

Company: Mikrotikls SIA (MikroTik)

Test of: RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Report No.: MIKO81-U13 Rev A

TEST REPORT

Test of: Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Test Report Serial No.: MIKO81-U13 Rev A

This report supersedes: NONE

Applicant: Mikrotikls SIA (MikroTik)

Brivibas gatve 214i

Riga, LV-1039

Latvia

Product Function: 802.11b/g/n WLAN access point

Issue Date: 10th April 2019

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

ACCREDITATION LISTINGS & DECOGNITION

Title:

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	11
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	16
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. 6 dB & 99% Bandwidth	
9.2. Conducted Output Power	26
9.3. Power Spectral Density	
9.4. Emissions	
9.4.1. Conducted Emissions	
9.4.1.1. Conducted Spurious Emissions	
9.4.1.2. Conducted Band-Edge Emissions	
9.4.2. Radiated Emissions	
9.4.2.3. TX Spurious & Restricted Band Emissions	
9.4.2.4. Restricted Edge & Band-Edge Emissions	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. 6 dB & 99% Bandwidth	
A.2. Power Spectral Density	
A.3. Emissions	
A.3.1. Conducted Emissions	. 127
A.3.1.1. Conducted Spurious Emissions	. 127
A.3.1.2. Conducted Band-Edge Emissions	
A.3.2. Radiated Emissions	
A.3.2.3. TX Spurious & Restricted Band Emissions	
A.3.2.4. Restricted Edge & Band-Edge Emissions	170

Serial #: MIKO81-U13 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of May 2018.

President and CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2019

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Issue Date: 10th April 2019 Page: 4 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
_	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Issue Date: 10th April 2019 Page: 5 of 178

Serial #: MIKO81-U13 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of May 2018

President and CEO
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2019

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 10th April 2019 Page: 6 of 178

Serial #: MIKO81-U13 Rev A

2. DOCUMENT HISTORY

Document History							
Revision	Date	Comments					
Draft	4th March 2019	Draft report for client review.					
Rev A	10 th April 2019	Initial release.					

In the above table the latest report revision will replace all earlier versions.

Issue Date: 10th April 2019 **Page:** 7 of 178

Serial #: MIKO81-U13 Rev A

3. TEST RESULT CERTIFICATE

Manufacturer: Mikrotikls SIA (MikroTik)

Brivibas gatve 214i Riga, LV-1039

Latvia

Model: RBwAPGR-5HacD2HnD-US

Type Of Equipment: 802.11b/g/n WLAN access point

S/N's: AD130A0DB485/905/r2

Test Date(s): 19 - 26 February 2019

Tested By: MiCOM Labs, Inc.

575 Boulder Court

Pleasanton

California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC 15.247 & IC ISED RSS-247

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

ACCREDITED
TESTING CERT #2381.01

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Issue Date: 10th April 2019

Page: 8 of 178

Serial #: MIKO81-U13 Rev A

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
II	KDB 558074 D01 v05	24th August 2018	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices operating under section 15.247 of the FCC Rules.
III	A2LA	August 2018	R105 - Requirement's When Making Reference to A2LA Accreditation Status
IV	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
V	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VI	CISPR 32	2015	Electromagnetic compatibility of multimedia equipment - Emission requirements
VII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VIII	FCC 47 CFR Part 15.247	2016	Radio Frequency Devices; Subpart C – Intentional Radiators
IX	ICES-003	Issue 6 Jan 2016; Updated April 2017	Information Technology Equipment (Including Digital Apparatus) – Limits and methods of measurement.
Х	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
ΧI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 5	April 2018	General Requirements for Compliance of Radio Apparatus
XIII	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
XIV	KDB 789033 D02 V02r01	14th December, 2017	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E

Issue Date: 10th April 2019 **Page**: 9 of 178

Serial #: MIKO81-U13 Rev A

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Issue Date: 10th April 2019 **Page**: 10 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US
	to FCC 15.247 & IC ISED RSS-247.
	Radio Frequency Devices; Subpart C – Intentional Radiators
Applicant:	Mikrotikls SIA (MikroTik)
	Brivibas gatve 214i
Manufacturar	Riga, LV-1039 Latvia Mikrotikls SIA (MikroTik)
Laboratory performing the tests:	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
· .	18th February 2019
Standard(s) applied:	FCC 15.247 & IC ISED RSS-247
Dates of test (from - to):	19 - 26 February 2019
No of Units Tested:	2
Product Family Name:	
	RBwAPGR-5HacD2HnD-US
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	
EUT Modes of Operation:	802.11b/g/HT-20/HT-40;
Declared Nominal Output Power:	23 dBm
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	-10 to +40 °C
ITU Emission Designator:	
	802.11g: 18M8D1D
	802.11n HT-20: 18M3D1D
Favings and Discounting	802.11n HT-40: 39M5D1D
	7,3x3,4x1,2 inches (185 x 85 x 30 mm)
Weight:	
Hardware Rev:	
Software Rev:	KUS V6.43.1

Issue Date: 10th April 2019 **Page**: 11 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

5.2. Scope Of Test Program

Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US

The scope of the test program was to test the Mikrotikls SIA (MikroTik) RBwAPGR-5HacD2HnD-US 802.11 configurations in the frequency range 2400 - 2483.5 MHz for compliance against the following specification:

FCC 15.247

Radio Frequency Devices; Subpart C – Intentional Radiators

IC ISED RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Issue Date: 10th April 2019 Page:

12 of 178

Serial #: MIKO81-U13 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Mfr	Model No.	Serial No.
EUT	Access Point	Mikrotikls SIA	RBwAPGR- 5HacD2HnD-US	AD130A0DB485/905/r2
Support	Laptop	Dell		

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	integral	integral	Dipole	2.5	-	360	-	2400 - 2483.5

BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened
Ethernet	3-10m	1	Yes
Ethernet (POE)	3-10m	1	Yes
DC Jack	< 3m	1	No

Issue Date: 10th April 2019 **Page:** 13 of 178

Serial #: MIKO81-U13 Rev A

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power	Channel Frequency (MHz) Low Mid High				
(802.11a/b/g)	MBit/s					
2400 - 2483.5 MHz						
b	1	2,412.00	2,437.00	2,462.00		
g	6	2,412.00	2,437.00	2,462.00		
HT-20	6.5	2,412.00	2,437.00	2,462.00		
HT-40	13.5	2,422.00	2,437.00	2,452.00		

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Issue Date: 10th April 2019 **Page:** 14 of 178

Serial #: MIKO81-U13 Rev A

6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
6 dB & 99% Bandwidth	Complies	View Data
Conducted Output Power	Complies	View Data
Power Spectral Density	Complies	View Data
Emissions	Complies	-
(1) Conducted Emissions	Complies	-
(i) Conducted Spurious Emissions	Complies	View Data
(ii) Conducted Band-Edge Emissions	Complies	View Data
(2) Radiated Emissions	Complies	-
(i) TX Spurious & Restricted Band Emissions	Complies	View Data
(ii) Restricted Edge & Band-Edge Emissions	Complies	View Data

Issue Date: 10th April 2019 **Page:** 15 of 178

Serial #: MIKO81-U13 Rev A

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below.Radiated emissions below 1GHz.Radiated Emissions above 1GHz.

Semi-Anechoic Chamber FUT Polysytrene Test Table Antenna Height Antenna Mast Test Distance Test Antenna Test Antenna Anplifier Filter Anplifier Filter

Radiated Emissions Above 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	21 Mar 2019
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2019
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	4 Apr 2019
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	8 Oct 2019
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	8 Oct 2019
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	21 Sep 2019
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	9 Oct 2019

Issue Date: 10th April 2019

Page: 16 of 178

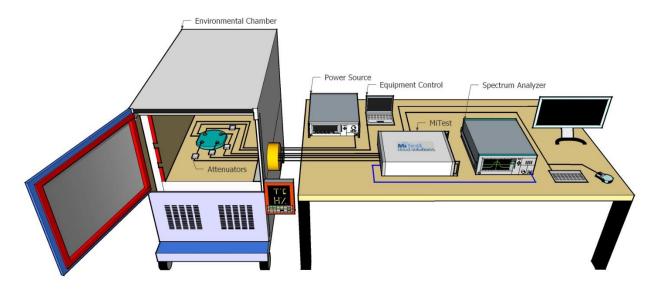
Title: M

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	8 Oct 2019
2.4 GHz Notch Filter	Microtronics	BRM50701	001	8 Oct 2019
Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	12 Apr 2019
ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	12 Oct 2019
Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	12 Apr 2019
Desktop Computer	Dell	Inspiron 620	WS38	Not Required
Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	9 Oct 2019
Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	9 Oct 2019
Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	9 Oct 2019
1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	9 Oct 2019
Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	24 Aug 2019
Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	24 Aug 2019
Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
Cable - Amp to Antenna	SRC Haverhill	157-3051574	518	24 Aug 2019
Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used
	Generator DC - 1050 MHz Low Pass Filter 2.4 GHz Notch Filter Amp 10 - 2500MHz ETS 1-18 GHz Horn Antenna Amplifier for Radiated Emissions Desktop Computer Mast/Turntable Controller USB to GPIB Interface Mast Controller DC Power Supply 0-60V Turntable Controller Gigabit ethernet filter MiTest Rad Emissions Test Software Schwarzbeck cable from Antenna to Amplifier. Schwarzbeck cable from Amplifier to Bulkhead. Schwarzbeck cable from Bulkhead to Receiver Low Pass Filter DC- 1000 MHz Cable - Bulkhead to Amp Cable - Bulkhead to Receiver Barometer/Thermometer Cable - Amp to Antenna Uninterruptible Power	GHz Receiver with Generator DC - 1050 MHz Low Pass Filter 2.4 GHz Notch Filter Amp 10 - 2500MHz ETS 1-18 GHz Horn Antenna Amplifier for Radiated Emissions Desktop Computer USB to GPIB Interface DC Power Supply 0-60V Turntable Controller Gigabit ethernet filter MiCOM Schwarzbeck cable from Antenna to Amplifier. Schwarzbeck cable from Amplifier to Bulkhead. Schwarzbeck Schwarzbeck Schwarzbeck Cable - Bulkhead to Receiver Barometer/Thermometer Cable - Amp to Antenna Uninterruptible Power Falcon Electric	GHz Receiver with Generator DC - 1050 MHz Low Pass Filter 2.4 GHz Notch Filter Amp 10 - 2500MHz ETS 1-18 GHz Horn Antenna Amplifier for Radiated Emissions Desktop Computer USB to GPIB Interface DC Power Supply 0-60V Turntable Controller Gigabit ethernet filter Schwarzbeck cable from Antenna to Amplifier. Schwarzbeck cable from Bulkhead to Receiver Low Pass Filter DC-1000 MHz Generator DC Amp 10 - 2500 MHz Micom Labs M	GHz Receiver with Generator Schwarz ESIB40 100107/040 100107/040 Generator DC - 1050 MHz Low Pass Filter Microcircuits VLFX-1050 N/A Microcircuits VLFX-1050 N/A Microcircuits VLFX-1050 N/A Microcircuits VLFX-1050 N/A Microcircuits Mic

Issue Date: 10th April 2019


Page: 17 of 178

Serial #: MIKO81-U13 Rev A

7.2. Conducted

MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814- 0101-72	#3 SA	20 Mar 2019
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814- 0101-72	#3P1	20 Mar 2019
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814- 0101-72	#3P2	20 Mar 2019
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814- 0101-72	#3P3	20 Mar 2019
#3P4	EUT to MiTest box port 4	Fairview Microwave	SCA1812- 0101-72	#3P4	20 Mar 2019
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2019
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	12 Oct 2019
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.1	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used

Issue Date: 10th April 2019

Page: 18 of 178

Serial #: MIKO81-U13 Rev A

408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
436	USB Wideband Power Sensor	Boonton	55006	8731	14 Sep 2019
440	USB Wideband Power Sensor	Boonton	55006	9178	22 Sep 2019
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2019
442	USB Wideband Power Sensor	Boonton	55006	9181	6 Oct 2019
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	20 Sep 2019
510	Barometer/Thermometer	Control Company	68000-49	170871375	11 Dec 2019
515	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	515	20 Mar 2019
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	24 Feb 2020

Issue Date: 10th April 2019 **Page:** 19 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Issue Date: 10th April 2019 Page: 20 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

9. TEST RESULTS

9.1. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth							
Standard:	CC CFR 47:15.247 SED RSS-247 Ambient Temp. (°C): 24.0 - 27.5						
Test Heading:	6 dB and 99 % Bandwidth	32 - 45					
Standard Section(s):	15.247 (a)(2) RSS-247: 5.2 Pressure (mBars): 999 - 1001						
Reference Document(s):	See Normative References						

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency.

Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits for 6 dB and 99% Bandwidth

- (a) Operation under the provisions of this Section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:
 - (2) Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Issue Date: 10th April 2019 Page: 21 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	CCK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	easured 6 dB E	Bandwidth (MF	łz)	6 dP Pand	width (MHz)	Limit	Lowest
Frequency		Por	t(s)		6 GB Balluk	width (Winz)	Lillit	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>8.096</u>	<u>8.577</u>			8.577	8.096	≥500.0	-7.60
2437.0	<u>9.058</u>	<u>8.497</u>			9.058	8.497	≥500.0	-8.00
2462.0	<u>9.539</u>	<u>8.978</u>			9.539	8.978	≥500.0	-8.48

Test	1	Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency	Port(s)				99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2412.0	12.986	<u>12.906</u>			12.986	
2437.0	<u>14.669</u>	<u>13.547</u>			14.669	
2462.0	<u>15.311</u>	<u>14.028</u>			15.311	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: Page: 10th April 2019 22 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11g	Duty Cycle (%):	82
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	easured 6 dB E	Bandwidth (MF	łz)	6 dB Band	vidth (MUz)	Limit	Lowest
Frequency		Por	t(s)		0 UB Ballu	width (Willz)	Lillin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>16.032</u>	<u>16.273</u>			16.273	16.032	≥500.0	-15.53
2437.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	≥500.0	-15.85
2462.0	<u>16.353</u>	<u>16.353</u>			16.353	16.353	≥500.0	-15.85

Test	1	Measured 99% E	Bandwidth (MHz)	Maximum		
Frequency	Port(s)				99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2412.0	<u>16.433</u>	<u>16.433</u>			16.433	
2437.0	<u>18.597</u>	<u>16.513</u>			18.597	
2462.0	<u>18.838</u>	<u>16.914</u>			18.838	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 23 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-20	Duty Cycle (%):	93
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	easured 6 dB E	Bandwidth (MF	łz)	6 dB Band	vidth (MUz)	Limit	Lowest
Frequency		Por	t(s)		0 UB Ballu	width (Willz)	Lillin	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2412.0	<u>16.513</u>	<u>16.673</u>			16.673	16.513	≥500.0	-16.01
2437.0	<u>17.555</u>	<u>17.555</u>			17.555	17.555	≥500.0	-17.06
2462.0	<u>17.154</u>	<u>16.914</u>			17.154	16.914	≥500.0	-16.41

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency		Por	rt(s)	99% Bandwidth		
MHz	а	b	С	d	(MHz)	
2412.0	<u>17.555</u>	<u>17.555</u>			17.555	
2437.0	<u>18.277</u>	<u>17.715</u>			18.277	
2462.0	<u>17.796</u>	<u>17.715</u>			17.796	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 24 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	802.11n HT-40	Duty Cycle (%):	73
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Me	easured 6 dB E	Bandwidth (MF	łz)	6 dP Pands	width (MHz)	Limit	Lowest
Frequency		Por	t(s)		6 ub banus	wiatii (Winz)	Lillit	Margin
MHz	а	b	С	d	Highest	Lowest	KHz	MHz
2422.0	<u>31.263</u>	<u>35.110</u>			35.110	31.263	≥500.0	-30.76
2437.0	<u>35.752</u>	<u>35.431</u>			35.752	35.431	≥500.0	-34.93
2452.0	33.828	<u>35.110</u>			35.110	33.828	≥500.0	-33.33

Test		Measured 99% E	Bandwidth (MHz	Maximum		
Frequency	Port(s)				99% Bandwidth	
MHz	а	b	С	d	(MHz)	
2422.0	<u>39.439</u>	<u>36.393</u>			39.439	
2437.0	<u>42.325</u>	<u>36.393</u>			42.325	
2452.0	<u>50.661</u>	<u>36.553</u>			50.661	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 25 of 178

Title: M

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Serial #:

MIKO81-U13 Rev A

9.2. Conducted Output Power

Conducted Test Conditions for Fundamental Emission Output Power						
Standard:	FCC CFR 47:15.247 SED RSS-247 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Output Power Rel. Humidity (%):		32 - 45			
Standard Section(s):	15.247 (b) & (c) RSS-247: 5.4 (d) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Fundamental Emission Output Power Measurement In the case of average power measurements an average power sensor was utilized.

For peak power measurements the spectrum analyzer built-in power function was used to integrate peak power over the 20 dB bandwidth.

Testing was performed under ambient conditions at nominal voltage only. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured, summed (Σ) and reported.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document. Supporting Information

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits for Fundamental Emission Output Power

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following for non-frequency hopping systems:
 - (3) For systems using digital modulation in the 902-928 MHz and 2400-2483.5 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
 - (4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (c) Operation with directional antenna gains greater than 6 dBi.
 - (1) Fixed point-to-point operation:
 - (i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.
 - (iii) Fixed, point-to-point operation, as used in paragraphs (c)(1)(i) and (c)(1)(ii) of this section, excludes the use of point-to-multipoint systems, omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum or digitally modulated intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.
 - (2) In addition to the provisions in paragraphs (b)(3), (b)(4) and (c)(1)(i) of this section, transmitters operating in the 2400-2483.5

Issue Date: 10th April 2019

Page: 26 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

To: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

MHz band that emit multiple directional beams, simultaneously or sequentially, for the purpose of directing signals to individual receivers or to groups of receivers provided the emissions comply with the following:

- (i) Different information must be transmitted to each receiver.
- (ii) If the transmitter employs an antenna system that emits multiple directional beams but does not do emit multiple directional beams simultaneously, the total output power conducted to the array or arrays that comprise the device, i.e., the sum of the power supplied to all antennas, antenna elements, staves, etc. and summed across all carriers or frequency channels, shall not exceed the limit specified in paragraph (b)(1) or (b)(3) of this section, as applicable. However, the total conducted output power shall be reduced by 1 dB below the specified limits for each 3 dB that the directional gain of the antenna/antenna array exceeds 6 dBi. The directional antenna gain shall be computed as follows:
 - (A) The directional gain shall be calculated as the sum of 10 log (number of array elements or staves) plus the directional gain of the element or stave having the highest gain.
 - (B) A lower value for the directional gain than that calculated in paragraph (c)(2)(ii)(A) of this section will be accepted if sufficient evidence is presented, e.g., due to shading of the array or coherence loss in the beamforming.
- (iii) If a transmitter employs an antenna that operates simultaneously on multiple directional beams using the same or different frequency channels, the power supplied to each emission beam is subject to the power limit specified in paragraph (c)(2)(ii) of this section. If transmitted beams overlap, the power shall be reduced to ensure that their aggregate power does not exceed the limit specified in paragraph (c)(2)(ii) of this section. In addition, the aggregate power transmitted simultaneously on all beams shall not exceed the limit specified in paragraph (c)(2)(ii) of this section by more than 8 dB.
- (iv) Transmitters that emit a single directional beam shall operate under the provisions of paragraph (c)(1) of this section.

Issue Date: 10th April 2019 **Page**: 27 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Average Output Power

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	CCK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Manada	
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2412.0	18.75	18.78			21.78	30.00	-8.22	23.00
2437.0	18.27	18.26			21.28	30.00	-8.72	23.00
2462.0	19.96	19.49			22.74	30.00	-7.26	23.00

Traceability to Industry Recognized Test Methodologies					
	Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Meas	urement Uncertainty:	±1.33 dB			

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 10th April 2019 **Page:** 28 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Average Output Power

Variant:	802.11g	Duty Cycle (%):	82.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Manain	
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2412.0	17.23	16.75			20.01	30.00	-9.99	23.00
2437.0	16.95	17.12			20.05	30.00	-9.95	23.00
2462.0	17.96	17.49			20.74	30.00	-9.25	21.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:	±1.33 dB		

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 10th April 2019 **Page:** 29 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Average Output Power

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Manain	
Frequency	Port(s)			Total Power Σ Port(s)	Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB	
2412.0	16.91	16.72			19.83	30.00	-10.17	23.00
2437.0	16.74	16.81			19.79	30.00	-10.21	23.00
2462.0	17.84	17.21			20.55	30.00	-9.45	23.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:	±1.33 dB		

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 10th April 2019 **Page:** 30 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Average Output Power

Variant:	802.11n HT-40	Duty Cycle (%):	73.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated	Limit	Manain	
Frequency	Port(s)				Total Power Σ Port(s)	Limit	Margin	EUT Power Setting
MHz	а	b	С	d	dBm	dBm	dB	
2422.0	15.90	15.53			18.73	30.00	-11.27	21.00
2437.0	17.76	17.75			20.77	30.00	-9.23	23.00
2452.0	15.72	15.43			18.59	30.00	-11.41	21.00

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:	±1.33 dB		

The above measurements are true pulse readings and therefore a Duty Cycling correction factor is not required.

Issue Date: 10th April 2019 **Page:** 31 of 178

Serial #: MIKO81-U13 Rev A

9.3. Power Spectral Density

	Conducted Test Conditions for Power Spectral Density				
Standard:	FCC CFR 47:15.247 ISED RSS-247	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (e) RSS-247: 5.2 (b) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for Power Spectral Density

The transmitter output was connected to a spectrum analyzer and the measured made in a 3 kHz resolution bandwidth using the analyzer auto-coupled sweep-time. A peak value was found over the full emission bandwidth and the spectrum downloaded for post processing purposes.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. The Peak Power Spectral Density is the highest level found across the emission bandwidth. With multiple antenna port measurements the numerical analyzer data from each port is summed (å) and a link to this additional graphic is provided.

Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with multiple transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were post processed and the resulting numerical and graphical data presented.

NOTE

It may be observed that the spectrum in some antenna port plots break the limit line however this in itself does NOT constitute a failure. In all cases a spectrum summation plot is provided in order to prove compliance. A failure occurs only after the summation of all spectrum plots have been summed and are found to be greater than the limit line.

Supporting Information

Calculated Power = A + 10 log (1/x) dBm A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)] x = Duty Cycle

Limits Power Spectral Density

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Issue Date: 10th April 2019 **Page:** 32 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	CCK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	Test Measurement Results						
Test Frequency	Measured Power Spectral Density Port(s) (dBm/3KHz)			Amplitude Summation + DCCF (+0.04 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-15.020</u>	<u>-15.374</u>			<u>-12.437</u>	8.0	-20.4
2437.0	<u>-16.891</u>	<u>-15.860</u>			<u>-13.391</u>	8.0	-21.4
2462.0	<u>-14.234</u>	<u>-15.133</u>			<u>-12.052</u>	8.0	-20.1

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 33 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11g	Duty Cycle (%):	82.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Test Frequency	Measured Power Spectral Density Port(s) (dBm/3KHz)			Amplitude Summation + DCCF (+0.86 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2412.0	<u>-19.444</u>	<u>-19.746</u>			<u>-16.226</u>	8.0	-24.2
2437.0	<u>-20.528</u>	<u>-20.263</u>			<u>-16.960</u>	8.0	-25.0
2462.0	<u>-18.784</u>	<u>-18.159</u>			<u>-15.172</u>	8.0	-23.2

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 34 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Test Frequency				Amplitude Summation + DCCF (+0.32	Limit	Margin	
MHz	a b c d			dB) dBm/3KHz	dBm/3KHz	dB	
2412.0	<u>-20.687</u>	<u>-19.811</u>			<u>-17.608</u>	8.0	-25.6
2437.0	<u>-21.608</u>	<u>-21.482</u>			<u>-18.308</u>	8.0	-26.3
2462.0	<u>-19.699</u>	<u>-20.354</u>			<u>-16.940</u>	8.0	-25.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 35 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Power Spectral Density - Average

Variant:	802.11n HT-40	Duty Cycle (%):	73.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	2.50
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Test Frequency	Measured Power Spectral Density Port(s) (dBm/3KHz)			Amplitude Summation + DCCF (+1.37 dB)	Limit	Margin	
MHz	а	b	С	d	dBm/3KHz	dBm/3KHz	dB
2422.0	<u>-22.635</u>	<u>-23.006</u>			<u>-18.882</u>	8.0	-26.9
2437.0	<u>-24.573</u>	-23.834			<u>-19.909</u>	8.0	-27.9
2452.0	<u>-22.938</u>	<u>-22.576</u>			<u>-18.376</u>	8.0	-26.4

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 36 of 178

Serial #: MIKO81-U13 Rev A

9.4. Emissions

9.4.1. Conducted Emissions

9.4.1.1. Conducted Spurious Emissions

Conducted Test Conditions for Transmitter Conducted Spurious and Band-Edge Emissions								
Standard:	CCC CFR 47:15.247 SED RSS-247 Ambient Temp. (°C): 24.0 - 27.5							
Test Heading:	Max Unwanted Emission Levels	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.247 (d) RSS-247:5.5	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							

Test Procedure for Transmitter Conducted Spurious and Band-Edge Emissions Measurement

Transmitter Conducted Spurious and Band-Edge emissions were measured at a limit of 30 dBc (average detector) or 20 dBc (peak detector) below the highest in-band spectral density measured with a spectrum analyzer connected to the antenna terminal. Measurements were made while EUT was operating in transmit mode of operation at the appropriate centre frequency closest to the band-edge. Emissions were maximized during the measurement and limits derived from the peak spectral power and drawn on each plot.

Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured separately. Testing was performed under ambient conditions at nominal voltage only.

Test configuration and setup used for the measurement was per the Conducted Test Set-up specified in this document.

Limits Transmitter Conducted Spurious and Band-Edge Emissions

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Issue Date: 10th April 2019 **Page:** 37 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11b	Duty Cycle (%):	99
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	CCK	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

	Frequency		Conducted Spurious Emissions - Average (dBm)							
			rt a	Port b		Port c		Port d		
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
2412.0	30.0 - 26000.0	-59.224	-47.03	<u>-59.724</u>	-48.66					
2437.0	30.0 - 26000.0	<u>-58.724</u>	-47.21	<u>-59.324</u>	-47.58					
2462.0	30.0 - 26000.0	-57.624	-46.21	<u>-58.224</u>	-46.22					

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 38 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11g	Duty Cycle (%):	82
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency Range	Frequency	ency Conducted Spurious Emissions - Average (dBm)							
	Range	Port a		Port b		Port c		Port d	
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2412.0	30.0 - 26000.0	-59.224	-48.38	<u>-59.724</u>	-49.04				
2437.0	30.0 - 26000.0	<u>-58.724</u>	-47.70	<u>-59.324</u>	-48.21				
2462.0	30.0 - 26000.0	-57.624	-46.11	<u>-58.224</u>	-46.11				

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 39 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

·	Frequency	Conducted Spurious Emissions - Average (dBm)								
	Range	Po	rt a	Port b		Port c		Port d		
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit	
2412.0	30.0 - 26000.0	-59.224	-48.14	<u>-59.724</u>	-48.32					
2437.0	30.0 - 26000.0	<u>-58.724</u>	-47.66	<u>-59.324</u>	-47.47					
2462.0	30.0 - 26000.0	-57.624	-47.02	-58.224	-47.12					

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 40 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Spurious Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	73
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency Range	Frequency	Conducted Spurious Emissions - Average (dBm)							
	Range	Po	rt a	Poi	Port b		Port c		Port d
MHz	MHz	SE	Limit	SE	Limit	SE	Limit	SE	Limit
2422.0	30.0 - 26000.0	<u>-59.124</u>	-49.19	<u>-59.624</u>	-48.72				
2437.0	30.0 - 26000.0	<u>-58.724</u>	-45.16	<u>-59.324</u>	-44.95				
2452.0	30.0 - 26000.0	-57.824	-44.00	<u>-58.424</u>	-44.30				

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 41 of 178

Serial #: MIKO81-U13 Rev A

9.4.1.2. Conducted Band-Edge Emissions

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	ССК	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	7417.U IVIH7					
Band-Edge Frequency:	2400.0 IVITZ					
Test Frequency Range:		Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-61.72</u>	-30.18	2403.10			-3.100
b	<u>-57.79</u>	-30.41	2403.10			-3.100

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS					
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 42 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11g	Duty Cycle (%):	82.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	12412.0 MHZ					
Frequency:	2400.0 IVIDZ					
Test Frequency Range:	2350.0 - 2422.0 M	Hz				
italige.						
J	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	Band- M1 Amplitude (dBm)	Edge Markers and Plot Limit (dBm)	Limit M2 Frequency (MHz)	Revise Amplitude (dBm)	M2A Frequency (MHz)	Margin (MHz)
J	M1 Amplitude	_	M2 Frequency	Amplitude	M2A Frequency	

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 43 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2412.0 MHz					
Frequency:	2412.0 WII IZ					
Band-Edge Frequency:	2400.0 MHz					
Test Frequency Range:	2350.0 - 2422.0 M	Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-38.80</u>	-36.78	2400.90			-0.900
b	<u>-41.66</u>	-36.17	2401.70			-1.700

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 44 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted Low Band-Edge Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	73.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2422.0 MHz					
Frequency:	2422.0 WII IZ					
Band-Edge Frequency:						
Test Frequency Range:		Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M1 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-46.56</u>	-40.33	2402.00			-2.000
b	<u>-50.08</u>	-40.81	2402.00			-2.000

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 45 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11b	Duty Cycle (%):	99.0
Data Rate:	1.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	CCK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel Frequency:	7407.U IVIH7					
Band-Edge Frequency:	2463.3 IVITZ					
Test Frequency Range:	2452.0 - 2524.0 M	Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-52.76</u>	-30.62	2472.30			-11.200
b	<u>-58.22</u>	-30.42	2471.30			-12.200

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS			
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 46 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11g	Duty Cycle (%):	82.0
Data Rate:	6.00 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2462.0 MHz					
Frequency:	2402.0 WII IZ					
Band-Edge Frequency:	2403.3 IVITZ					
Test Frequency Range:	2452.0 - 2524.0 M	Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-40.42</u>	-34.97	2481.00			-2.500
b	<u>-43.82</u>	-34.86	2478.50			-5.000

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 47 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11n HT-20	Duty Cycle (%):	93.0
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2462.0 MHz					
Frequency:	Z-102.0 WH 12					
Band-Edge Frequency:	2403.3 IVITZ					
Test Frequency Range:	2452.0 - 2524.0 M	Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-42.43</u>	-35.96	2477.50			-6.000
b	<u>-46.74</u>	-36.27	2473.80			-9.700

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 48 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Conducted High Band-Edge Emissions - Average

Variant:	802.11n HT-40	Duty Cycle (%):	73.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Channel	2452.0 MHz					
Frequency:	2402.0 WII IZ					
Band-Edge Frequency:	2403.3 IVITZ					
Test Frequency Range:	2432.0 - 2582.0 M	Hz				
	Band-	Edge Markers and	Limit	Revise	ed Limit	Margin
Port(s)	M3 Amplitude (dBm)	Plot Limit (dBm)	M2 Frequency (MHz)	Amplitude (dBm)	M2A Frequency (MHz)	(MHz)
а	<u>-47.59</u>	-41.19	2471.70			-11.800
b	<u>-49.64</u>	-41.67	2471.40			-12.100

Traceability to Industry Recognized Test Methodologies									
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS								
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB								

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 10th April 2019 **Page:** 49 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

9.4.2. Radiated Emissions

9.4.2.3. TX Spurious & Restricted Band Emissions

Radiated Test 0	Conditions for Radiated Spurious	s and Band-Edge Emissions (Re	estricted Bands)	
Standard:	FCC CFR 47 Part 15.247 ISED RSS-247 ISED RSS-Gen	Ambient Temp. (°C):	20.0 - 24.5	
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45	
Standard Section(s):	15.205, 15.209 RSS-247:5.5 RSS Gen:6.13	Pressure (mBars):	999 - 1001	
Reference Document(s):	See Normative References			

Test Procedure for Radiated Spurious and Band-Edge Emissions (Restricted Bands)

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Test configuration and setup for Radiated Spurious and Band-Edge Measurement were per the Radiated Test Set-up specified in this document.

Limits for Restricted Bands

Peak emission: 74 dBuV/m Average emission: 54 dBuV/m

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

where:

FS = Field Strength

R = Measured Spectrum analyzer Input Amplitude

AF = Antenna Factor

CORR = Correction Factor = CL - AG + NFL

CL = Cable Loss

AG = Amplifier Gain

FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Given receiver input reading of 51.5 dBmV; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength (FS) of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dBmV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m

48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

> Issue Date: 10th April 2019

Page: 50 of 178

Serial #: MIKO81-U13 Rev A

	Frequenc	cy Band			
MHz	MHz	MHz	GHz		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5		
6.215-6.218 74.8-75.2		1660-1710	10.6-12.7		
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	123-138	2200-2300	14.47-14.5		
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
12.57675-12.57725	322-335.4	3600-4400	Above 38.6		
13.36-13.41					

- (b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.
- (c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.
- (d) The following devices are exempt from the requirements of this section:
 - (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.
 - (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.
 - (3) Cable locating equipment operated pursuant to §15.213.
 - (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.
 - (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.
 - (6) Transmitters operating under the provisions of subparts D or F of this part.
 - (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.
 - (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).
 - (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this

Issue Date: 10th April 2019 **Page:** 51 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

> Issue Date: Page: 10th April 2019 52 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	integral	Variant:	802.11b
Antenna Gain (dBi):	2.50	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

					1000	.00 - 18000.00 N	ИHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3473.34	60.29	-2.12	-12.02	46.15	Peak (NRB)	Vertical	151	0			Pass
#2	9648.01	56.82	-3.77	-6.20	46.85	Peak (NRB)	Horizontal	151	0			Pass
Test No	tes: EUT pow	ered by P	OE, conr	ected to	laptop outs	side chamber						

Issue Date: 10th April 2019 **Page:** 53 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	integral	Variant:	802.11b
Antenna Gain (dBi):	2.50	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2437.00	Data Rate:	1.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

requency			1000.00 - 18000.00 MHz												
MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail				
2438.08	58.14	-1.78	-12.10	44.26	Fundamental	Horizontal	100	0							
3473.25	60.68	-2.12	-12.02	46.54	Peak (NRB)	Vertical	200	0			Pass				
4874.00	65.91	-2.51	-12.61	50.79	Max Peak	Vertical	168	33	74.0	-23.2	Pass				
4874.00	60.71	-2.51	-12.61	45.59	Max Avg	Vertical	168	33	54.0	-8.4	Pass				
9747.98	57.99	-3.76	-6.02	48.21	Peak (NRB)	Vertical	200	0			Pass				
4 9	2438.08 3473.25 4874.00 4874.00 9747.98	2438.08 58.14 3473.25 60.68 4874.00 65.91 4874.00 60.71 9747.98 57.99	dB 2438.08 58.14 -1.78 3473.25 60.68 -2.12 4874.00 65.91 -2.51 4874.00 60.71 -2.51 3747.98 57.99 -3.76	dB 2438.08 58.14 -1.78 -12.10 3473.25 60.68 -2.12 -12.02 4874.00 65.91 -2.51 -12.61 4874.00 60.71 -2.51 -12.61 3747.98 57.99 -3.76 -6.02	dB dB 2438.08 58.14 -1.78 -12.10 44.26 3473.25 60.68 -2.12 -12.02 46.54 4874.00 65.91 -2.51 -12.61 50.79 4874.00 60.71 -2.51 -12.61 45.59 3747.98 57.99 -3.76 -6.02 48.21	dB dB 2438.08 58.14 -1.78 -12.10 44.26 Fundamental 3473.25 60.68 -2.12 -12.02 46.54 Peak (NRB) 4874.00 65.91 -2.51 -12.61 50.79 Max Peak 4874.00 60.71 -2.51 -12.61 45.59 Max Avg 3747.98 57.99 -3.76 -6.02 48.21 Peak (NRB)	dB 44.26 Fundamental Horizontal 2438.08 58.14 -1.78 -12.10 44.26 Fundamental Horizontal 3473.25 60.68 -2.12 -12.02 46.54 Peak (NRB) Vertical 4874.00 65.91 -2.51 -12.61 50.79 Max Peak Vertical 4874.00 60.71 -2.51 -12.61 45.59 Max Avg Vertical 9747.98 57.99 -3.76 -6.02 48.21 Peak (NRB) Vertical	dB 44.26 Fundamental Horizontal 100 2438.08 58.14 -1.78 -12.10 44.26 Fundamental Horizontal 100 3473.25 60.68 -2.12 -12.02 46.54 Peak (NRB) Vertical 200 4874.00 65.91 -2.51 -12.61 50.79 Max Peak Vertical 168 4874.00 60.71 -2.51 -12.61 45.59 Max Avg Vertical 168 3747.98 57.99 -3.76 -6.02 48.21 Peak (NRB) Vertical 200	dB 44.26 Fundamental Horizontal 100 0 2438.08 58.14 -1.78 -12.10 44.26 Fundamental Horizontal 100 0 3473.25 60.68 -2.12 -12.02 46.54 Peak (NRB) Vertical 200 0 4874.00 65.91 -2.51 -12.61 50.79 Max Peak Vertical 168 33 4874.00 60.71 -2.51 -12.61 45.59 Max Avg Vertical 168 33 3747.98 57.99 -3.76 -6.02 48.21 Peak (NRB) Vertical 200 0	dB dB<	dB dB<				

Issue Date: 10th April 2019

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Page:

54 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	integral	Variant:	802.11b
Antenna Gain (dBi):	2.50	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

					1000	.00 - 18000.00 N	ИHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2463.55	59.27	-1.79	-11.96	45.52	Fundamental	Horizontal	200	231			
#2	3473.35	60.70	-2.12	-12.02	46.56	Peak (NRB)	Vertical	200	164			Pass
#3	4924.00	65.87	-2.56	-12.35	50.96	Max Peak	Horizontal	197	353	74.0	-23.0	Pass
#4	4924.00	61.14	-2.56	-12.35	46.23	Max Avg	Horizontal	197	353	54.0	-7.8	Pass
#5	9847.88	59.96	-3.97	-6.33	49.66	Peak (NRB)	Horizontal	200	0			Pass
	9847.88 otes: EUT pow					` /	Horizontal	200	0	0 0	0 0	0 0

Issue Date: 10th April 2019

Page:

55 of 178

Serial #: MIKO81-U13 Rev A

9.4.2.4. Restricted Edge & Band-Edge Emissions

inte	gral	Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBμV/m	dBμV/m	1 Ower Setting	
802.11b	2412.00	2390.00	50.43	37.18	23	
802.11g	2412.00	2390.00	63.09	45.64	23	
802.11n HT-20	2412.00	2390.00	62.43	45.81	23	
802.11n HT-40	2422.00	2390.00	68.21	50.80	22	

Issue Date: 10th April 2019 **Page:** 56 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11b
Antenna Gain (dBi):	2.50	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	1.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

	2310.00 - 2422.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	2390.00	6.99	-1.77	31.96	37.18	Max Avg	Horizontal	187	294	54.0	-16.8	Pass	
#2	2390.00	20.24	-1.77	31.96	50.43	Max Peak	Horizontal	187	294	74.0	-23.6	Pass	
#3	2390.00					Restricted- Band							

Test Notes: EUT powered by POE, connected to laptop outside chamber

Issue Date: 10th April 2019 **Page:** 57 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11g
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2389.55	32.90	-1.77	31.96	63.09	Max Peak	Horizontal	187	294	74.0	-10.9	Pass
#2	2389.78	15.45	-1.77	31.96	45.64	Max Avg	Horizontal	187	294	54.0	-8.4	Pass
#3	2390.00			-1		Restricted- Band			-1			

Test Notes: EUT powered by POE, connected to laptop outside chamber

Issue Date: 10th April 2019 **Page**: 58 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-20
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2412.00	Data Rate:	6.50 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2390.00	15.62	-1.77	31.96	45.81	Max Avg	Horizontal	187	294	54.0	-8.2	Pass
#2	2390.00	32.24	-1.77	31.96	62.43	Max Peak	Horizontal	187	294	74.0	-11.6	Pass
#3	2390.00		-			Restricted- Band						

Test Notes: EUT powered by POE, connected to laptop outside chamber

Issue Date: 10th April 2019 **Page**: 59 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Lower Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-40
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2422.00	Data Rate:	13.50 MBit/s
Power Setting:	22	Tested By:	JM

Test Measurement Results

	2310.00 - 2422.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2389.55	38.02	-1.77	31.96	68.21	Max Peak	Horizontal	187	294	74.0	-5.8	Pass
#2	2390.00	20.61	-1.77	31.96	50.80	Max Avg	Horizontal	187	294	54.0	-3.2	Pass
#3	2390.00			-1		Restricted- Band			-1			

Serial #: MIKO81-U13 Rev A

inte	gral	Band-Edge Freq	Limit 74.0dBµV/m	Limit 54.0dBµV/m	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBμV/m	dBμV/m	i ower Setting	
802.11b	2462.00	2483.50	58.55	51.80	23	
802.11g	2462.00	2483.50	68.05	52.75	21	
802.11n HT-20	2462.00	2483.50	71.85	52.44	22	
802.11n HT-40	2452.00	2483.50	69.29	53.27	21	

Issue Date: 10th April 2019 Page: 61 of 178

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11b
Antenna Gain (dBi):	Not Applicable	Modulation:	CCK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	1.00 MBit/s
Power Setting:	23	Tested By:	JM

Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	2486.61	28.00	-1.78	32.33	58.55	Max Peak	Horizontal	100	332	74.0	-15.5	Pass
#3	2486.77	21.25	-1.78	32.33	51.80	Max Avg	Horizontal	100	332	54.0	-2.2	Pass
#1	2483.50					Restricted- Band						

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11g
Antenna Gain (dBi):	2.50	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	6.00 MBit/s
Power Setting:	21	Tested By:	JM

Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	2483.64	22.20	-1.78	32.33	52.75	Max Avg	Horizontal	100	332	54.0	-1.3	Pass
#3	2484.30	37.50	-1.78	32.33	68.05	Max Peak	Horizontal	100	332	74.0	-6.0	Pass
#1	2483.50					Restricted- Band						

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-20
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2462.00	Data Rate:	6.50 MBit/s
Power Setting:	22	Tested By:	JM

Test Measurement Results

	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	2483.50	21.89	-1.78	32.33	52.44	Max Avg	Horizontal	100	332	54.0	-1.6	Pass
#3	2484.43	41.30	-1.78	32.33	71.85	Max Peak	Horizontal	100	332	74.0	-2.2	Pass
#2	2483.50		1			Restricted- Band						

Serial #: MIKO81-U13 Rev A

Equipment Configuration for Radiated - Upper Restricted Band-Edge Emissions

Antenna:	integral	Variant:	802.11n HT-40
Antenna Gain (dBi):	Not Applicable	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	2452.00	Data Rate:	13.50 MBit/s
Power Setting:	21	Tested By:	JM

Test Measurement Results

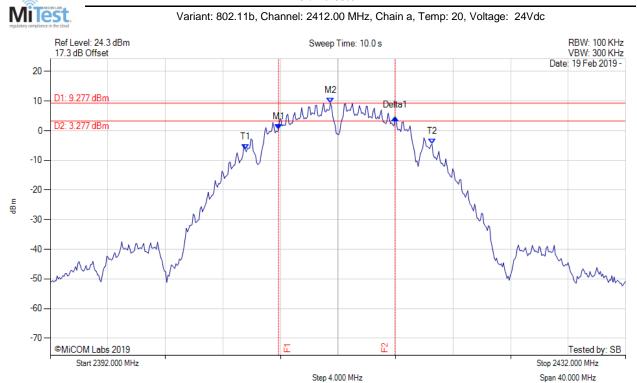
	2452.00 - 2520.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#2	2483.64	22.72	-1.78	32.33	53.27	Max Avg	Horizontal	100	332	54.0	-0.7	Pass
#3	2483.77	38.74	-1.78	32.33	69.29	Max Peak	Horizontal	100	332	74.0	-4.7	Pass
#1	2483.50		-			Restricted- Band						

Test Notes: EUT powered by POE, connected to laptop outside chamber

Issue Date: 10th April 2019 **Page:** 65 of 178

Serial #: MIKO81-U13 Rev A

A. APPENDIX - GRAPHICAL IMAGES

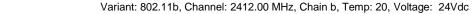

Issue Date: 10th April 2019 **Page:** 66 of 178

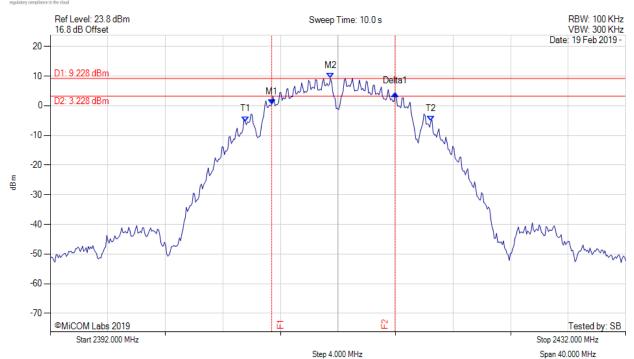
Serial #: MIKO81-U13 Rev A

A.1. 6 dB & 99% Bandwidth

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2411.479 MHz: 9.277 dBm	Measured 6 dB Bandwidth: 8.096 MHz Limit: ≥500.0 kHz Margin: -7.60 MHz


back to matrix

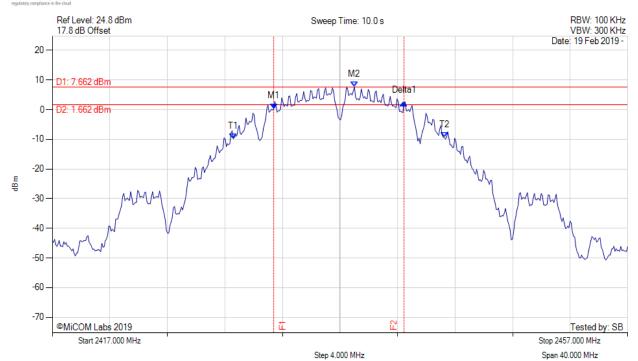

Issue Date: 10th April 2019 **Page:** 67 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2407.391 MHz: 0.487 dBm M2: 2411.479 MHz: 9.228 dBm Delta1: 8.577 MHz: 3.638 dB T1: 2405.547 MHz: -5.323 dBm T2: 2418.453 MHz: -5.232 dBm OBW: 12.906 MHz	Measured 6 dB Bandwidth: 8.577 MHz Limit: ≥500.0 kHz Margin: -8.08 MHz


back to matrix

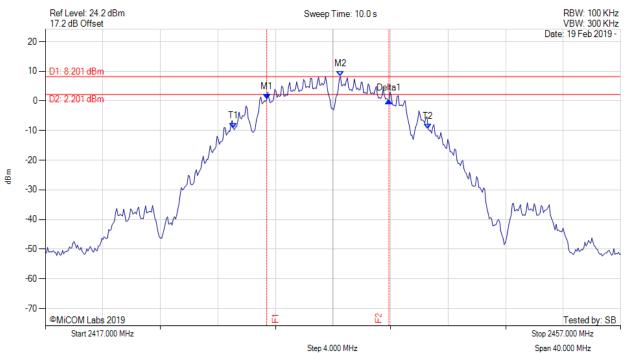

Issue Date: 10th April 2019 **Page:** 68 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2432.391 MHz: 0.348 dBm M2: 2438.002 MHz: 7.662 dBm Delta1: 9.058 MHz: 2.052 dB T1: 2429.585 MHz: -9.782 dBm T2: 2444.255 MHz: -9.395 dBm OBW: 14.669 MHz	Measured 6 dB Bandwidth: 9.058 MHz Limit: ≥500.0 kHz Margin: -8.56 MHz

back to matrix

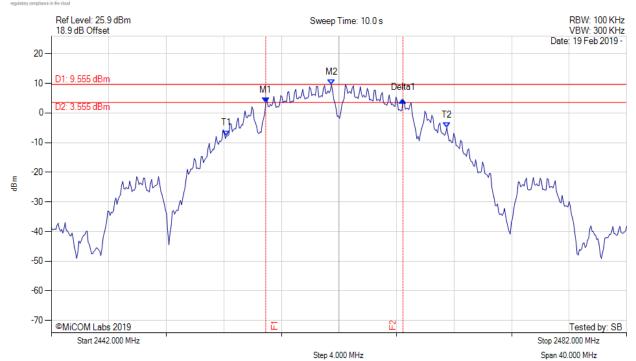

Issue Date: 10th April 2019 **Page:** 69 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2432.391 MHz: 0.513 dBm	Measured 6 dB Bandwidth: 8.497 MHz
Sweep Count = 0	M2: 2437.521 MHz: 8.201 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1: 8.497 MHz: -0.415 dB	Margin: -8.00 MHz
Trace Mode = MAX HOLD	T1: 2430.066 MHz: -9.245 dBm	
	T2: 2443.613 MHz: -9.420 dBm	
	OBW: 13.547 MHz	

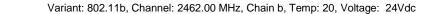
back to matrix

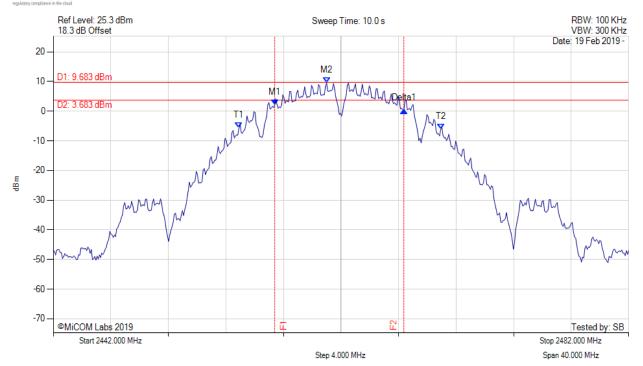

Issue Date: 10th April 2019 **Page:** 70 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M2: 2461.479 MHz: 9.555 dBm	Measured 6 dB Bandwidth: 9.539 MHz Limit: ≥500.0 kHz Margin: -9.04 MHz


back to matrix


Issue Date: 10th April 2019 **Page:** 71 of 178

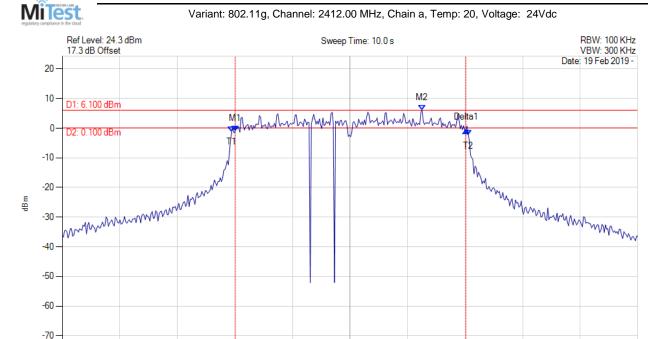
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2457.391 MHz: 2.213 dBm	Measured 6 dB Bandwidth: 8.978 MHz
Sweep Count = 0	M2: 2460.998 MHz: 9.683 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1: 8.978 MHz: -1.952 dB	Margin: -8.48 MHz
Trace Mode = MAX HOLD	T1: 2454.906 MHz: -5.666 dBm	
	T2: 2468.934 MHz: -6.056 dBm	
	OBW: 14.028 MHz	

back to matrix

Issue Date: 10th April 2019 **Page:** 72 of 178


Tested by: SB

Stop 2432.000 MHz

Span 40.000 MHz

Serial #: MIKO81-U13 Rev A

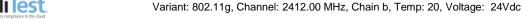
6 dB & 99% BANDWIDTH

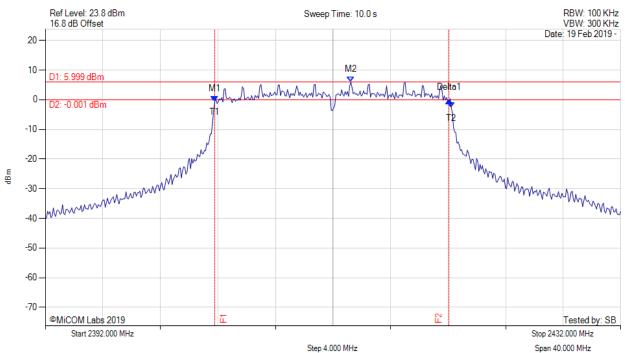
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2404.024 MHz: -0.984 dBm M2: 2417.010 MHz: 6.100 dBm Delta1: 16.032 MHz: 0.352 dB T1: 2403.784 MHz: -1.079 dBm T2: 2420.216 MHz: -2.340 dBm OBW: 16.433 MHz	Measured 6 dB Bandwidth: 16.032 MHz Limit: ≥500.0 kHz Margin: -15.53 MHz

Step 4.000 MHz

back to matrix

@MiCOM Labs 2019

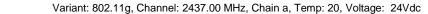

Start 2392.000 MHz

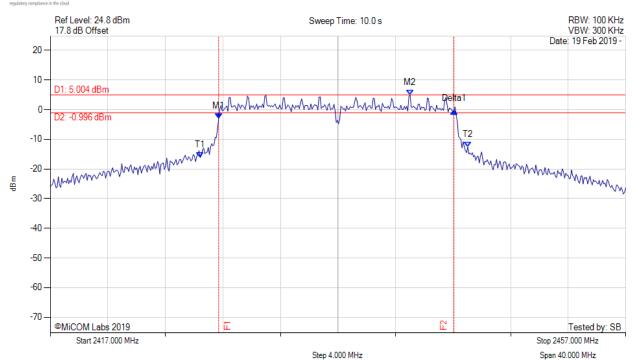

Issue Date: 10th April 2019 **Page:** 73 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2413.242 MHz: 5.999 dBm	Measured 6 dB Bandwidth: 16.273 MHz Limit: ≥500.0 kHz Margin: -15.77 MHz


back to matrix


Issue Date: 10th April 2019 **Page:** 74 of 178

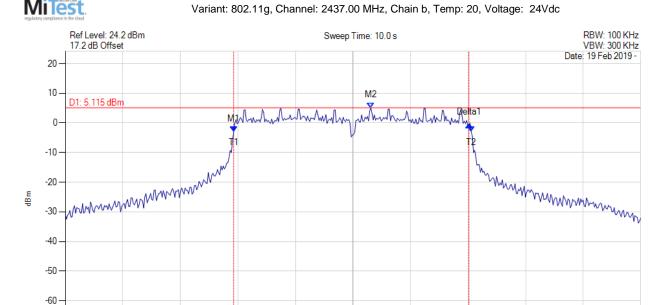
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2428.703 MHz: -2.961 dBm M2: 2442.010 MHz: 5.004 dBm Delta1: 16.353 MHz: 2.451 dB T1: 2427.421 MHz: -16.143 dBm T2: 2446.018 MHz: -12.546 dBm OBW: 18.597 MHz	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

back to matrix

Issue Date: 10th April 2019 **Page:** 75 of 178


Tested by: SB

Stop 2457.000 MHz

Span 40.000 MHz

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

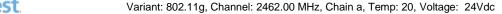
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1: 2428.703 MHz: -2.932 dBm	Measured 6 dB Bandwidth: 16.353 MHz
Sweep Count = 0	M2: 2438.242 MHz: 5.115 dBm	Limit: ≥500.0 kHz
RF Atten (dB) = 20	Delta1: 16.353 MHz: 2.318 dB	Margin: -15.85 MHz
Trace Mode = MAX HOLD	T1: 2428.703 MHz: -2.932 dBm	_
	T2: 2445.216 MHz: -3.005 dBm	
	OBW: 16.513 MHz	

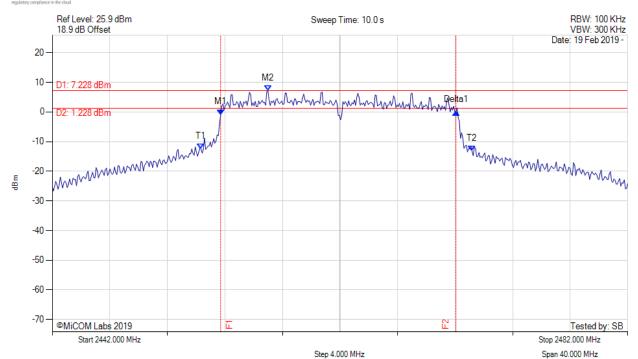
Step 4.000 MHz

back to matrix

-70

@MiCOM Labs 2019

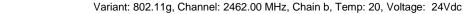

Start 2417.000 MHz

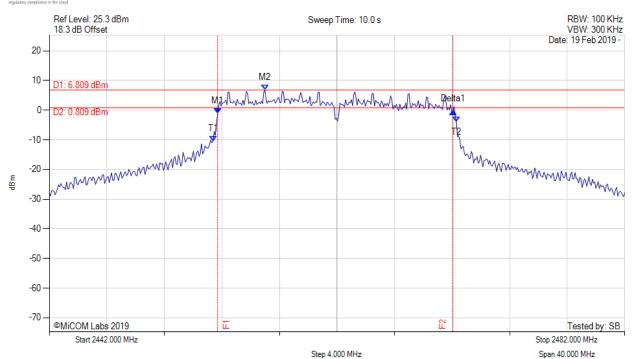

Issue Date: 10th April 2019 **Page:** 76 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2453.703 MHz: -0.901 dBm M2: 2456.990 MHz: 7.228 dBm Delta1: 16.353 MHz: 0.915 dB T1: 2452.341 MHz: -12.404 dBm T2: 2471.178 MHz: -13.233 dBm OBW: 18.838 MHz	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

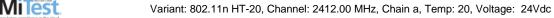

back to matrix


Issue Date: 10th April 2019 **Page:** 77 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2453.703 MHz: -1.161 dBm M2: 2456.990 MHz: 6.809 dBm Delta1: 16.353 MHz: 0.818 dB T1: 2453.383 MHz: -10.457 dBm T2: 2470.297 MHz: -3.817 dBm OBW: 16.914 MHz	Measured 6 dB Bandwidth: 16.353 MHz Limit: ≥500.0 kHz Margin: -15.85 MHz

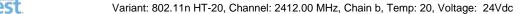

back to matrix

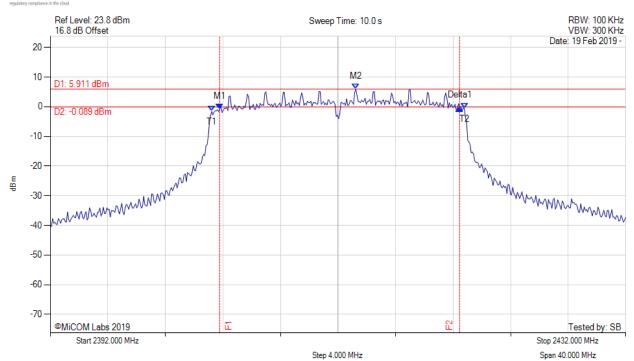
Issue Date: 10th April 2019 **Page:** 78 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2417.010 MHz: 6.043 dBm	Measured 6 dB Bandwidth: 16.513 MHz Limit: ≥500.0 kHz Margin: -16.01 MHz


back to matrix


Issue Date: 10th April 2019 **Page:** 79 of 178

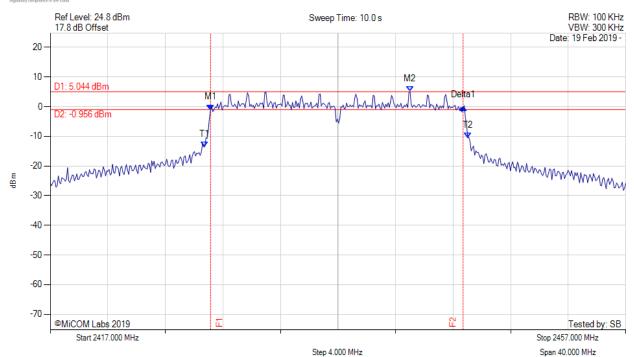
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2413.242 MHz : 5.911 dBm	Measured 6 dB Bandwidth: 16.673 MHz Limit: ≥500.0 kHz Margin: -16.17 MHz

back to matrix

Issue Date: 10th April 2019 **Page:** 80 of 178

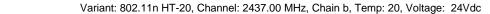


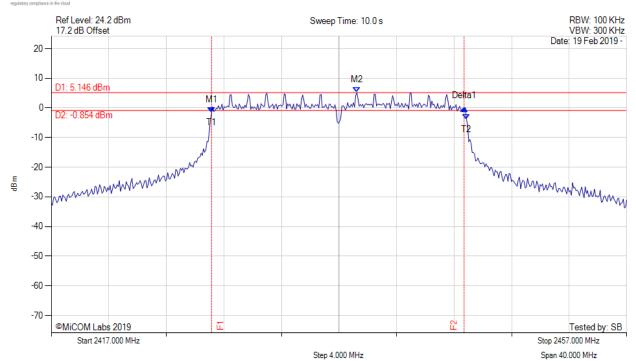
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20	M2: 2442.010 MHz: 5.044 dBm	Measured 6 dB Bandwidth: 17.555 MHz Limit: ≥500.0 kHz Margin: -17.06 MHz


back to matrix

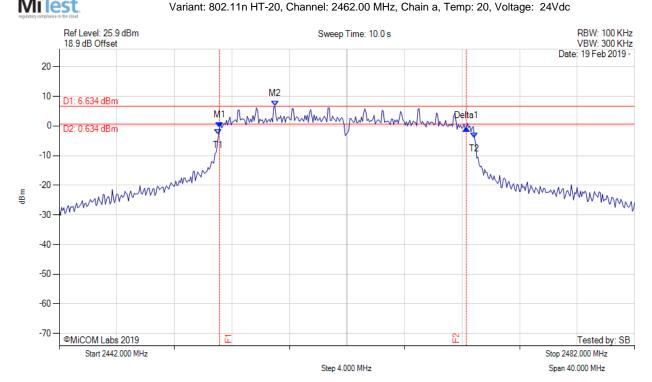

Issue Date: 10th April 2019 **Page:** 81 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2438.242 MHz : 5.146 dBm	Measured 6 dB Bandwidth: 17.555 MHz Limit: ≥500.0 kHz Margin: -17.06 MHz

back to matrix


Issue Date: 10th April 2019 **Page:** 82 of 178

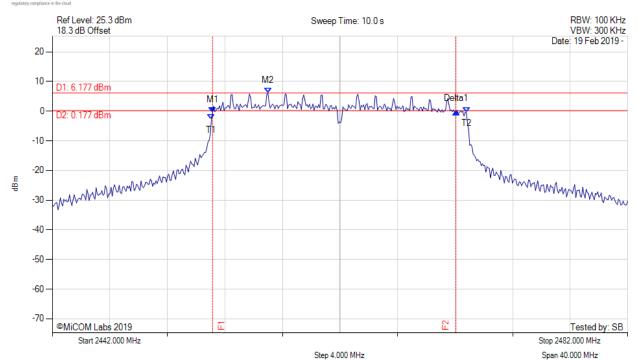
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

With a second to the second to

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1: 2453.142 MHz: -0.594 dBm M2: 2456.990 MHz: 6.634 dBm Delta1: 17.154 MHz: -0.275 dB T1: 2453.062 MHz: -2.918 dBm T2: 2470.858 MHz: -4.045 dBm OBW: 17.796 MHz	Measured 6 dB Bandwidth: 17.154 MHz Limit: ≥500.0 kHz Margin: -16.65 MHz

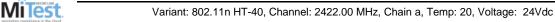

back to matrix

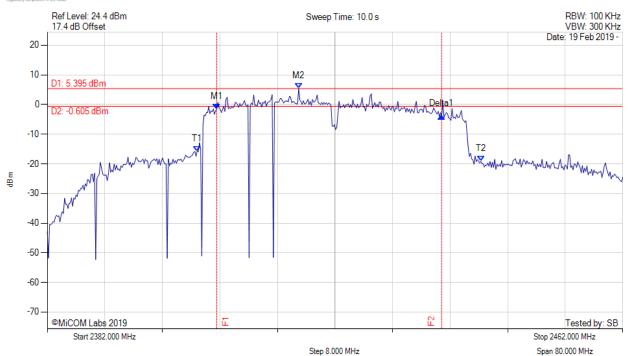

Issue Date: 10th April 2019 **Page:** 83 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2456.990 MHz: 6.177 dBm	Measured 6 dB Bandwidth: 16.914 MHz Limit: ≥500.0 kHz Margin: -16.41 MHz


back to matrix

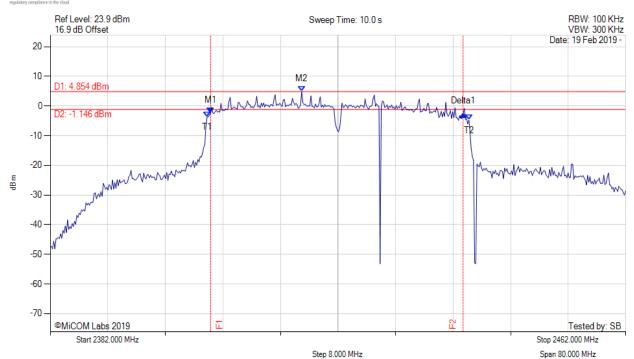

Issue Date: 10th April 2019 **Page:** 84 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2405.567 MHz: -1.597 dBm M2: 2416.950 MHz: 5.395 dBm Delta1: 31.263 MHz: -2.211 dB T1: 2402.842 MHz: -15.732 dBm T2: 2442.281 MHz: -19.185 dBm OBW: 39.439 MHz	Measured 6 dB Bandwidth: 31.263 MHz Limit: ≥500.0 kHz Margin: -30.76 MHz

back to matrix

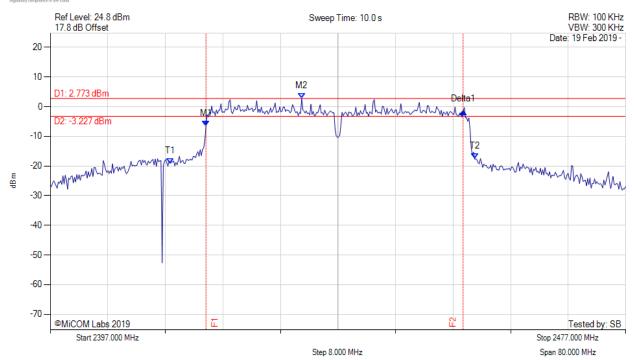

Issue Date: 10th April 2019 **Page:** 85 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2416.950 MHz: 4.854 dBm	Measured 6 dB Bandwidth: 35.110 MHz Limit: ≥500.0 kHz Margin: -34.61 MHz

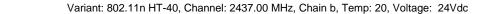
back to matrix

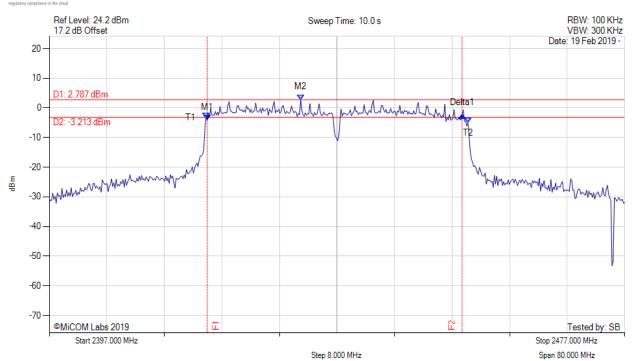

Issue Date: 10th April 2019 **Page:** 86 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2: 2431.950 MHz: 2.773 dBm	Measured 6 dB Bandwidth: 35.752 MHz Limit: ≥500.0 kHz Margin: -35.25 MHz


back to matrix

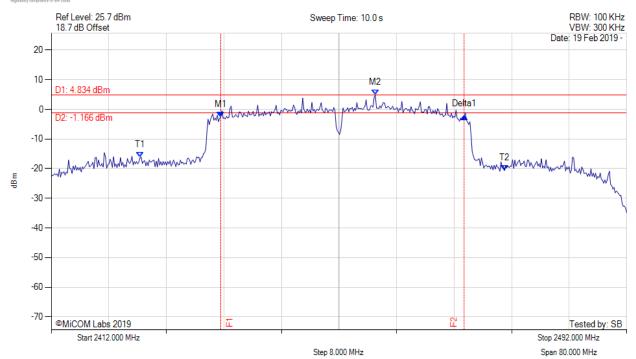

Issue Date: 10th April 2019 **Page:** 87 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2431.950 MHz : 2.787 dBm	Measured 6 dB Bandwidth: 35.431 MHz Limit: ≥500.0 kHz Margin: -34.93 MHz

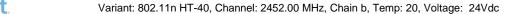
back to matrix

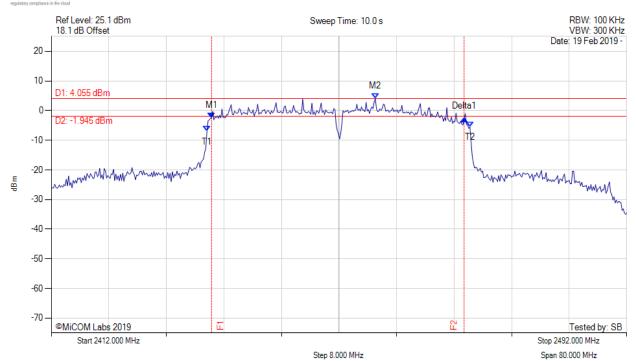

Issue Date: 10th April 2019 **Page:** 88 of 178

Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M2 : 2457.050 MHz : 4.834 dBm	Measured 6 dB Bandwidth: 33.828 MHz Limit: ≥500.0 kHz Margin: -33.33 MHz


back to matrix


Issue Date: 10th April 2019 **Page:** 89 of 178

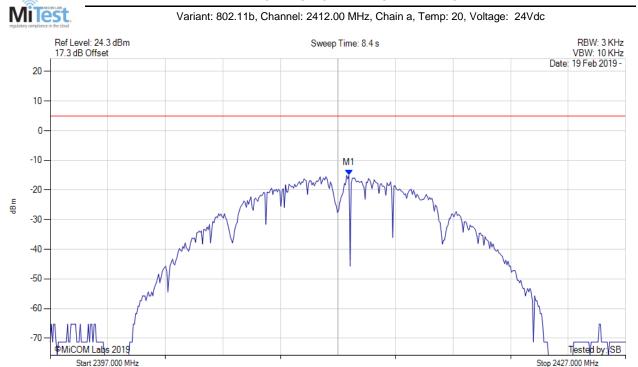
Serial #: MIKO81-U13 Rev A

6 dB & 99% BANDWIDTH

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = MAX HOLD	M1: 2434.285 MHz: -2.575 dBm M2: 2457.050 MHz: 4.055 dBm Delta1: 35.110 MHz: -0.175 dB T1: 2433.643 MHz: -6.919 dBm T2: 2470.196 MHz: -5.492 dBm OBW: 36.553 MHz	Measured 6 dB Bandwidth: 35.110 MHz Limit: ≥500.0 kHz Margin: -34.61 MHz

back to matrix

Issue Date: 10th April 2019 **Page:** 90 of 178



Span 30.000 MHz

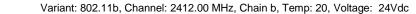
Serial #: MIKO81-U13 Rev A

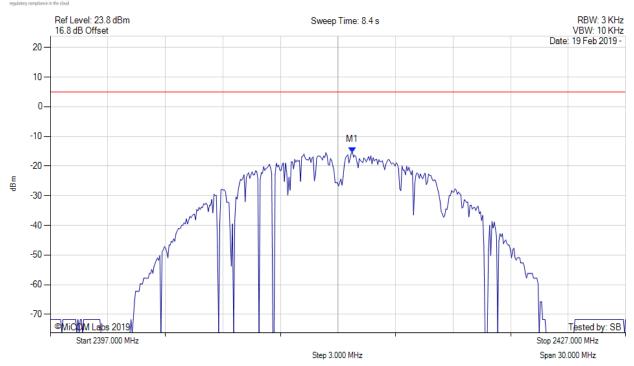
A.2. Power Spectral Density

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 2412.571 MHz : -15.020 dBm	Limit: ≤ 4.990 dBm

Step 3.000 MHz


back to matrix

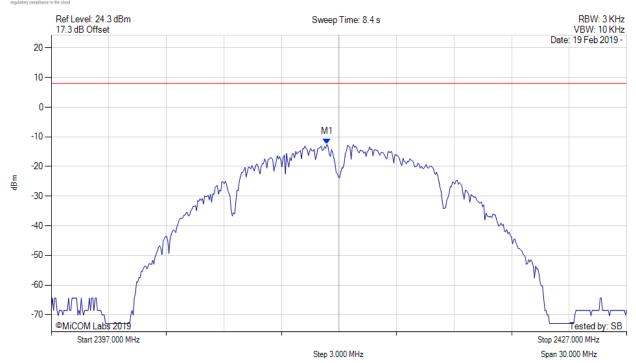

Issue Date: 10th April 2019 **Page:** 91 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2412.752 MHz : -15.374 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

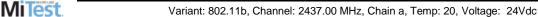
back to matrix

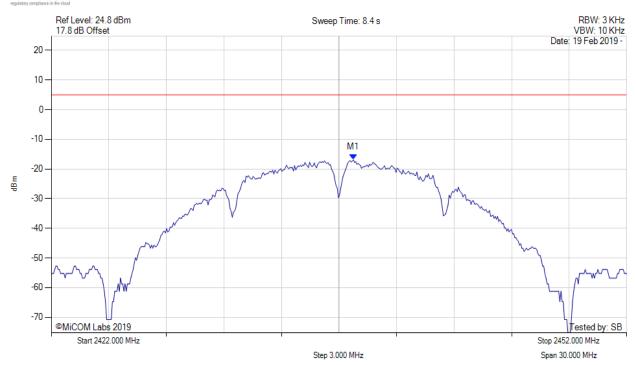

Issue Date: 10th April 2019 **Page:** 92 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2411.400 MHz: -12.481 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2411.400 MHz : -12.437 dBm	Margin: -20.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.04 dB	
Trace Mode = VIEW		


back to matrix

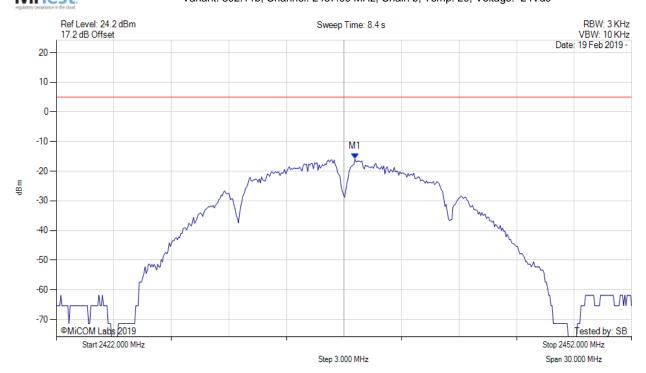

Issue Date: 10th April 2019 **Page:** 93 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2437.752 MHz: -16.891 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

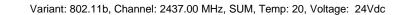

Issue Date: 10th April 2019 **Page:** 94 of 178

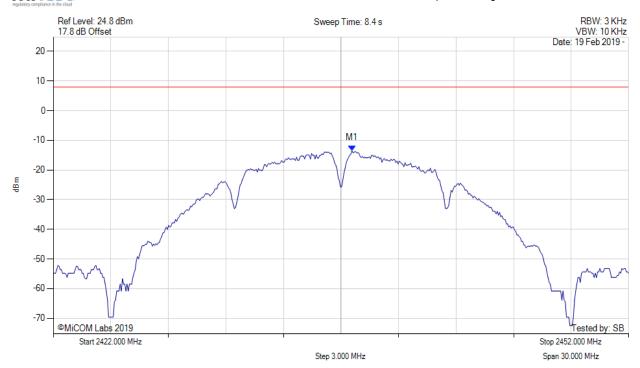
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2437.571 MHz: -15.860 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page**:


95 of 178

Serial #: MIKO81-U13 Rev A

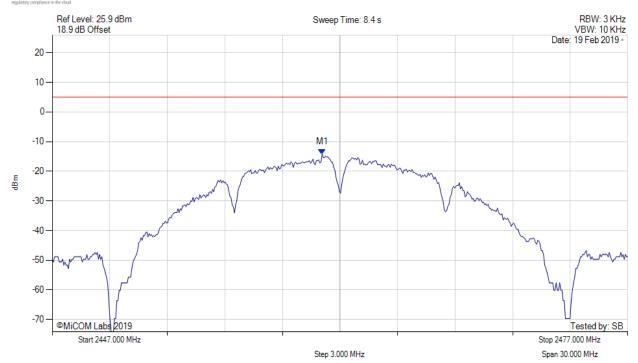
POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2437.600 MHz: -13.435 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2437.600 MHz : -13.391 dBm	Margin: -21.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.04 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 96 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

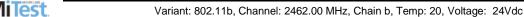

FCC 15.247 & IC ISED RSS-247

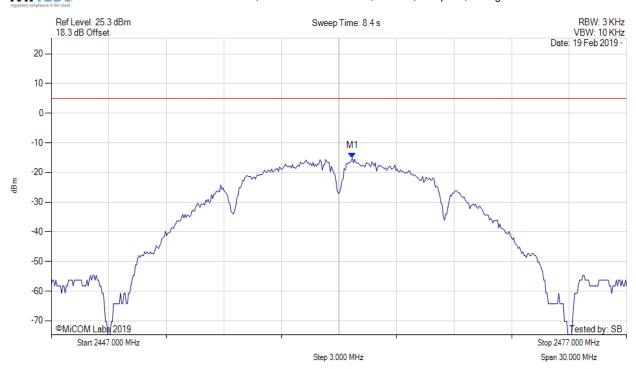
97 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2461.068 MHz: -14.234 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

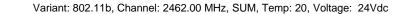

back to matrix

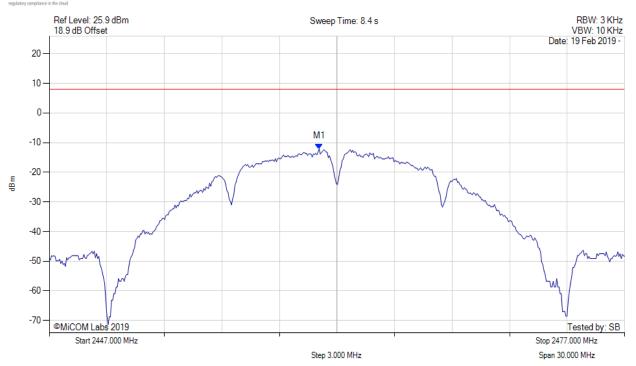

Issue Date: 10th April 2019 Page:

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2462.691 MHz: -15.133 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 98 of 178

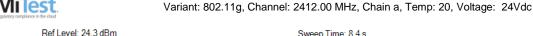
Serial #: MIKO81-U13 Rev A

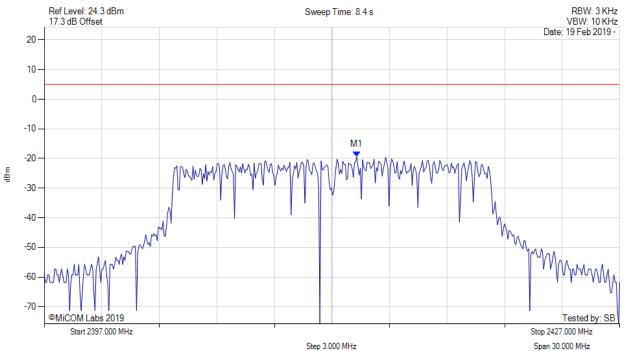
POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2461.100 MHz: -12.096 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2461.100 MHz : -12.052 dBm	Margin: -20.1 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.04 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 99 of 178




Title:

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

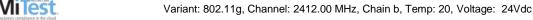
MIKO81-U13 Rev A Serial #:

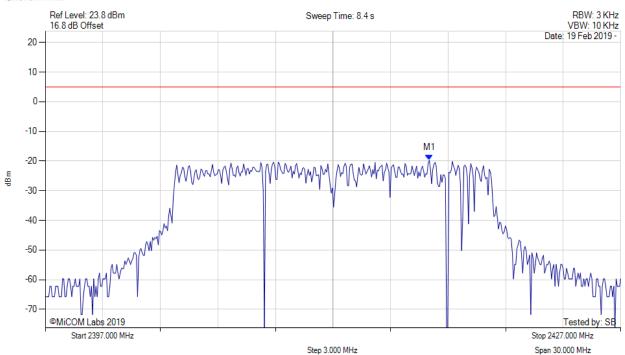
POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2413.293 MHz: -19.444 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 Page: 100 of 178




Title:

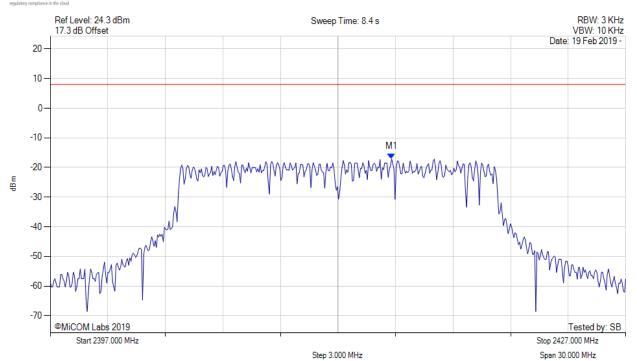
MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1 : 2417.020 MHz : -19.746 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

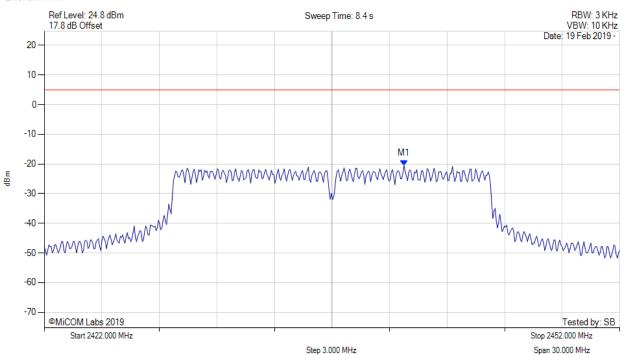

Issue Date: 10th April 2019 Page: 101 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2414.800 MHz: -17.088 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2414.800 MHz : -16.226 dBm	Margin: -24.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.86 dB	
Trace Mode = VIEW		

back to matrix

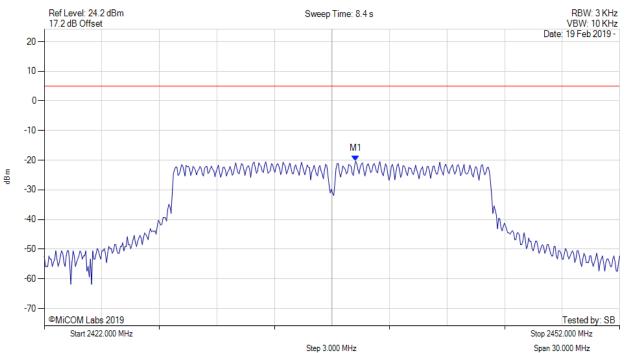

Issue Date: 10th April 2019 **Page:** 102 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2440.758 MHz: -20.528 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

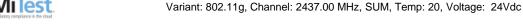
back to matrix

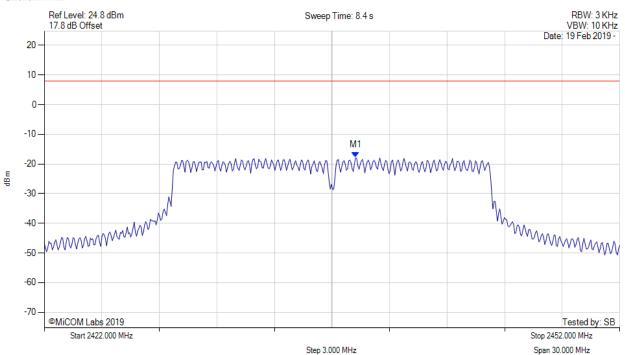

Issue Date: 10th April 2019 Page: 103 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2438.232 MHz: -20.263 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

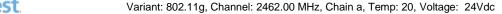

back to matrix

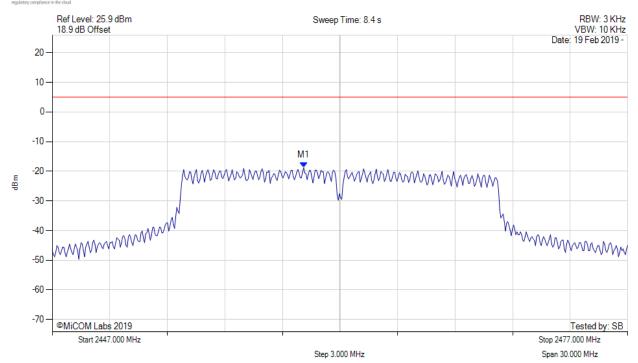

Issue Date: 10th April 2019 **Page:** 104 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2438.200 MHz: -17.822 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2438.200 MHz : -16.960 dBm	Margin: -25.0 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.86 dB	
Trace Mode = VIEW		

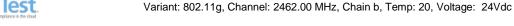

back to matrix

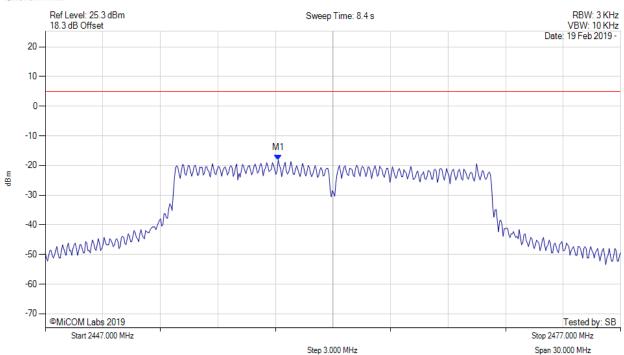

Issue Date: 10th April 2019 **Page:** 105 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2460.106 MHz: -18.784 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix

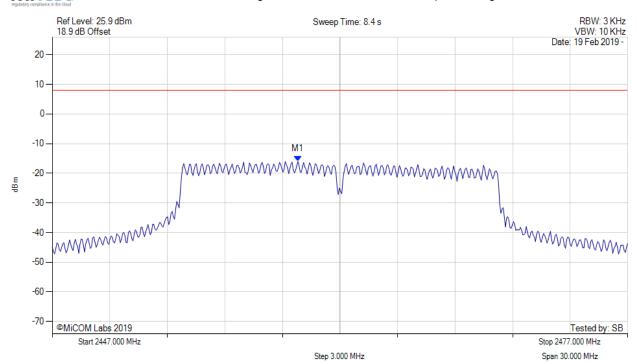

Issue Date: 10th April 2019 **Page:** 106 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2459.144 MHz: -18.159 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

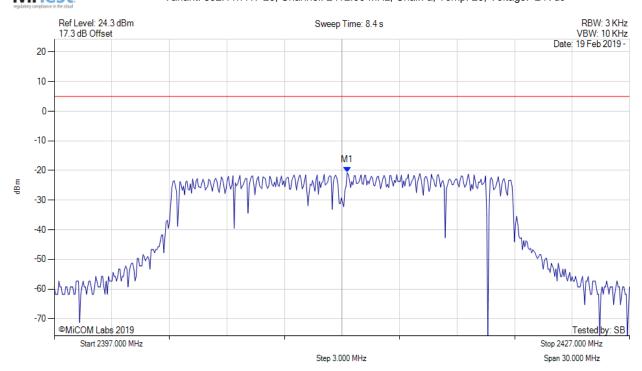

Issue Date: 10th April 2019 **Page:** 107 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2459.800 MHz: -16.034 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2459.800 MHz : -15.172 dBm	Margin: -23.2 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.86 dB	
Trace Mode = VIEW		

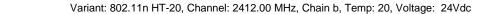
back to matrix

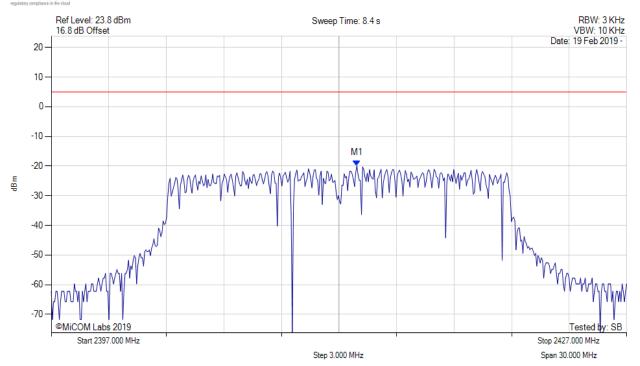

Issue Date: 10th April 2019 **Page:** 108 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2412.271 MHz: -20.687 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix

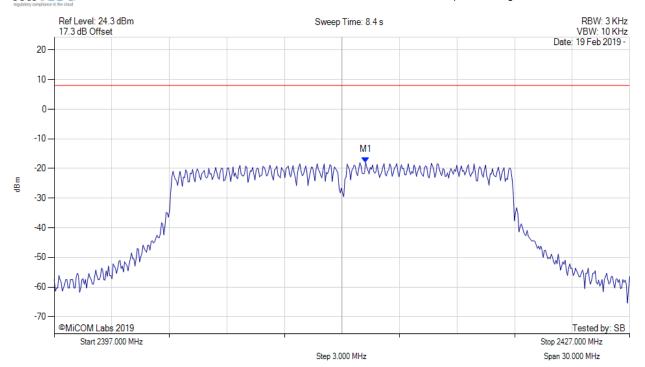

Issue Date: 10th April 2019 **Page:** 109 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2412.932 MHz: -19.811 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

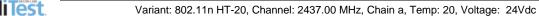
back to matrix

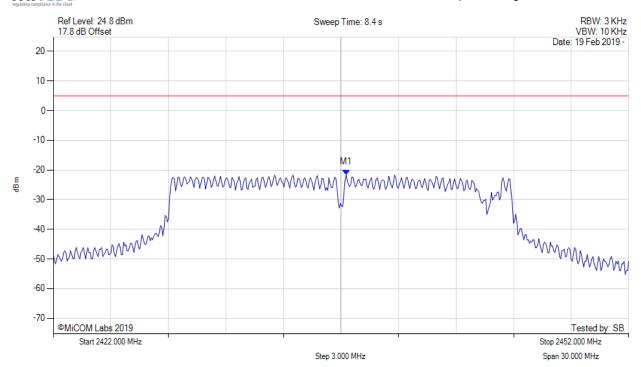

Issue Date: 10th April 2019 **Page:** 110 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2413.200 MHz: -17.923 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2413.200 MHz : -17.608 dBm	Margin: -25.6 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.32 dB	
Trace Mode = VIEW		

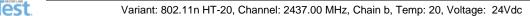

back to matrix

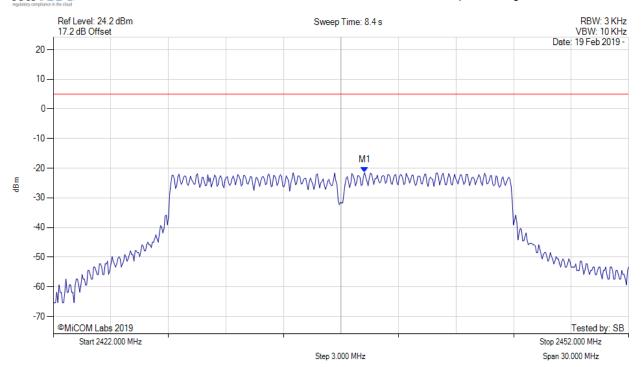

Issue Date: 10th April 2019 **Page**: 111 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2437.271 MHz: -21.608 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

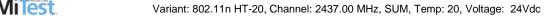

back to matrix

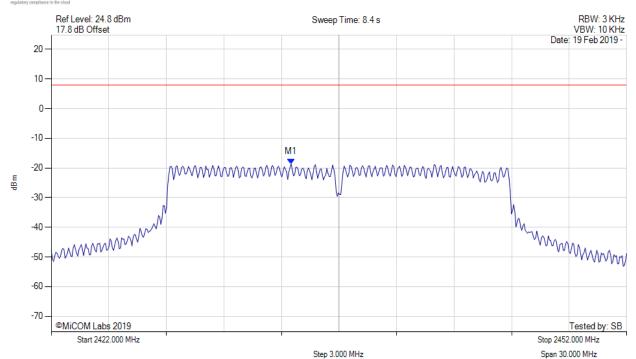

Issue Date: 10th April 2019 **Page:** 112 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2438.232 MHz: -21.482 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 113 of 178

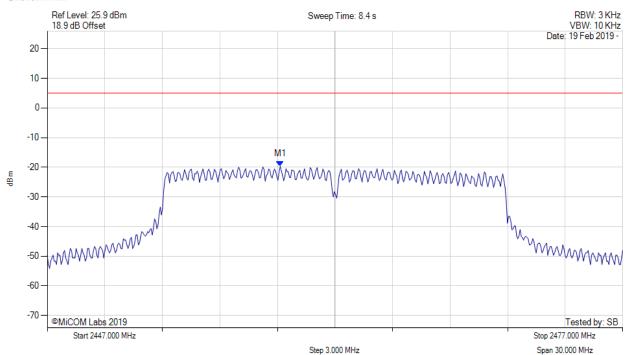
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2434.500 MHz: -18.623 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2434.500 MHz : -18.308 dBm	Margin: -26.3 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.32 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 114 of 178



Serial #: MIKO81-U13 Rev A

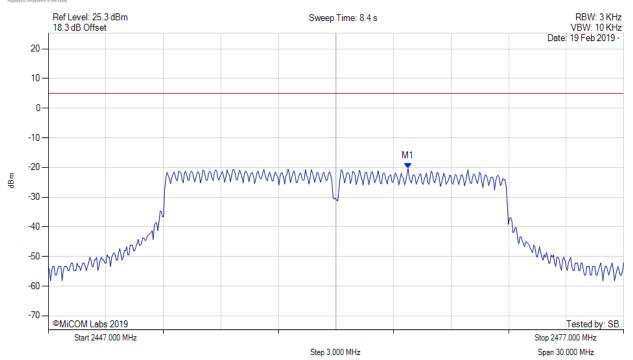
POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11n HT-20, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2459.144 MHz: -19.699 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 Page:

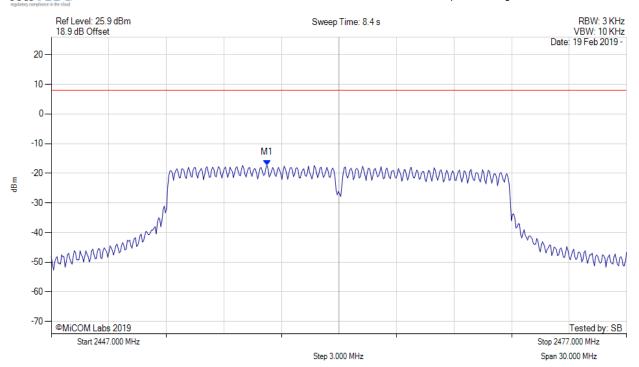

115 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2465.758 MHz: -20.354 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 116 of 178

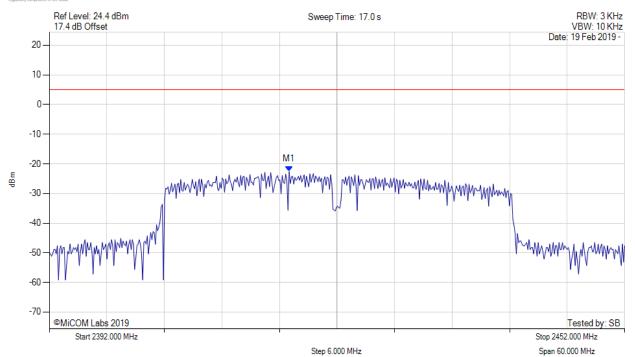
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2458.200 MHz: -17.255 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2458.200 MHz : -16.940 dBm	Margin: -25.0 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +0.32 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 117 of 178



Serial #: MIKO81-U13 Rev A

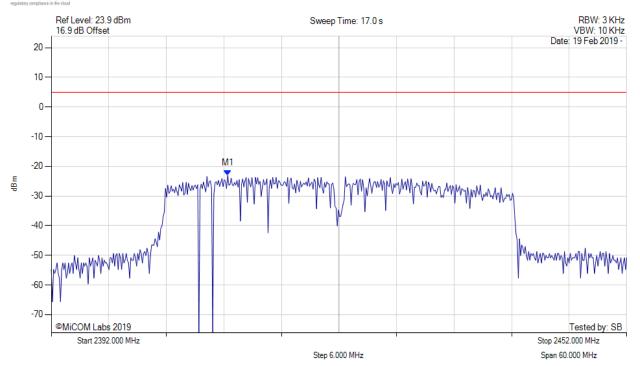
POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11n HT-40, Channel: 2422.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2417.010 MHz: -22.635 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 118 of 178



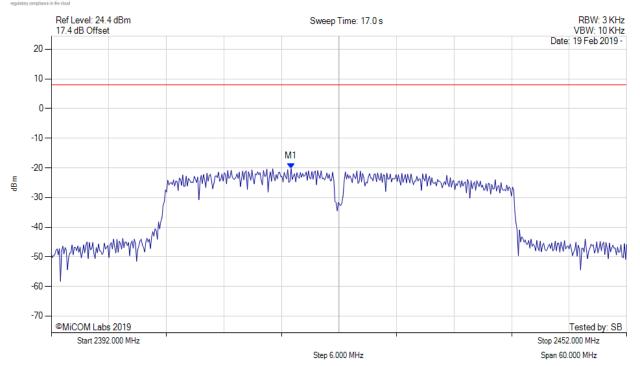
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11n HT-40, Channel: 2422.00 MHz, Chain b, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2410.397 MHz: -23.006 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

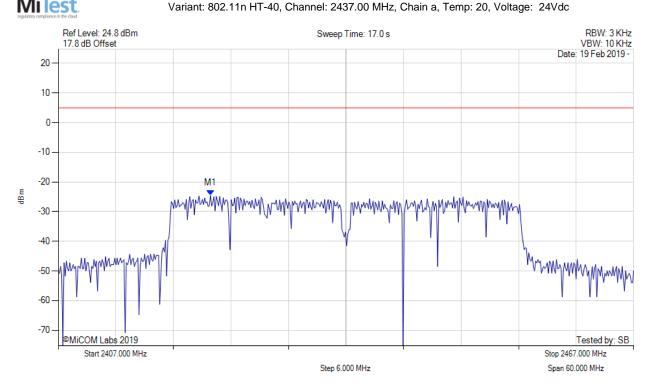

Issue Date: 10th April 2019 **Page:** 119 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2417.000 MHz: -20.249 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2417.000 MHz : -18.882 dBm	Margin: -26.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +1.37 dB	
Trace Mode = VIEW		

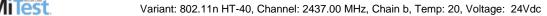
back to matrix

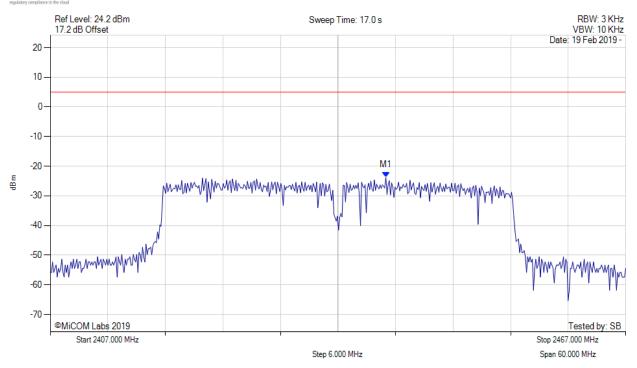

Issue Date: 10th April 2019 **Page:** 120 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2422.872 MHz: -24.573 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

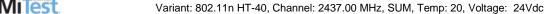

back to matrix

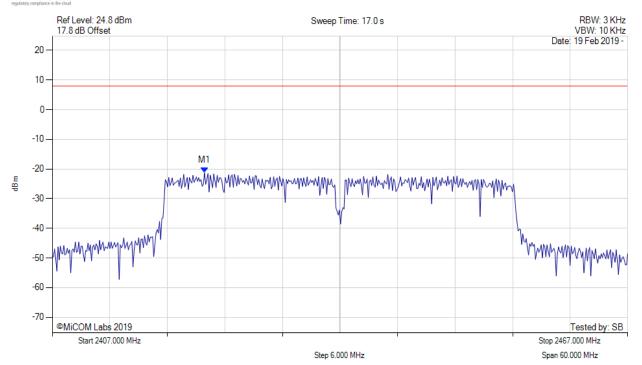

Issue Date: 10th April 2019 **Page:** 121 of 178

Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2441.990 MHz: -23.834 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 122 of 178

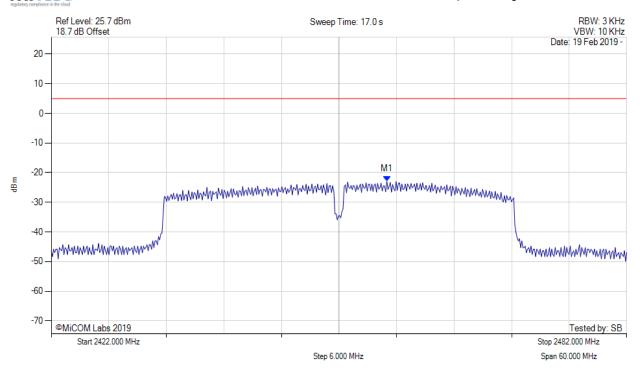
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2422.900 MHz: -21.276 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2422.900 MHz : -19.909 dBm	Margin: -27.9 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +1.37 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 123 of 178



Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

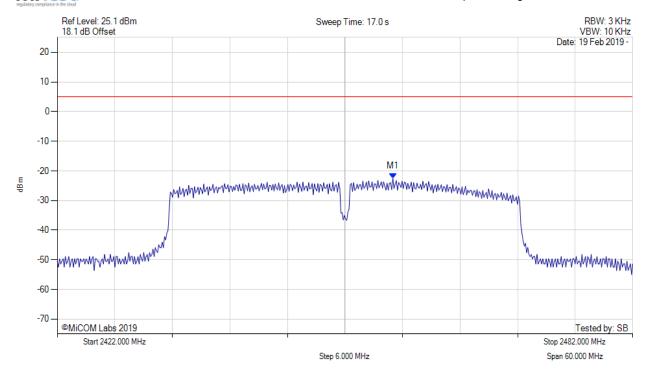
Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2456.990 MHz: -22.938 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 124 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US

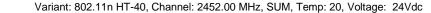

To: FCC 15.247 & IC ISED RSS-247

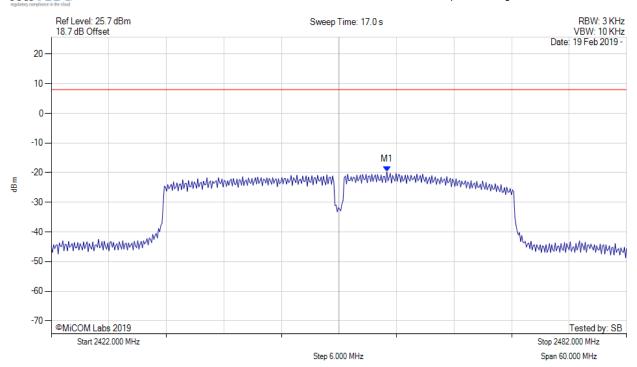
Serial #: MIKO81-U13 Rev A

POWER SPECTRAL DENSITY - AVERAGE

Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain b, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2456.990 MHz: -22.576 dBm	Limit: ≤ 4.990 dBm
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 125 of 178

Serial #: MIKO81-U13 Rev A

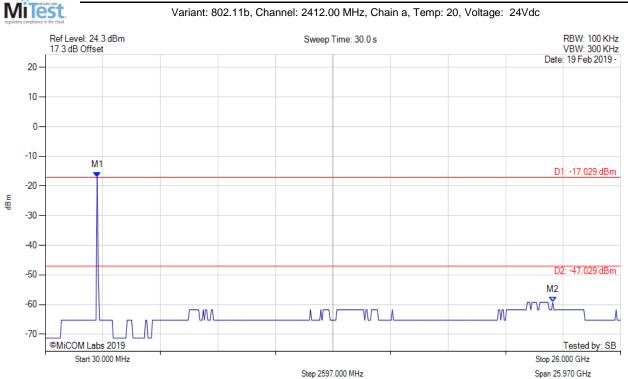
POWER SPECTRAL DENSITY - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2457.000 MHz: -19.743 dBm	Limit: ≤ 8.0 dBm
Sweep Count = 0	M1 + DCCF : 2457.000 MHz : -18.376 dBm	Margin: -26.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor: +1.37 dB	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 126 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247 To:


MIKO81-U13 Rev A Serial #:

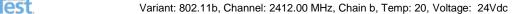
A.3. Emissions

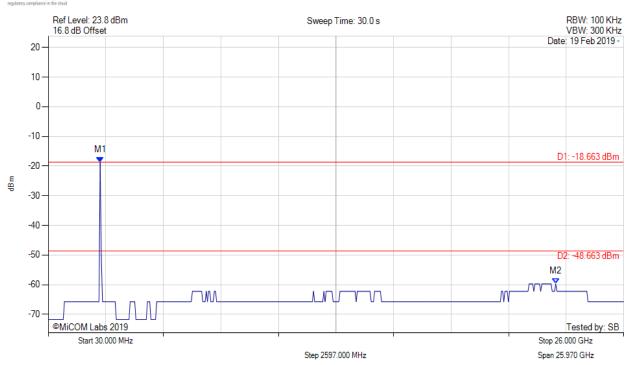
A.3.1. Conducted Emissions

A.3.1.1. Conducted Spurious Emissions

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1: 2371.984 MHz: -17.029 dBm	Limit: -47.03 dBm
1	M2 : 22.929 GHz : -59.224 dBm	Margin: -12.19 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

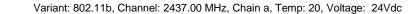

back to matrix

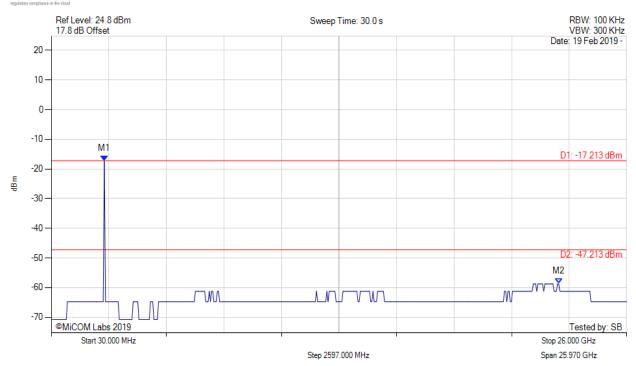

Issue Date: 10th April 2019 Page: 127 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -18.663 dBm	Limit: -48.66 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.724 dBm	Margin: -11.06 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

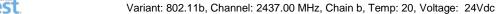

back to matrix

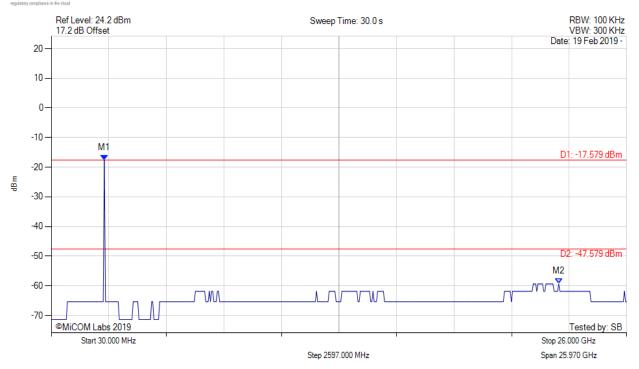

Issue Date: 10th April 2019 **Page:** 128 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVERAGE	M1: 2424.028 MHz: -17.213 dBm	Limit: -47.21 dBm	
Sweep Count = 0	M2: 22.929 GHz: -58.724 dBm	Margin: -11.51 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			


back to matrix

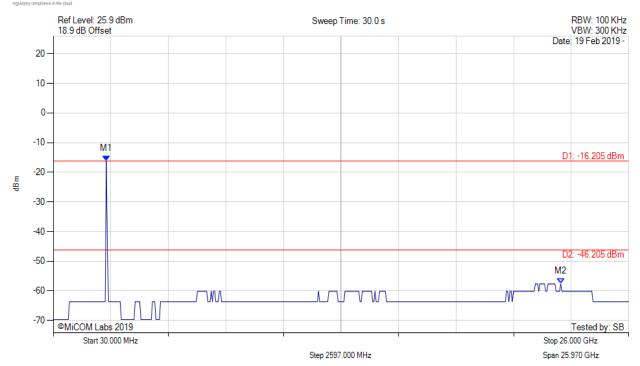

Issue Date: 10th April 2019 **Page:** 129 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.579 dBm	Limit: -47.58 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.324 dBm	Margin: -11.74 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 130 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -16.205 dBm	Limit: -46.21 dBm
Sweep Count = 0	M2: 22.929 GHz: -57.624 dBm	Margin: -11.41 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 131 of 178



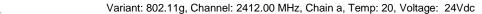

Title: MikroTik RBwAPGR-5HacD2HnD-US

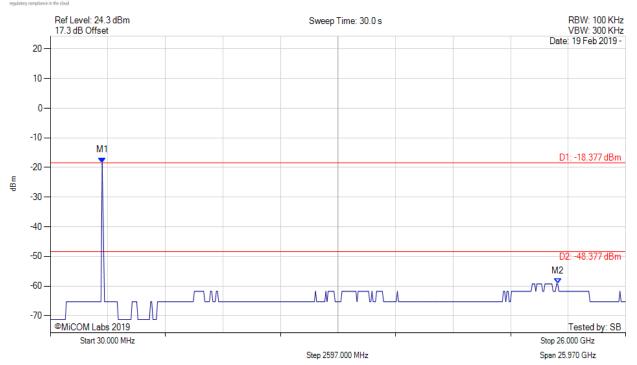
To: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -16.217 dBm	Limit: -46.22 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.224 dBm	Margin: -12.00 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

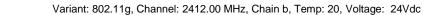

back to matrix

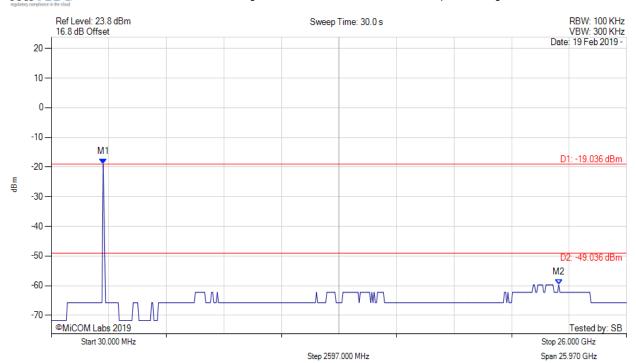

Issue Date: 10th April 2019 **Page:** 132 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -18.377 dBm	Limit: -48.38 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.224 dBm	Margin: -10.84 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix

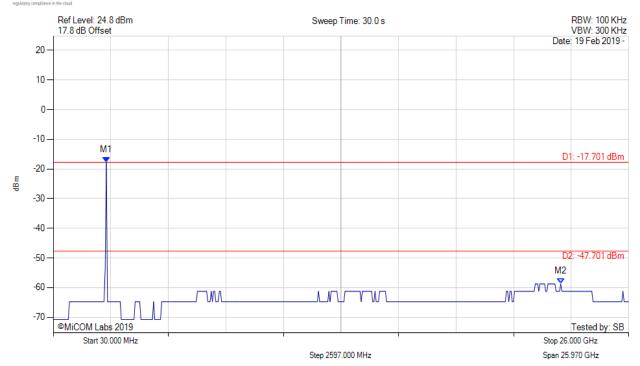

Issue Date: 10th April 2019 **Page:** 133 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -19.036 dBm	Limit: -49.04 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.724 dBm	Margin: -10.68 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

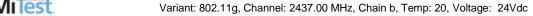
back to matrix

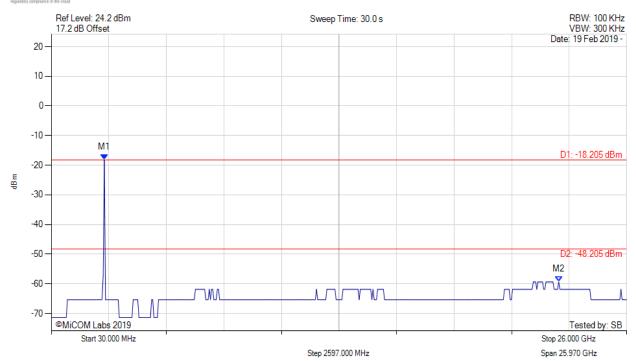

Issue Date: 10th April 2019 **Page:** 134 of 178

MIKO81-U13 Rev A Serial #:

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.701 dBm	Limit: -47.70 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.724 dBm	Margin: -11.02 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

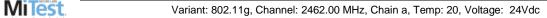

back to matrix

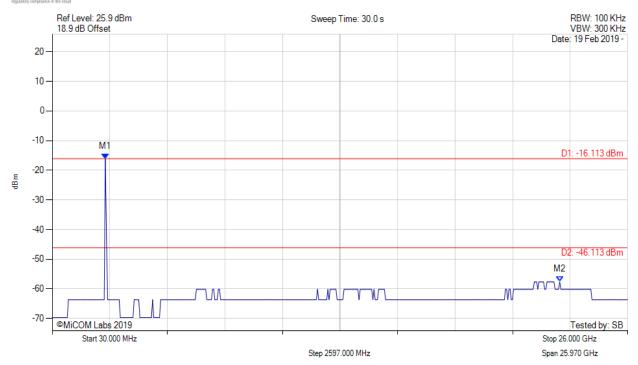

Issue Date: 10th April 2019 Page:

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVERAGE	M1: 2424.028 MHz: -18.205 dBm	Limit: -48.21 dBm	
Sweep Count = 0	M2: 22.929 GHz: -59.324 dBm	Margin: -11.11 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

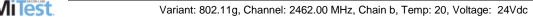

back to matrix

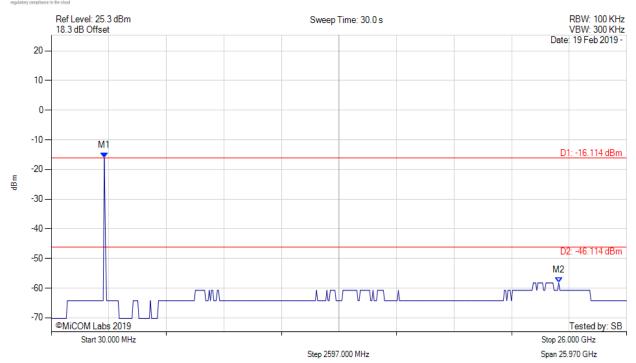

Issue Date: 10th April 2019 **Page:** 136 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -16.113 dBm	Limit: -46.11 dBm
Sweep Count = 0	M2: 22.929 GHz: -57.624 dBm	Margin: -11.51 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix

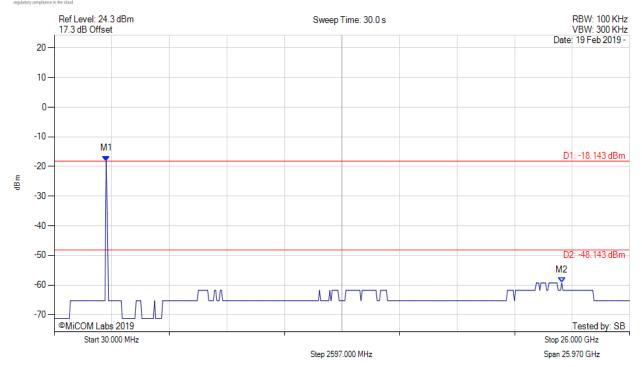

Issue Date: 10th April 2019 **Page:** 137 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -16.114 dBm	Limit: -46.11 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.224 dBm	Margin: -12.11 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 138 of 178

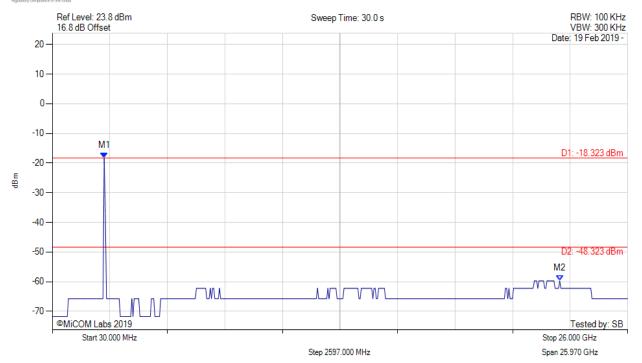
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2371.984 MHz: -18.143 dBm	Limit: -48.14 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.224 dBm	Margin: -11.08 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 139 of 178

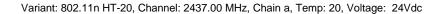


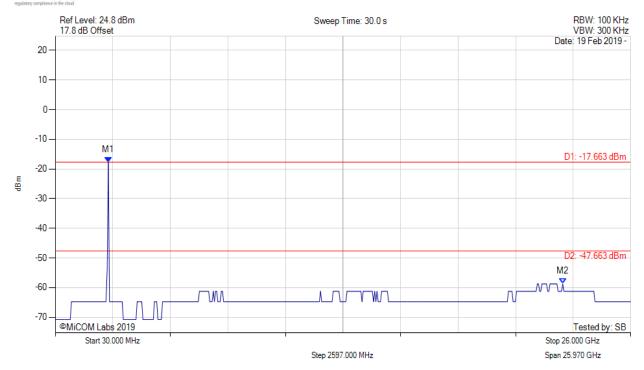
MIKO81-U13 Rev A Serial #:

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: 802.11n HT-20, Channel: 2412.00 MHz, Chain b, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results	
Detector = AVERAGE	M1: 2371.984 MHz: -18.323 dBm	Limit: -48.32 dBm	
Sweep Count = 0	M2: 22.929 GHz: -59.724 dBm	Margin: -11.40 dB	
RF Atten (dB) = 20			
Trace Mode = VIEW			

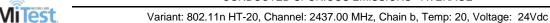

back to matrix

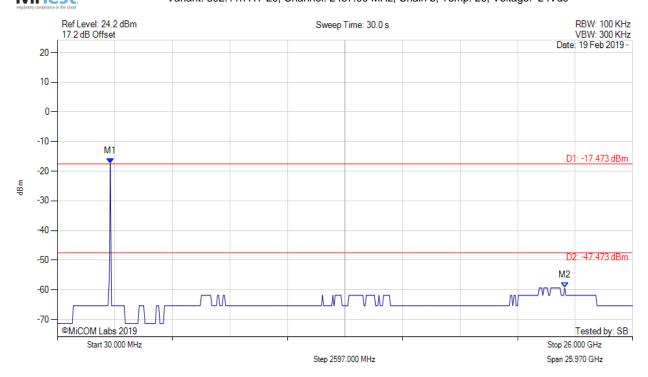

Issue Date: 10th April 2019 Page: 140 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.663 dBm	Limit: -47.66 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.724 dBm	Margin: -11.06 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 141 of 178

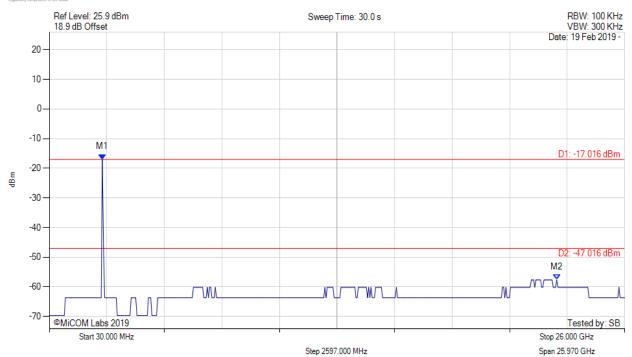
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.473 dBm	Limit: -47.47 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.324 dBm	Margin: -11.85 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 142 of 178

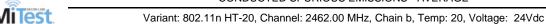


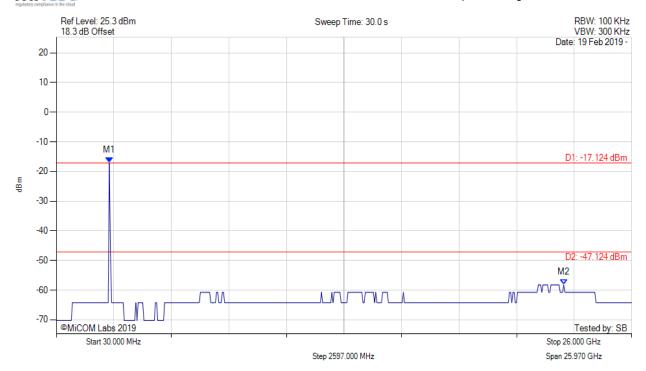
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: 802.11n HT-20, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.016 dBm	Limit: -47.02 dBm
Sweep Count = 0	M2: 22.929 GHz: -57.624 dBm	Margin: -10.60 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

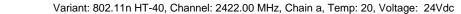

back to matrix

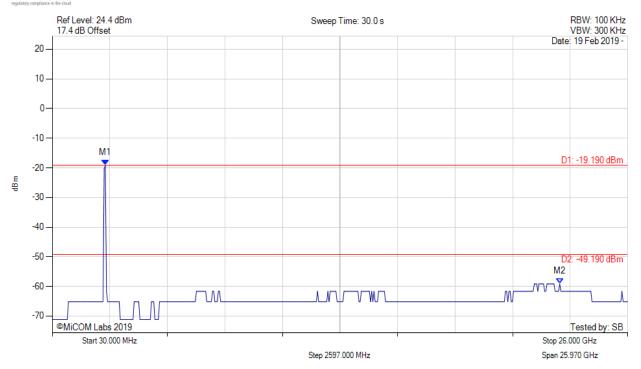

Issue Date: 10th April 2019 **Page:** 143 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -17.124 dBm	Limit: -47.12 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.224 dBm	Margin: -11.10 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		


back to matrix

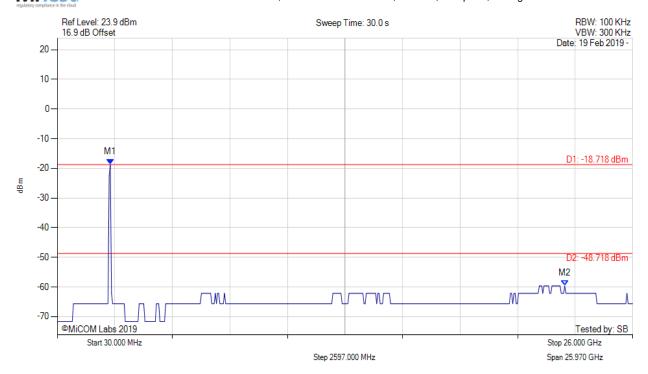

Issue Date: 10th April 2019 **Page:** 144 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -19.190 dBm	Limit: -49.19 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.124 dBm	Margin: -9.93 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 145 of 178

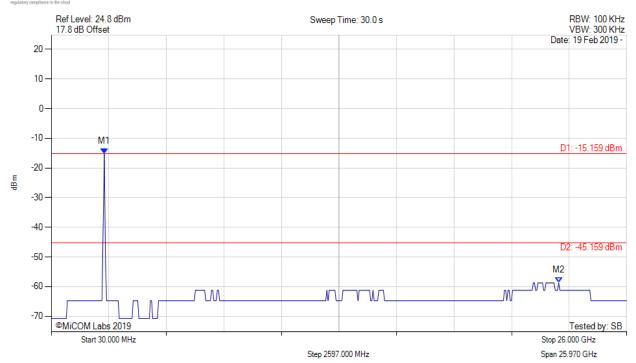
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -18.718 dBm	Limit: -48.72 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.624 dBm	Margin: -10.90 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 146 of 178



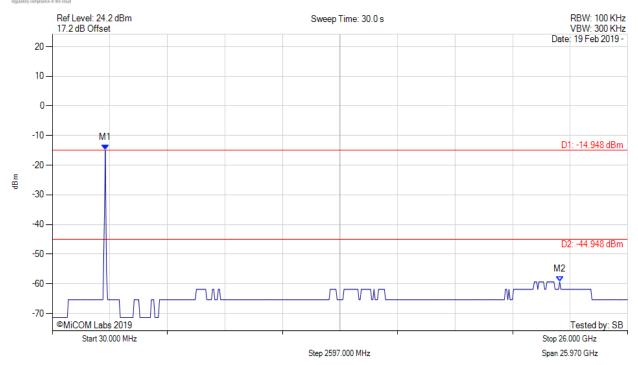
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: 802.11n HT-40, Channel: 2437.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -15.159 dBm	Limit: -45.16 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.724 dBm	Margin: -13.56 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page**: 147 of 178

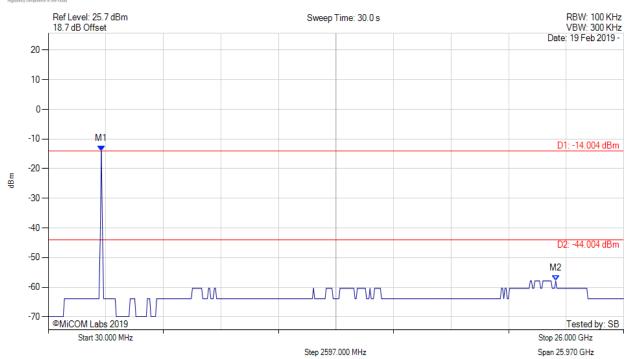
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -14.948 dBm	Limit: -44.95 dBm
Sweep Count = 0	M2: 22.929 GHz: -59.324 dBm	Margin: -14.37 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 148 of 178



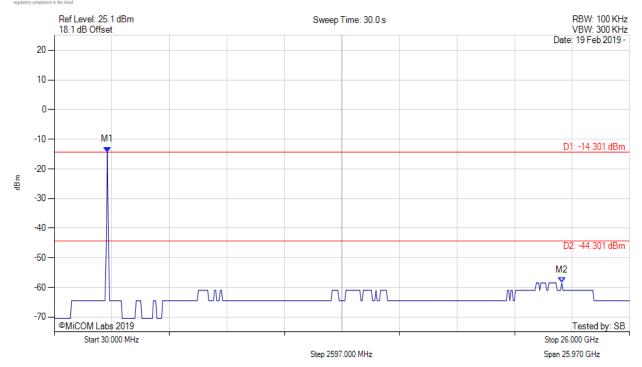
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -14.004 dBm	Limit: -44.00 dBm
Sweep Count = 0	M2: 22.929 GHz: -57.824 dBm	Margin: -13.82 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix

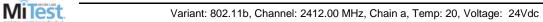

Issue Date: 10th April 2019 **Page:** 149 of 178

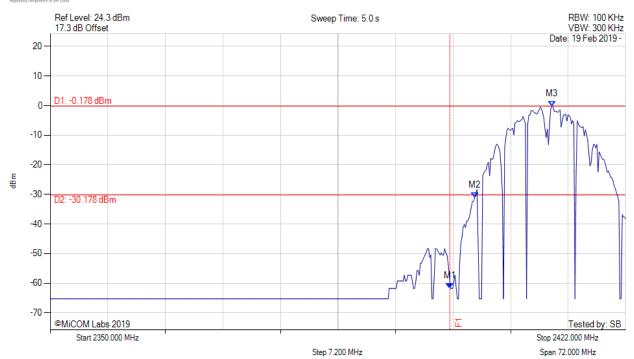
Serial #: MIKO81-U13 Rev A

CONDUCTED SPURIOUS EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2424.028 MHz: -14.301 dBm	Limit: -44.30 dBm
Sweep Count = 0	M2: 22.929 GHz: -58.424 dBm	Margin: -14.12 dB
RF Atten (dB) = 20		
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 150 of 178

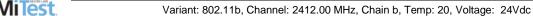


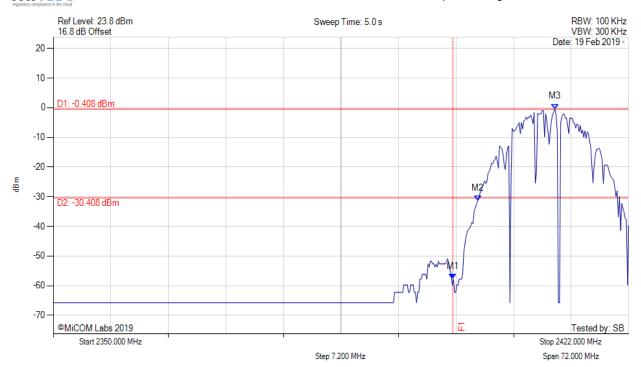
Serial #: MIKO81-U13 Rev A

A.3.1.2. Conducted Band-Edge Emissions

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
	M1 : 2400.000 MHz : -61.723 dBm M2 : 2403.098 MHz : -31.179 dBm	Channel Frequency: 2412.00 MHz
RF Atten (dB) = 20 Trace Mode = VIEW	M3 : 2412.766 MHz : -0.178 dBm	


back to matrix


Issue Date: 10th April 2019 **Page:** 151 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -57.786 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2: 2403.098 MHz: -31.425 dBm	
RF Atten (dB) = 20	M3: 2412.766 MHz: -0.408 dBm	
Trace Mode = VIEW		

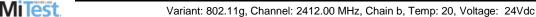
back to matrix

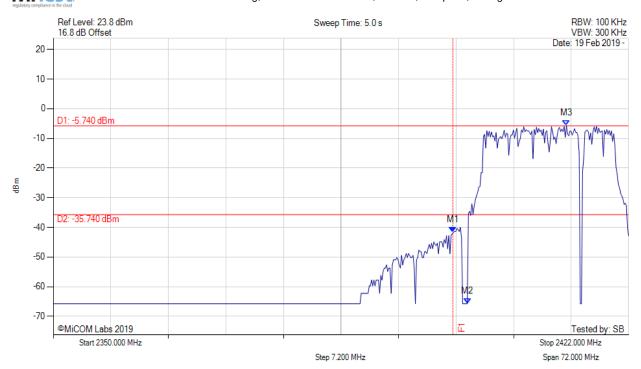

Issue Date: 10th April 2019 **Page:** 152 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -39.444 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2: 2400.934 MHz: -38.010 dBm	
RF Atten (dB) = 20	M3: 2414.208 MHz: -5.782 dBm	
Trace Mode = VIEW		

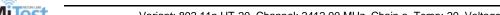

back to matrix

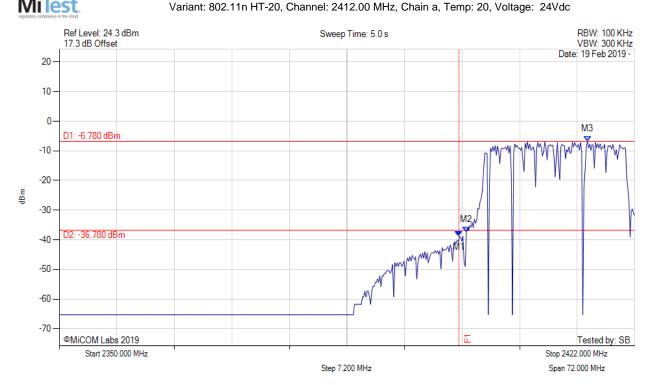

Issue Date: 10th April 2019 **Page:** 153 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -41.662 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2: 2401.800 MHz: -65.745 dBm	
RF Atten (dB) = 20	M3: 2414.208 MHz: -5.740 dBm	
Trace Mode = VIEW		


back to matrix

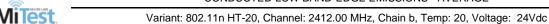

Issue Date: 10th April 2019 **Page:** 154 of 178

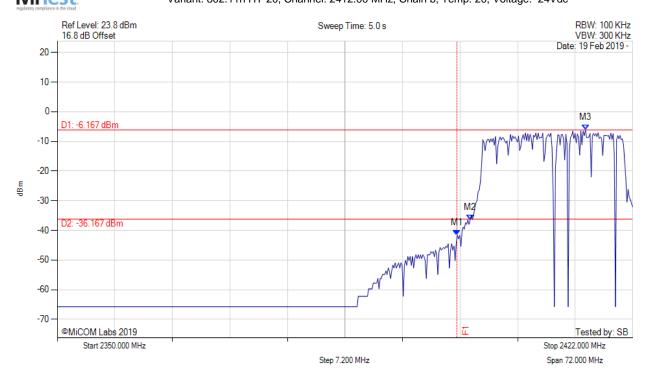
Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -38.800 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2: 2400.934 MHz: -37.461 dBm	
RF Atten (dB) = 20	M3: 2416.084 MHz: -6.780 dBm	
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 155 of 178

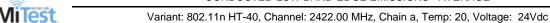


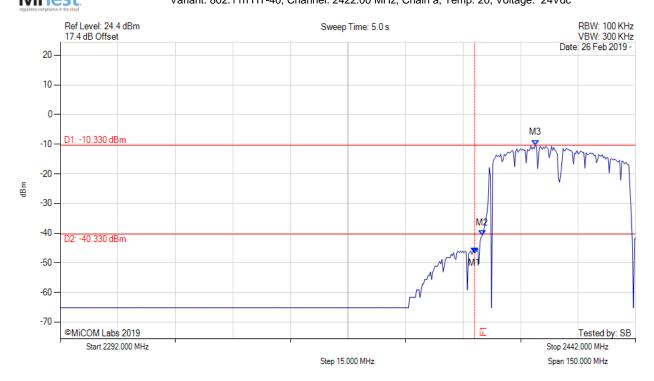
10. 100 13.247 & 10 13ED NO

Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -41.662 dBm	Channel Frequency: 2412.00 MHz
Sweep Count = 0	M2: 2401.655 MHz: -36.497 dBm	
RF Atten (dB) = 20	M3: 2416.084 MHz: -6.167 dBm	
Trace Mode = VIEW		

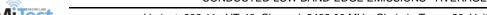

back to matrix

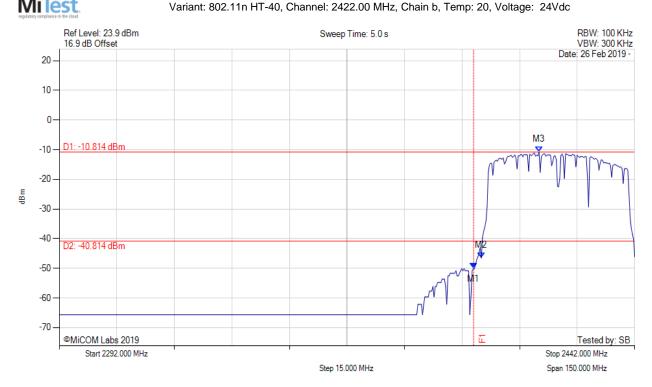

Issue Date: 10th April 2019 **Page:** 156 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -46.556 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2: 2402.020 MHz: -40.795 dBm	
RF Atten (dB) = 20	M3: 2415.848 MHz: -10.330 dBm	
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019 **Page:** 157 of 178

Serial #: MIKO81-U13 Rev A

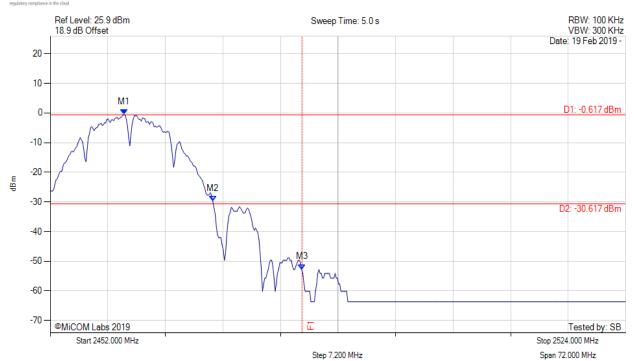
CONDUCTED LOW BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2400.000 MHz: -50.082 dBm	Channel Frequency: 2422.00 MHz
Sweep Count = 0	M2: 2402.020 MHz: -46.560 dBm	
RF Atten (dB) = 20	M3: 2417.050 MHz: -10.814 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 158 of 178



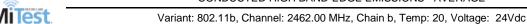

Title: MikroTik RBwAPGR-5HacD2HnD-US

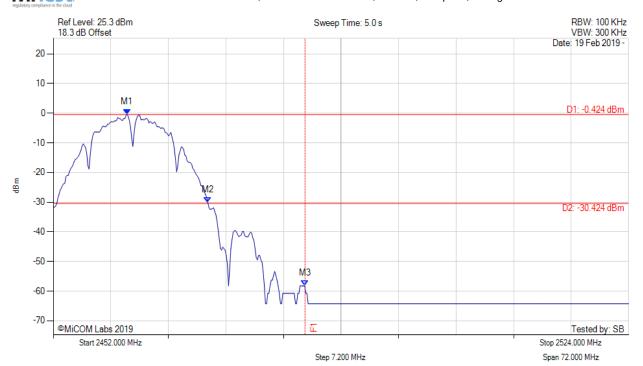
FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2461.234 MHz: -0.617 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2472.345 MHz: -29.841 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -52.763 dBm	
Trace Mode = VIEW		


back to matrix


Issue Date: 10th April 2019

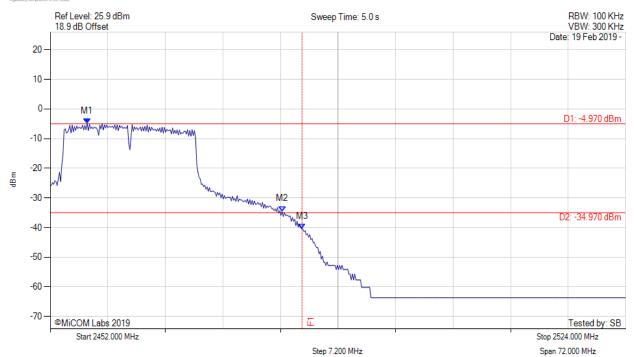
Serial #: MIKO81-U13 Rev A

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2461.234 MHz: -0.424 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2471.335 MHz: -30.093 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -58.224 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 160 of 178

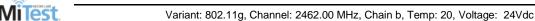


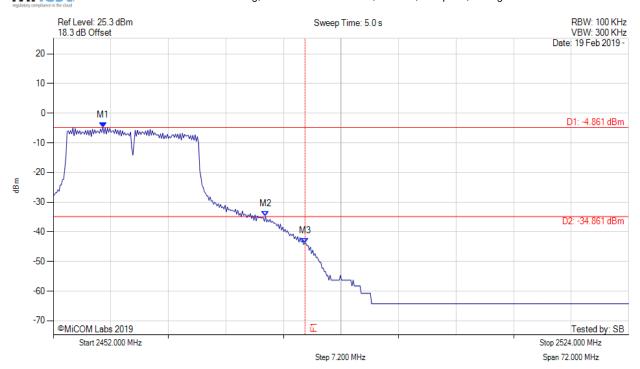
Serial #: MIKO81-U13 Rev A

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Variant: 802.11g, Channel: 2462.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2456.617 MHz: -4.970 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2481.002 MHz: -34.548 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -40.417 dBm	
Trace Mode = VIEW		


back to matrix

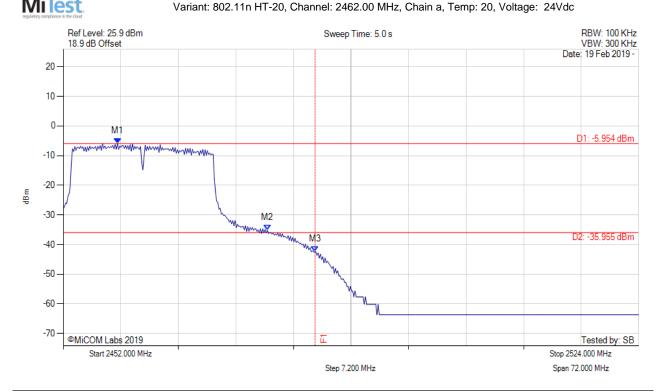

Issue Date: 10th April 2019 **Page:** 161 of 178

Serial #: MIKO81-U13 Rev A

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2458.204 MHz: -4.861 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2478.549 MHz: -34.848 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -43.821 dBm	
Trace Mode = VIEW		

back to matrix


Issue Date: 10th April 2019 **Page:** 162 of 178

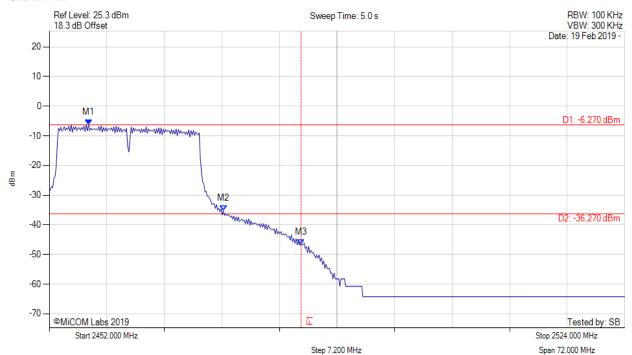
Serial #: MIKO81-U13 Rev A

CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2458.782 MHz: -5.954 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2477.539 MHz: -35.180 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -42.431 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 163 of 178



Serial #: MIKO81-U13 Rev A

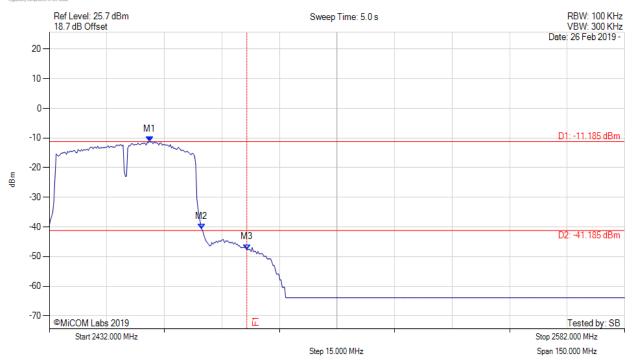
CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Variant: 802.11n HT-20, Channel: 2462.00 MHz, Chain b, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2456.906 MHz: -6.270 dBm	Channel Frequency: 2462.00 MHz
Sweep Count = 0	M2: 2473.788 MHz: -35.302 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -46.744 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 164 of 178



Serial #: MIKO81-U13 Rev A

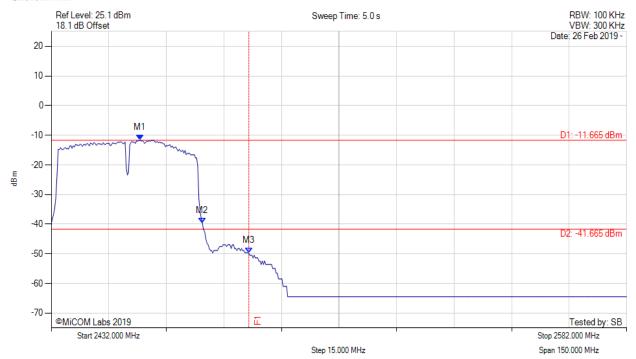
CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain a, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2458.152 MHz: -11.185 dBm	Channel Frequency: 2452.00 MHz
Sweep Count = 0	M2: 2471.679 MHz: -40.617 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -47.586 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 165 of 178



Serial #: MIKO81-U13 Rev A

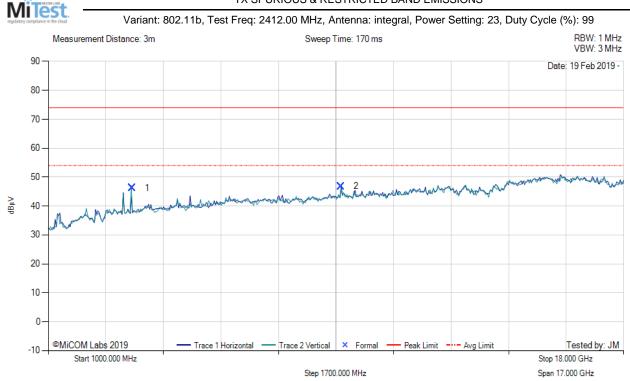
CONDUCTED HIGH BAND-EDGE EMISSIONS - AVERAGE

Variant: 802.11n HT-40, Channel: 2452.00 MHz, Chain b, Temp: 20, Voltage: 24Vdc

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = AVERAGE	M1: 2455.146 MHz: -11.665 dBm	Channel Frequency: 2452.00 MHz
Sweep Count = 0	M2 : 2471.379 MHz : -39.584 dBm	
RF Atten (dB) = 20	M3: 2483.500 MHz: -49.637 dBm	
Trace Mode = VIEW		

back to matrix

Issue Date: 10th April 2019 **Page:** 166 of 178



Serial #: MIKO81-U13 Rev A

A.3.2. Radiated Emissions

A.3.2.3. TX Spurious & Restricted Band Emissions

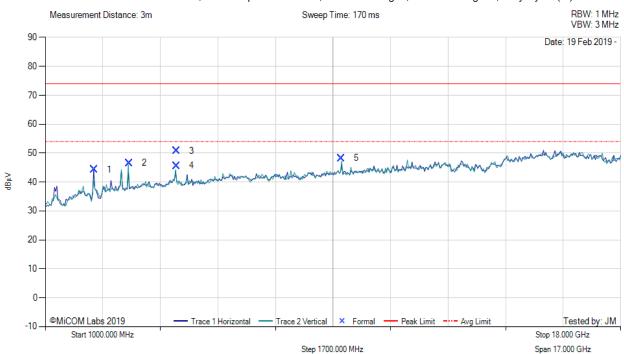
TX SPURIOUS & RESTRICTED BAND EMISSIONS

	1000.00 - 18000.00 MHz												
N	lum	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	3473.34	60.29	-2.12	-12.02	46.15	Peak (NRB)	Vertical	151	0			Pass
	2	9648.01	56.82	-3.77	-6.20	46.85	Peak (NRB)	Horizontal	151	0			Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 **Page:** 167 of 178


MiTes

Title: MikroTik RBwAPGR-5HacD2HnD-US **To:** FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

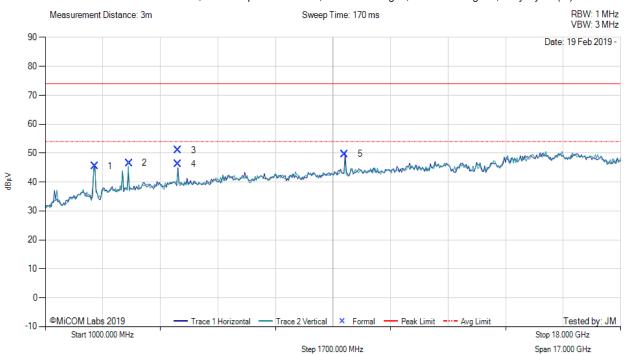
TX SPURIOUS & RESTRICTED BAND EMISSIONS

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2438.08	58.14	-1.78	-12.10	44.26	Fundamental	Horizontal	100	0			
2	3473.25	60.68	-2.12	-12.02	46.54	Peak (NRB)	Vertical	200	0			Pass
3	4874.00	65.91	-2.51	-12.61	50.79	Max Peak	Vertical	168	33	74.0	-23.2	Pass
4	4874.00	60.71	-2.51	-12.61	45.59	Max Avg	Vertical	168	33	54.0	-8.4	Pass
5	9747.98	57.99	-3.76	-6.02	48.21	Peak (NRB)	Vertical	200	0			Pass

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 **Page:** 168 of 178



MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

MIKO81-U13 Rev A Serial #:

TX SPURIOUS & RESTRICTED BAND EMISSIONS

	1000.00 - 18000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2463.55	59.27	-1.79	-11.96	45.52	Fundamental	Horizontal	200	231		-				
2	3473.35	60.70	-2.12	-12.02	46.56	Peak (NRB)	Vertical	200	164			Pass			
3	4924.00	65.87	-2.56	-12.35	50.96	Max Peak	Horizontal	197	353	74.0	-23.0	Pass			
4	4924.00	61.14	-2.56	-12.35	46.23	Max Avg	Horizontal	197	353	54.0	-7.8	Pass			
5	9847.88	59.96	-3.97	-6.33	49.66	Peak (NRB)	Horizontal	200	0			Pass			

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 Page: 169 of 178

MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Span 112.000 MHz

MIKO81-U13 Rev A Serial #:

A.3.2.4. Restricted Edge & Band-Edge Emissions

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

	2310.00 - 2422.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2390.00	6.99	-1.77	31.96	37.18	Max Avg	Horizontal	187	294	54.0	-16.8	Pass			
2	2390.00	20.24	-1.77	31.96	50.43	Max Peak	Horizontal	187	294	74.0	-23.6	Pass			
3	2390.00					Restricted- Band									

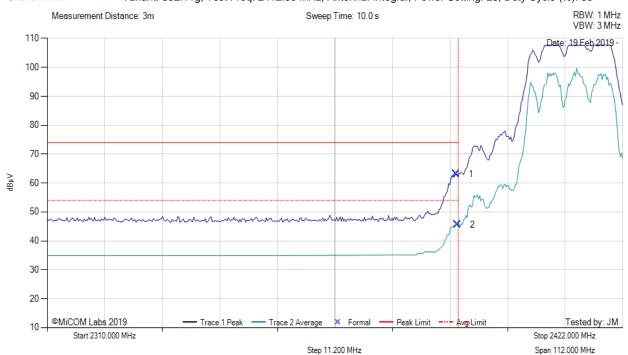
Step 11.200 MHz

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 Page: 170 of 178

Title: MikroTik RBwAPGR-5HacD2HnD-US


Fo: FCC 15.247 & IC ISED RSS-247

Serial #: MIKO81-U13 Rev A

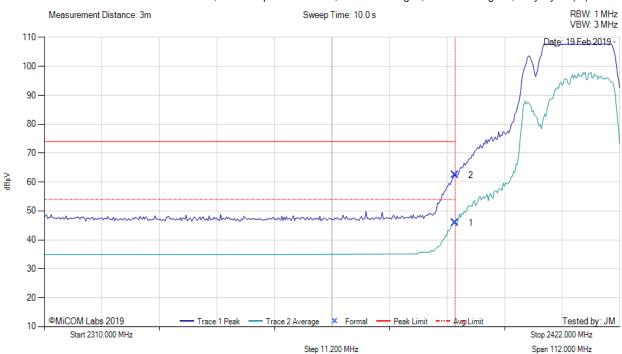
RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

Variant: 802.11g, Test Freq: 2412.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99

	2310.00 - 2422.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2389.55	32.90	-1.77	31.96	63.09	Max Peak	Horizontal	187	294	74.0	-10.9	Pass			
2	2389.78	15.45	-1.77	31.96	45.64	Max Avg	Horizontal	187	294	54.0	-8.4	Pass			
3	2390.00					Restricted- Band									

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix


Issue Date: 10th April 2019 **Page:** 171 of 178

Serial #: MIKO81-U13 Rev A

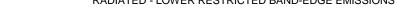
RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

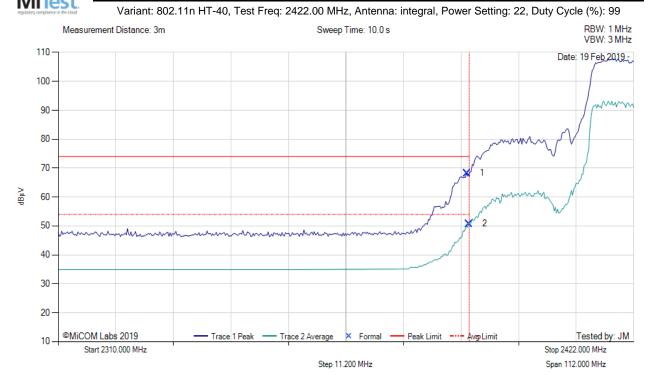
Variant: 802.11n HT-20, Test Freq: 2412.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99

	2310.00 - 2422.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2390.00	15.62	-1.77	31.96	45.81	Max Avg	Horizontal	187	294	54.0	-8.2	Pass			
2	2390.00	32.24	-1.77	31.96	62.43	Max Peak	Horizontal	187	294	74.0	-11.6	Pass			
3	2390.00					Restricted- Band									

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix


Issue Date: 10th April 2019 **Page:** 172 of 178



MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

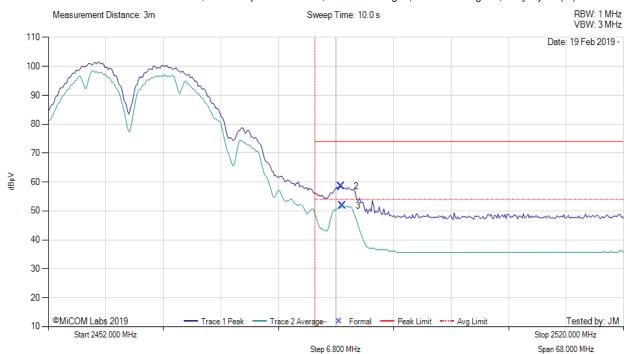
MIKO81-U13 Rev A Serial #:

RADIATED - LOWER RESTRICTED BAND-EDGE EMISSIONS

	2310.00 - 2422.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2389.55	38.02	-1.77	31.96	68.21	Max Peak	Horizontal	187	294	74.0	-5.8	Pass			
2	2390.00	20.61	-1.77	31.96	50.80	Max Avg	Horizontal	187	294	54.0	-3.2	Pass			
3	2390.00					Restricted- Band									

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix


Issue Date: 10th April 2019 Page: 173 of 178

Serial #: MIKO81-U13 Rev A

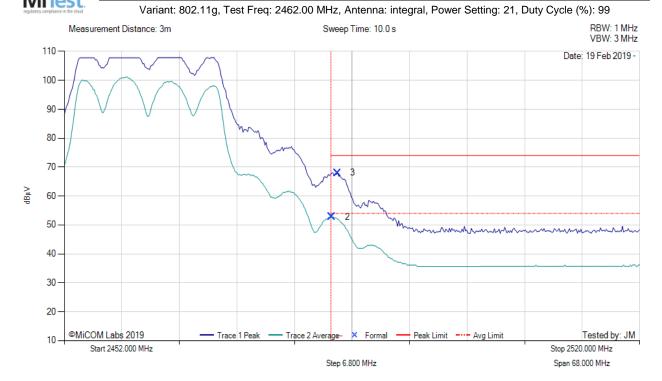
RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Variant: 802.11b, Test Freq: 2462.00 MHz, Antenna: integral, Power Setting: 23, Duty Cycle (%): 99

	2452.00 - 2520.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
2	2486.61	28.00	-1.78	32.33	58.55	Max Peak	Horizontal	100	332	74.0	-15.5	Pass			
3	2486.77	21.25	-1.78	32.33	51.80	Max Avg	Horizontal	100	332	54.0	-2.2	Pass			
1	2483.50					Restricted- Band									

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix


Issue Date: 10th April 2019 **Page:** 174 of 178

Serial #: MIKO81-U13 Rev A

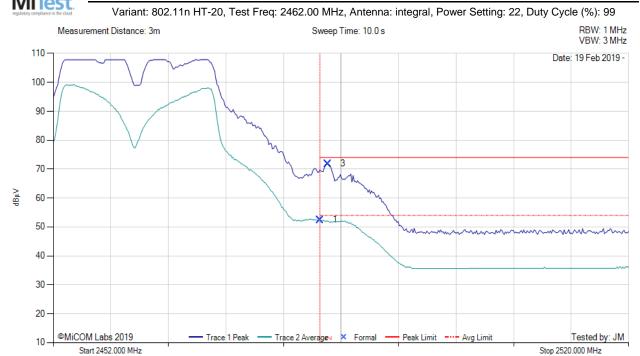
RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

	2452.00 - 2520.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
2	2483.64	22.20	-1.78	32.33	52.75	Max Avg	Horizontal	100	332	54.0	-1.3	Pass			
3	2484.30	37.50	-1.78	32.33	68.05	Max Peak	Horizontal	100	332	74.0	-6.0	Pass			
1	2483.50					Restricted- Band									

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 **Page:** 175 of 178



MikroTik RBwAPGR-5HacD2HnD-US FCC 15.247 & IC ISED RSS-247

Span 68.000 MHz

MIKO81-U13 Rev A Serial #:

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

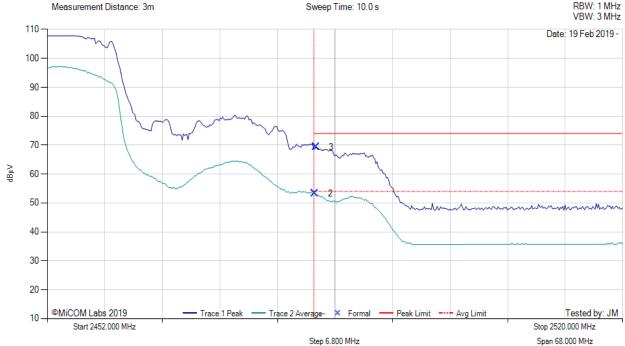
	2452.00 - 2520.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	2483.50	21.89	-1.78	32.33	52.44	Max Avg	Horizontal	100	332	54.0	-1.6	Pass			
3	2484.43	41.30	-1.78	32.33	71.85	Max Peak	Horizontal	100	332	74.0	-2.2	Pass			
2	2483.50					Restricted- Band									

Step 6.800 MHz

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 Page: 176 of 178



MikroTik RBwAPGR-5HacD2HnD-US

FCC 15.247 & IC ISED RSS-247 MIKO81-U13 Rev A Serial #:

RADIATED - UPPER RESTRICTED BAND-EDGE EMISSIONS

Variant: 802.11n HT-40, Test Freq: 2452.00 MHz, Antenna: integral, Power Setting: 21, Duty Cycle (%): 99 Sweep Time: 10.0 s RBW: 1 MHz

					2452	2.00 - 2520.00 M	Hz							
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
2	2483.64	22.72	-1.78	32.33	53.27	Max Avg	Horizontal	100	332	54.0	-0.7	Pass		
3	2483.77	38.74	-1.78	32.33	69.29	Max Peak	Horizontal	100	332	74.0	-4.7	Pass		
1	2483.50					Restricted- Band								

Test Notes: EUT powered by POE, connected to laptop outside chamber

back to matrix

Issue Date: 10th April 2019 Page: 177 of 178

575 Boulder Court
Pleasanton, California 94566, USA
Tel: +1 (925) 462 0304
Fax: +1 (925) 462 0306
www.micomlabs.com