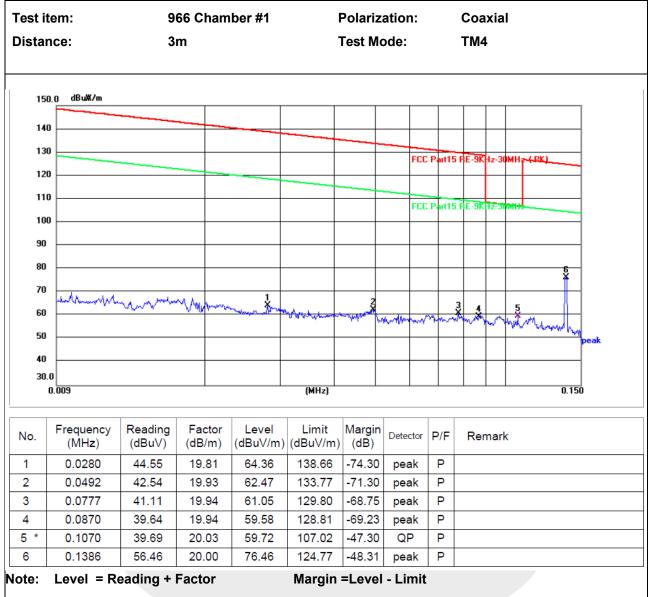
For 30MHz to 1000MHz, Set the spectrum analyzer as: RBW = 100kHz, VBW =300kHz, Detector= Quasi-Peak, Trace mode= Max hold, Sweep- auto couple.

For above 1GHz,Set the spectrum analyzer as: RBW =1MHz, VBW =1MHz, Detector= Peak, Trace mode= Max hold, Sweep- auto couple. RBW =1MHz, VBW =10Hz, Detector= Average, Trace mode= Max hold, Sweep- auto couple.

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

5.4.4 Test Data PASS.

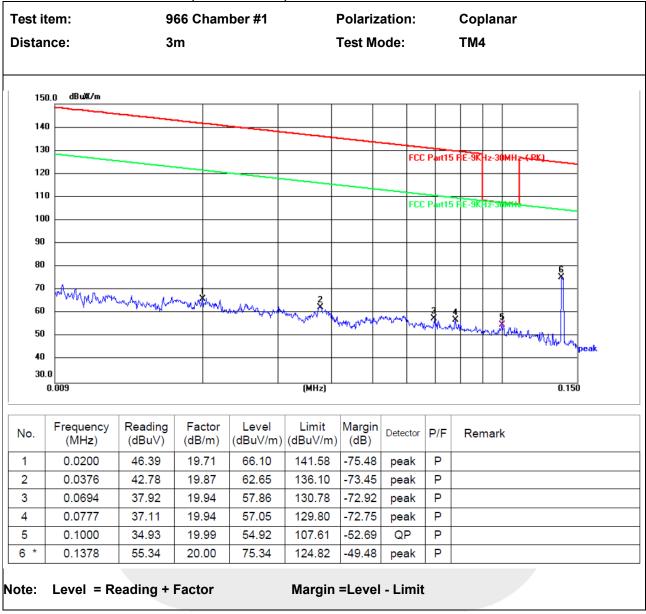
Please refer to the following pages.


The frequency range from 9KHz to 1000MHz is checked.

Only the worst case data was showed in the report, please to see the following pages.

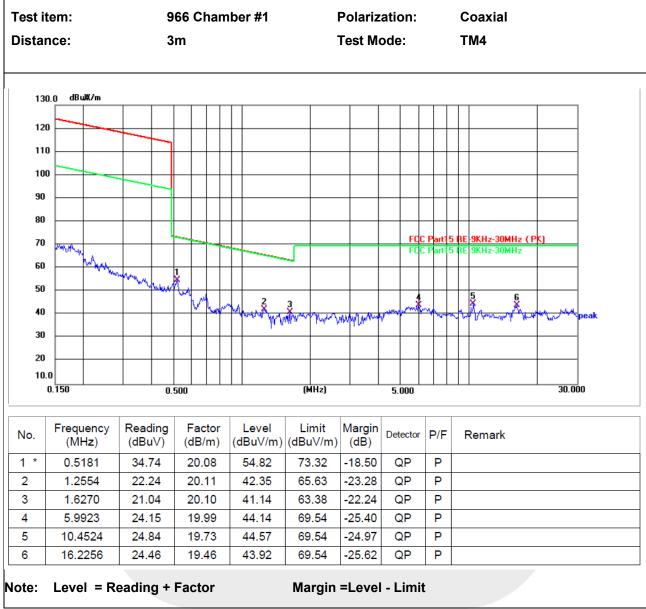
SHENZHEN EU TESTING LABORATORY LIMITED

Radiated Emission Test Data (9kHz -150kHz)



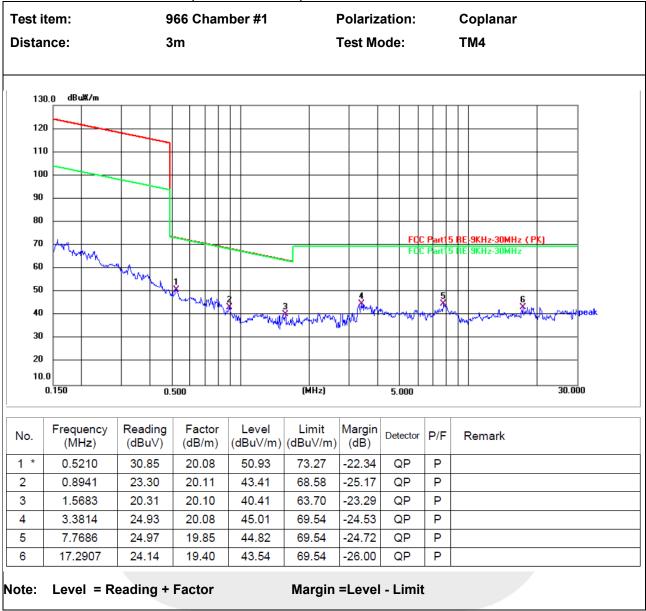
SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China


Radiated Emission Test Data (9kHz -150kHz)

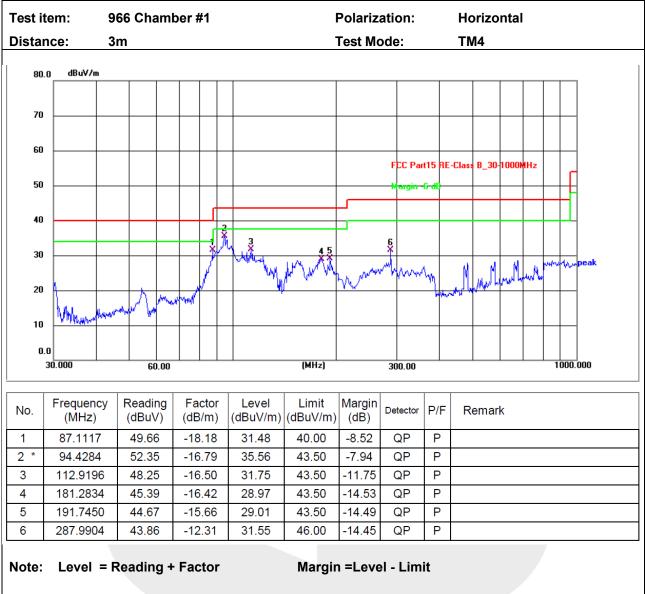
SHENZHEN EU TESTING LABORATORY LIMITED

Radiated Emission Test Data (150kHz - 30MHz)

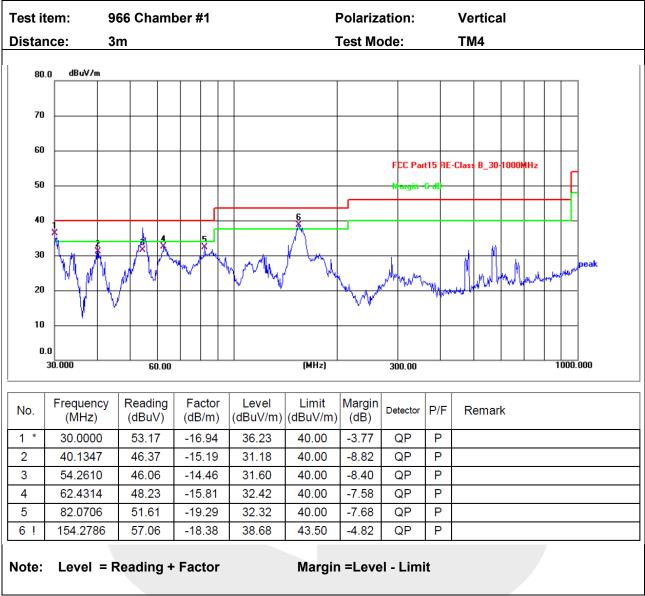


SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China


Radiated Emission Test Data (150kHz - 30MHz)

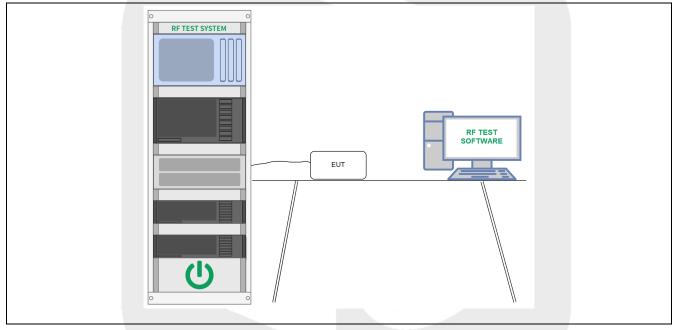
SHENZHEN EU TESTING LABORATORY LIMITED


Radiated Emission Test Data (30-1000MHz)

SHENZHEN EU TESTING LABORATORY LIMITED

Radiated Emission Test Data (30-1000MHz)

SHENZHEN EU TESTING LABORATORY LIMITED



5.5 Frequency Stability

5.5.1 Test Requirement

	FCC §15.225(e)
	The frequency tolerance of the carrier signal shall be maintained within ±0.01% of
	the operating frequency over a temperature variation of -20 degrees to +50
Test Requirement	degrees C at normal supply voltage, and for a variation in the primary supply
	voltage from 85% to 115% of the rated supply voltage at a temperature of 20
	degrees C. For battery operated equipment, the equipment tests shall be
	performed using a new battery.
Test Mathed	ANSI C63.10-2020, section 6.8
Test Method	Frequency Stability Test

5.5.2 Test Setup Diagram

SHENZHEN EU TESTING LABORATORY LIMITED

5.5.3 Test Procedure

Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument through an attenuator if necessary.

NOTE-An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 min, 5 min, and 10 min after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more than 10 $^\circ$ C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f through step i) down to the lowest specified temperature.

♦ Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15 °C to +25 °C). a) An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency measuring instrument.

NOTE An instrument that has an adequate level of accuracy as specified by the procuring or regulatory agency is the recommended measuring instrument.

b) Tune the EUT to one of the number of frequencies. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

5.5.4 Test Data Not Applicable.

SHENZHEN EU TESTING LABORATORY LIMITED

ANNEX A TEST SETUP PHOTOS

Please refer to the document "8234EU012110W-AA.PDF"

ANNEX B EXTERNAL PHOTOS

Please refer to the document "8234EU012110W-AB.PDF"

ANNEX C INTERNAL PHOTOS

Please refer to the document "8234EU012110W-AC.PDF"

SHENZHEN EU TESTING LABORATORY LIMITED

Address: 101, Building B1, Fuqiao Fourth Area, Qiaotou Community, Fuhai Subdistrict, Baoan District, Shenzhen, Guangdong, China

STATEMENT

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.

2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.

3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.

4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.

5. The test data and results are only valid for the tested samples provided by the customer.

6. This report shall not be partially reproduced without the written permission of the laboratory.

7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--- End of Report ---

SHENZHEN EU TESTING LABORATORY LIMITED