APPENDIX 3

FUNCTION OF DEVICES 21-1825

Reference	Type	<u>Function</u>
Q112 Q113 Q108B Q108A Q106	2SC4226 2SK508 UPA801T UPA801T NE5500179	Buffer VCO Buffer Driver Final Amplifier
IC102 IC307 IC302 IC303	M64082 MC68HC05L1 NJM3403 NJM3403	PLL CPU 300 Hz High Pass Mike Amp/Limiter/ L.P. Filter

FUNCTION OF DEVICES FCC ID: AAO2101825

APPENDIX 3

A. INTRODUCTION

The following data are submitted in connection with this request for type certification of the 21-1825 transceiver in accordance with Part 2, Subpart J of the FCC Rules.

The 21-1825 is a portable, battery operated, UHF, frequency modulated transceiver intended for 12.5 kHz channel family radio service applications in the 462.5625-467.7125 MHz band. It operates from a nominal 4.5 Vdc battery supply. Output power rating is 0.3 watts ERP.

- B. GENERAL INFORMATION REQUIRED FOR TYPE ACCEPTANCE (Paragraph 2.983 of the Rules)
 - 1. Name of applicant: Radio Shack, a Div. of Tandy Corp.
 - Identification of equipment: FCC ID: AAO2101825
 - a. The equipment identification label is shown in Appendix 1.
 - b. Photographs of the equipment are included in Appendix 2.
 - 3. Quantity production is planned.
 - 4. Technical description:
 - a. 11k0F3E emission
 - b. Frequency range: 462.5625 467.7125 MHz.
 - C. Operating power of transmitter is fixed at the factory 0.3 W ERP.
 - d. Maximum power permitted is 0.5 watts, and the 21-1825 fully complied with that power limitation.
 - e. The dc voltage and dc currents at final amplifier:

Collector voltage: 4.4 Vdc Collector current: 0.2 A

- f. Function of each active semiconductor device: See Appendix 3.
- g. Complete circuit diagram is included in Appendix 4.
- h. A draft instruction book is submitted as Appendix 5.
- i. The transmitter tune-up procedure is included in Appendix 6.
- j. A description of circuits for stabilizing frequency is included in Appendix 7.
- k. A description of circuits and devices employed for suppression of spurious radiation and for limiting modulation is included in Appendix 8.
- 1. Not applicable.
- 5. Data for 2.985 through 2.997 follow this section.

C. RF Power Output (Paragraph 2.985(a) of the Rules)

The 21-1825 has a permanently attached built-in antenna without provisions for a coaxial connector.

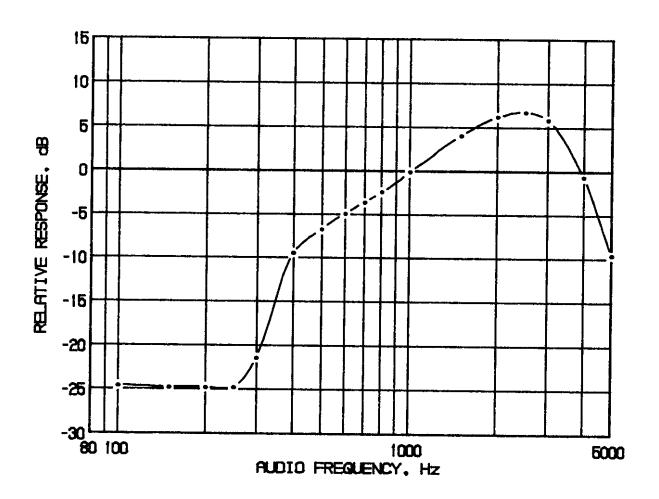
Therefore RF power output was calculated as shown in Table 1. (The transmitter was tuned by the factory according to the procedure of Exhibit 4.)

TABLE 1

Operating Freq., MHz

Power watts into a dipole antenna

462.5625


0.29

D. MODULATION CHARACTERISTICS

- 1. A curve showing frequency response of the transmitter is shown in Figure 1. Reference level was audio signal output from a Boonton 8220 modulation meter with one kHz deviation. Audio output was measured with a Audio Precision System One integrated test system.
- 2. Modulation limiting curves are shown in Figure 2, using a Boonton 8220 modulation meter. Signal level was established with a Audio Precision System One integrated test system. The curves show compliance with paragraphs 2.987(b).
- 3. Figure 3 is a graph of the post-limiter low pass filter which provides a roll-off of 60Logf/3 dB where f is audio frequency in kHz. Measurements were made following EIA RS-152B with an Audio Precision System One integrated test system on the Boonton 8220 modulation meter audio output.
- 4. Occupied Bandwidth
 (Paragraphs 2.989(c) of the Rules)

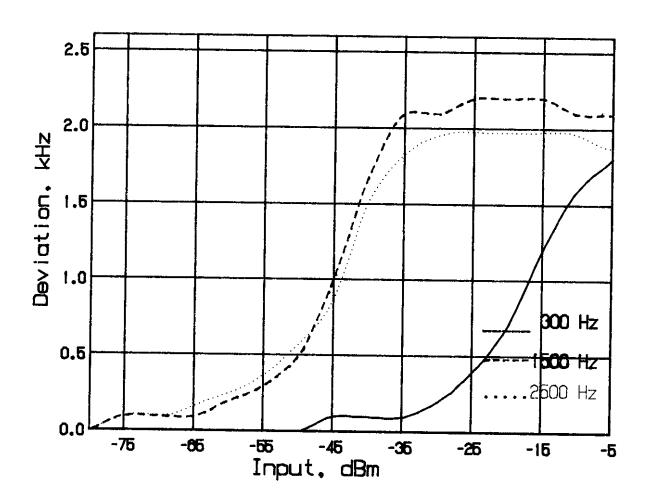

Figure 4 is a plot of the sideband envelope of the transmitter output taken with a Tektronix 494P spectrum analyzer. Modulation corresponded to conditions of 2.989(c)(1) and consisted of 2500 Hz tone at an input level 16 dB greater than that necessary to produce 50% modulation at 2926 Hz, the frequency of maximum response. Measured modulation under these conditions was 2.0 kHz.

FIGURE 1
MODULATION FREQUENCY RESPONSE

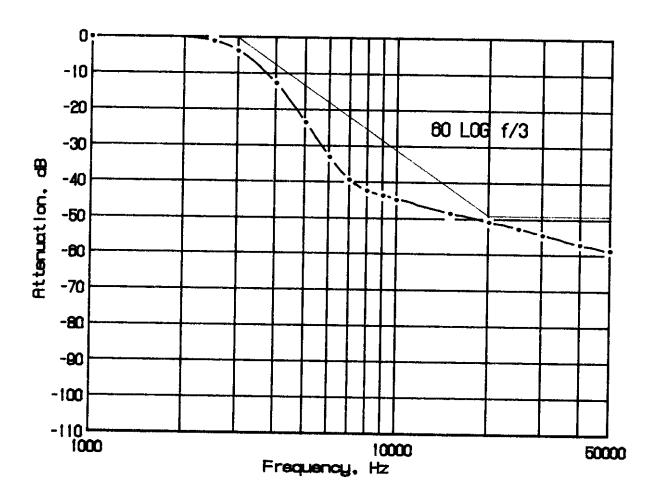

MODULATION FREQUENCY RESPONSE FCC ID: AAO2101825

FIGURE 2
AUDIO LIMITER CHARACTERISTICS

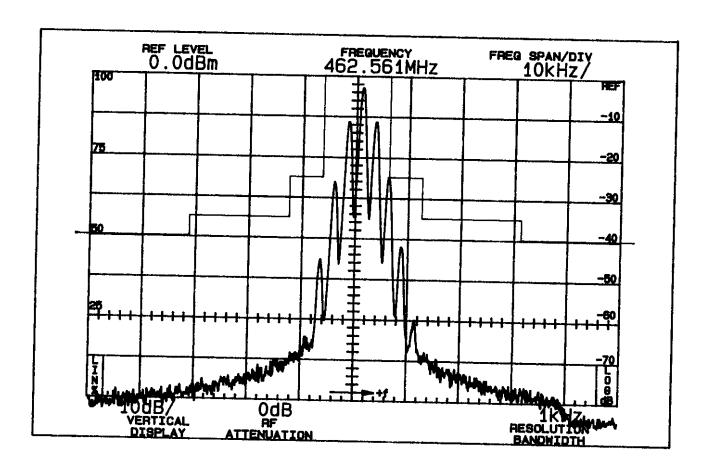

AUDIO LIMITER CHARACTERISTICS FCC ID: AAO2101825

FIGURE 3
AUDIO LOW PASS FILTER RESPONSE

AUDIO LOW PASS FILTER RESPONSE FCC ID: AAO2101825

FIGURE 4
OCCUPIED BANDWIDTH

ATTENUATION IN dB BELOW MEAN OUTPUT POWER Required

On any frequency more than 50% up to and including 100% of the authorized bandwidth, 12.5 kHz (6.25-12.5 kHz)

On any frequency more than 100%, up to and including 250% of the authorized bandwidth (12.5-31.25 kHz)

On any frequency removed from the assigned frequency by more than 250% of the authorized bandwidth (over 31.25 kHz) 25

35

43+10LogP = 38(P = 0.29W)

OCCUPIED BANDWIDTH FCC ID: AAO2101825

D. MODULATION CHARACTERISTICS (Continued)

The plots are within FCC limits. The horizontal scale (frequency) is 10 kHz per division and the vertical scale (amplitude) is a logarithmic presentation equal to 10 dB per division.

E. SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS (Paragraph 2.991 of the Rules)

The 21-1825 has a permanently attached antenna. There is no connector for an external antenna. Therefore, no antenna terminal conducted measurements were made.

F. DESCRIPTION OF RADIATED SPURIOUS MEASUREMENT FACILITIES

A description of the Hyak Laboratories' radiation test facility is a matter of record with the FCC. The facility was accepted for radiation measurements from 25 to 1000 MHz on October 1, 1976 and is currently listed as an accepted site.

G. FIELD STRENGTH MEASUREMENTS OF SPURIOUS RADIATION

Field intensity measurements of radiated spurious emissions from the Radio Shack 21-1825 were made with a Tektronix 494P spectrum analyzer using Singer DM-105 dipoles for the measurements to 1 GHz, and Polard CA-L and CA-S horns to 4.8 GHz.

The transmitter was located in an open field 3 meters from the test antenna. Supply voltage was a power supply with a terminal voltage under load of 4.5 Vdc.

The transmitter and test antennae were arranged to maximize pickup. Both vertical and horizontal test antenna polarization were employed.

The measurement system was capable of detecting signals 100 dB or more below the reference level. Measurements were made from the lowest frequency generated within the unit (21.25 MHz), to 10 times operating frequency. Data after application of antenna factors and line loss corrections are shown in Table 3.

TABLE 3
TRANSMITTER CABINET RADIATED SPURIOUS
462.5625 MHz, 4.5 Vdc, 0.29 watts

Emission Frequency MHz	Radiated Field uV/m @ 3M	dB Below Carrier <u>Reference</u> 1
462.563	1257476.9	0.0
925.128	1473.5	58,6V
1387.690	370.1	70.6V
1850.252	129.4	79.7V
2312.814	115.2	80.8H
2775.374	120.3	80.4H
3237.936	267.5	73.4H
3700.498	130.7	79.7H
4163.070	154.1	78.2V
4625.640	134.9	79.4V

Required: 43+10 Log(P) = 38

All other spurious from 21.25 MHz to the tenth harmonic were 20 dB or more below FCC limit.

ERP Calculation:

$$P = (FI*d)^{2}/49.2$$
$$= \frac{(1.257477x3)}{49.2}$$

= 0.29W Assuming ideal dipole

¹Worst-case polarization, H-Horizontal, V-Vertical.

^{*}Reference data only, more than 20 dB below FCC limit.

H. FREQUENCY STABILITY (Paragraph 2.995(a)(2))

Measurement of frequency stability versus temperature was made at temperatures from -30°C to $+50^{\circ}\text{C}$. At each temperature, the unit was exposed to test chamber ambient a minimum of 60 minutes after indicated chamber temperature ambient had stabilized to within $\pm 2^{\circ}$ of the desired test temperature. Following the 1 hour soak at each temperature, the unit was turned on, keyed and frequency measured within 2 minutes. Test temperature was sequenced in the order shown in Table 4, starting with -30°C .

A Thermotron S1.2 temperature chamber was used. Temperature was monitored with a Keithley 871 digital thermometer. The transmitter output stage was terminated in a dummy load. Primary supply was 4.5 volts. Frequency was measured with a HP 5385A frequency counter connected to the transmitter through a power attenuator. Measurements were made at 462.5625 MHz. No transient keying effects were observed.

TABLE 4
FREQUENCY STABILITY AS A FUNCTION OF TEMPERATURE

462.5625 MHz, 4.5 Vdc, 0.29W

Temperature, OC	Output Frequency, MHz	P.P.M.
-20.9 - 9.8 0.2 10.4 19.8 30.6 40.2 50.5	462.562667 462.562947 462.563231 462.563144 462.562789 462.562748 462.562738 462.562838	0.4 1.0 1.6 1.4 0.6 0.5 0.5
Maximum frequency err	or: 462.563231 462.562500 + .000731 MHz	

FCC Rule 95.627(b) specifies .00025% (2.5 P.P.M.) or a maximum of \pm 0.001156 MHz, which corresponds to:

High Limit Low Limit	462.563656	
DOW DIMIC	462.561344	MHZ

I. FREQUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE (Paragraph 2.995(d)(2) of the Rules)

Oscillator frequency as a function of power supply voltage was measured with a HP 5385A frequency counter as supply voltage provided by an HP 6264B variable dc power supply was varied from $\pm 15\%$ above the nominal 4.5 volt rating to below the battery end point. A Fluke 197 digital voltmeter was used to measure supply voltage at transmitter primary input terminals. Measurements were made at 20° C ambient.

TABLE 5
FREQUENCY STABILITY AS A FUNCTION OF SUPPLY VOLTAGE
462.5625 MHz, 4.5 Vdc Nominal; 0.29W

Supply V	oltage	Output Frequency, MHz	P.P.M
5.17	115%	462.562974	1.0
4.95	110%	462.562909	0.9
4.73	105%	462.562838	0.7
4.50	100%	462.562789	0.6
4.28	95%	462.562756	0.6
4.05	90%	462.562736	0.5
3.83	85%	462.562728	0.5
3.60*	80%	462.562726	-0.3
Maximum	frequency er	ror: 462.562974	
	- •	462.562500	

+ .000474 MHz

FCC Rule 95.627(b) specifies .00025% (2.5 P.P.M) or a maximum of \pm 0.001156 MHz, corresponding to:

High Limit	462.563656 MHz
Low Limit	462.561344 MHz

*Battery end point.