

Test Report

1. Client

· Name: Asterisk, Inc.

• Address: 5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg

201, Osaka, Japan

2. Use of Report: FCC & IC Approval

3. Sample Description

Product Name : AsReader DOCK-Type RFID

• Model Name : ASR-X3XD

4. Date of Receipt : 2022-07-15

5. Date of Test: 2022-09-08 ~ 2022-09-14

6. Test Method: FCC Part 15 Subpart C 15.247

RSS-247 Issue 2(2017-02), RSS-GEN Issue 5(2019-03)

7. Test Results: Refer to the test results

This test report must not be reproduced or reproduced in any way.

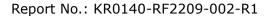
The results shown in this test report are the results of testing the samples provided.

This test report is prepared according to the requirements of ISO / IEC 17025.

Affirmation

Tested by

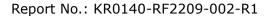
Dae-Seong, Choi


Technical Manager

Yong-Min, Won

Oct 14, 2022

EMC Labs Co., Ltd.



Contents

1.	Applicant & Manufacturer & Test Laboratory Information	4
2.	Equipment under Test(EUT) Information······	5
3.	Test Summary·····	6
4.	Used equipment on test·····	7
5.	Antenna Requirement·····	8
6.	TX Radiated Spurious Emission and Conducted Spurious Emission	9
7.	Conducted Emission·····	18
	APPENDIX	
APP	ENDIX I TEST SETUP······	22
APP	FNDIX II UNCERTAINTY······	24

Version

TEST REPORT NO.	DATE	DESCRIPTION
KR0140-RF2209-002	Sep 14, 2022	Initial Issue
KR0140-RF2209-002-R1	Oct 14, 2022	Changed the FCC ID and IC

1. Applicant & Manufacturer & Test Laboratory Information

1.1 Applicant Information

Applicant	Asterisk, Inc.		
Applicant Address 5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainich Osaka, Japan			
Contact Person	Naoki Kumamoto		
Telephone No.	+81-50-5536-1185		
Fax No.	+81-6-6886-1114		
E-mail	nkumamoto@asx.co.jp		

1.2. Manufacturer Information

Manufacturer	Asterisk Inc.		
Manufacturer Address	5-6-16 Nishinakajima, Yodogawa-ku, Shin-Osaka Dainichi Bldg 201,		
Manufacturer Address	Osaka, Japan		

1.3 Test Laboratory Information

To real advantage members			
Laboratory	EMC Labs Co., Ltd.		
Applicant Address	100, Jangjateo-ro, Hobeop-myeon, Icheon-si, Gyeonggi-do, Republic of		
	Korea		
Contact Person	Yongmin Won		
Telephone No.	+82-2-508-7778		
Fax No.	+82-2-538-3668		
FCC Designation No.	KR0140		
FCC Registration No.	58000		
IC Site Registration No.	28751		

2. Equipment under Test(EUT) Information

2.1 General Information

Product Name AsReader DOCK-Type RFID	
Model Name ASR-X3XD	
FCC ID	2AJXE-ASR-X3XX
IC	22976-ASRX3XX
Power Supply	DC 3.7V

2.2 Additional Information

Operating Frequency	2 402 MHz ~ 2 480 MHz
Number of channel	40
Modulation Type GFSK	
Antenna Type	Printed Trace Antenna
Antenna Gain	-2.5 dBi
Firmware Version	1.0
Hardware Version	1.0
Test software	nrfconnect v3.11.1

2.3 Test Frequency

Test mode	Test Frequency (MHz)		
	Low Frequency	Middle Frequency	High Frequency
BLE	2 402	2 442	2 480

2.4 Used Test Software Setting Value

Test Mode	Setting Item	
	Power	
BLE	7	

2.5 Mode of operation during the test

- The EUT continuous transmission mode during the test with set at Low Channel, Middle Channel, and High Channel. To get a maximum radiated emission levels from the EUT, the EUT was moved throughout the XY, YZ, XZ planes.

2.6 Modifications of EUT

- None

3. Test Summary

Applied	FCC Rule	IC Rule	Test Items	Test Condition	Result
	15.203	-	Antenna Requirement		С
	15.247(a)	RSS-247 (5.2)	6 dB Bandwidth		NT ^{note2}
	_	RSS GEN (6.7)	Occupied Bandwidth (99%)	0	NT ^{note2}
	15.247(b)	RSS-247 (5.4)	Maximum Peak Output Power	Conducted	NT ^{note2}
	15.247(e)	RSS-247 (5.2)	Peak Power Spectral Density		NT ^{note2}
	15.247(d)	RSS-247 (5.5)	Conducted Spurious Emission	rious Emission	
	15.247(d) 15.205 & 15.209	RSS-247 (5.5) RSS-GEN (8.9 & 8.10)	Radiated Spurious Emission	Radiated	С
	15.207	RSS-GEN (8.8)	Conducted Emissions	AC Line Conducted	С

Note 1: C=Complies NC=Not Complies NT=Not Tested NA=Not Applicable

Note 2: The test is not performed because it was tested on the certified RF module(M/N: MBN52832).

Refer to the test report of module for the detailed results. (Test Report No.: AT72126480-1C1)

The sample was tested according to the following specification: ANSI C63.10:2013.

 $\label{lem:compliance} Compliance \ was \ determined \ by \ specification \ limits \ of \ the \ applicable \ standard \ according \ to \ customer \ requirements.$

4. Used equipment on test

Description	Manufacturer	Model Name	Serial Name	Next Cal.
TEMP & HUMID CHAMBER	JFM	JFMA-001	20200929-01	2022.12.17
CONTROLLER	AMWON TECHNOLOGY	TEMI2500	S7800VK191 0707	2022.12.17
PSA SERIES SPECTRUM ANALYZER	AGILENT	E4440A	MY45304057	2022.12.15
MXG ANALOG SIGNAL GENERATOR	AGILENT	N5183A	MY50141890	2022.12.15
SYSTEM DC POWER SUPPLY	AGILENT	6674A	MY53000118	2022.12.15
VECTOR SIGNAL GENERATOR	ROHDE & SCHWARZ	SMBV100A	257524	2022.12.15
BLUETOOTH TESTER	TESCOM	TC-3000A	3000A480088	2022.12.15
DIRECTIONAL COUPLER	AGILENT	773D	2839A01855	2022.12.15
ATTENUATOR	AGILENT	8493C	73193	2022.12.15
ATTENUATOR	ACE RF COMM	ATT SMA 20W 20dB 8GHz	A-0820.SM20.2	2023.04.11
TERMINATIOM	HEWLETT PACKARD	909D	07492	2022.12.15
POWER DIVIDER	HEWLETT PACKARD	11636A	06916	2022.12.15
SLIDE-AC	DAEKWANG TECH	SV-1023	-	-
DIGITAL MULTIMETER	HUMANTECHSTORE	15B+	50561541WS	2022.12.15
ACTIVE LOOP ANTENNA	TESEQ	HLA 6121	55685	2022.12.30
Biconilog ANT	Schwarzbeck	VULB 9160	3260	2023.02.03
Biconilog ANT	Schwarzbeck	VULB9168	902	2023.01.14
Horn Ant.	Schwarzbeck	BBHA9120D	974	2023.01.08
Horn Ant.	S/B	BBHA9120D	1497	2023.01.25
Amplifier	TESTEK	TK-PA18H	200104-L	2023.03.17
EMI TEST RECEIVER	ROHDE& SCHWARZ	ESW44	101952	2023.04.07
PROGRAMMABLE DC POWER SUPPLY	ODA	OPE-305Q	oda-01-09-23-1831	2023.01.10
DC POWER SUPPLY	AGILENT	E3634A	MY40012120	2023.02.03
POWER SENSOR	AGILENT	U2001H	MY51140028	2023.02.19
Test Receiver	ROHDE & SCHWARZ	ESR7	101616	2023.06.28
LISN	ROHDE & SCHWARZ	ENV216	100409	2023.01.10
PULSE LIMITER	lignex1	EPL-30	NONE	2023.01.24

5. Antenna Requirement

According to §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to §15.247(b)(4) e conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1 Result

Complies

(The transmitter has a Printed Trace Antenna. The directional peak gain of the antenna is -2.5 dBi.)

6. TX Radiated Spurious Emission and Conducted Spurious Emission

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional

radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 ~ 0.110	16.42 ~ 16.423	399.90 ~ 410	4.5 ~ 5.15
0.495 ~ 0.505	16.69475 ~ 16.69525	608 ~ 614	5.35 ~ 5.46
2.1735 ~ 2.1905	16.80425 ~ 16.80475	960 ~ 1240	7.25 ~ 7.75
4.125 ~ 4.128	25.5 ~ 25.67	1300 ~ 1427	8.025 ~ 8.5
4.17725 ~ 4.17775	37.5 ~ 38.	1435 ~ 1626.5	9.0 ~ 9.2
4.20725 ~ 4.20775	25 73 ~ 74.6	1645.5 ~ 1646.5	9.3 ~ 9.5
4.17725 ~ 4.17775	74.8 ~ 75.2	1660 ~ 1710	10.6 ~ 12.7
6.215 ~ 6.218	108 ~ 121.94	1718.8 ~ 1722.2	13.25 ~ 13.4
6.26775 ~ 6.26825	149.9 ~ 150.05	2200 ~ 2300	14.47 ~ 14.5
6.31175 ~ 6.31225	156.52475 ~ 156.52525	2310 ~ 2390	15.35 ~ 16.2
8.291 ~ 8.294	156.7 ~ 156.9	2483.5 ~ 2500	17.7 ~ 21.4
8.362 ~ 8.366	162.0125 ~ 167.17	2690 ~ 2900	22.01 ~ 23.12
8.37625 ~ 8.38675	3345.8 ~ 3358	3260 ~ 3267	23.6 ~ 24.0
8.41425 ~ 8.41475	3600 ~ 4400	3332 ~ 3339	31.2 ~ 31.8
12.51975 ~ 12.52025	3345.8 ~ 3358	240 ~ 285	36.43 ~ 36.5
12.57675 ~ 12.57725	3600 ~ 4400	322 ~ 335.4	Above 38.6
13.36 ~ 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

6.3 Test Procedure for Radiated Spurious Emission

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1 GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a Broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.

 (The EUT was pre-tested with three axes (X, Y, Z) and the final test was performed at the worst case.)
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Measurement Instrument Setting

- 1. Frequency Range: Below 1 GHz RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak
- 2. Frequency Range: Above 1 GHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto,

Trace mode = Max Hold until the trace stabilizes

Average Measurement

```
RBW = 1 MHz, VBW = 3 MHz, Detector = RMS (Number of points ≥ 2 x Span / RBW), Trace Mode = Average (Averaging type = power(i.e. RMS)), Sweep Time = Auto, Sweep Count = at least 100 traces
```

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (RMS) mode was used in step 4, then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
- 2) If linear voltage averaging mode was used in step 4, then the applicable correction factor is $20 \log(1/x)$, where x is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

6.4 Test Procedure for Conducted Spurious Emission

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The reference level of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range: 30 MHz ~ 26.5 GHz

RBW = 100 kHz, VBW = 300 kHz, Sweep Time = Auto, Detector = Peak,

Trace = Max Hold

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

6.5 Test Result

9 kHz ~ 25 GHz Data BLE

Low frequency

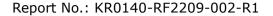
Fraguency	Rea	ding			205	Limits (dBuV/m)		Result (dBuV/m)		Margin (dB)		
Frequency	(dBu	V/m)	Pol. Factor	Factor DCF (dB)								
(MHz)	(MHz) AV / Peak			(db)	(45)	(45)	AV /	Peak	AV /	Peak	AV /	Peak
4 804.06	26.68	36.88	Н	4.30	2.01	54.0	74.0	33.0	41.2	21.0	32.8	

Middle frequency

Croquency.	Rea	ding				Limits (dBuV/m)		Result (dBuV/m)		Margin (dB)	
Frequency	(dBu	V/m)	Pol. Factor (dB)								
(MHz)	AV /	Peak		(45)	(45)	AV /	Peak	AV /	Peak	AV /	Peak
4 884.36	23.92	35.19	Н	4.04	2.01	54.0	74.0	30.0	39.2	24.0	34.8

High frequency

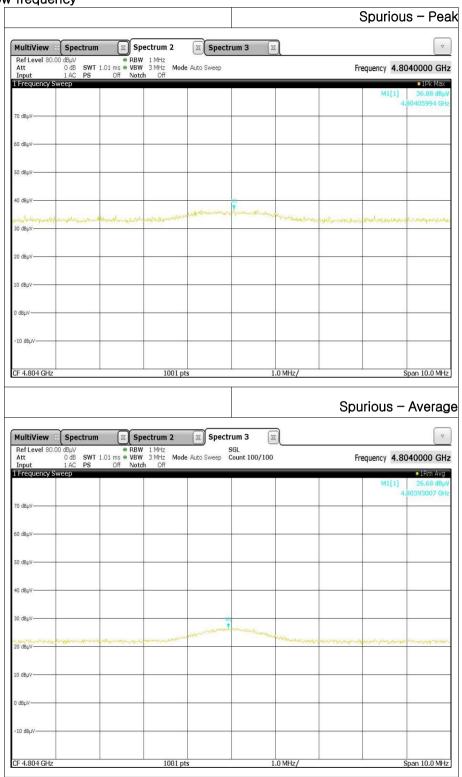
Fraguenay	Rea	ding			205	Limits		Result		Margin			
Frequency	(dBu	V/m)	Pol. (dB)	Pol.	Pol.	Pol. Factor		(dBuV/m)		(dBuV/m)		(dB)	
(MHz)	AV /	Peak		(db)	(45)	(db)		AV /	Peak	AV / Peak		AV / Peak	
2 483.51	18.14	39.07	V	12.21	2.01	54.0	74.0	32.4	51.3	21.6	22.7		
4 960.51	22.63	33.97	Н	4.21	2.01	54.0	74.0	28.9	38.2	25.1	35.8		

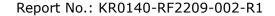

Note 1: The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found above listed frequencies.

Note 2: DCF(Duty Cycle Factor)

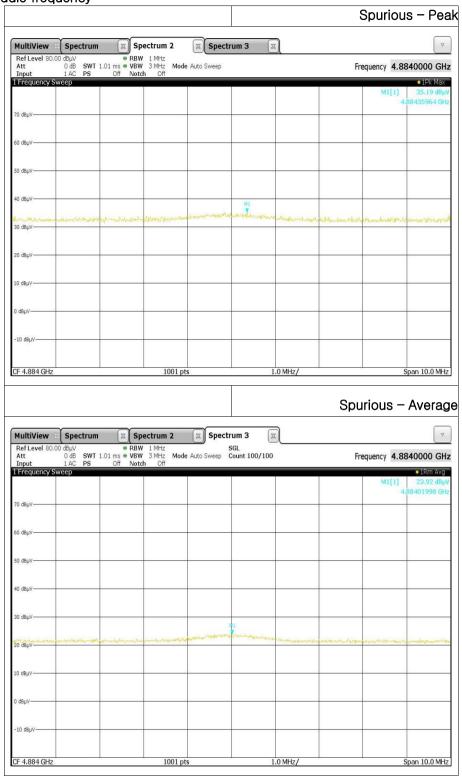
- $T_{on} = 0.393 \text{ ms} / T_{off} = 0.232 \text{ ms}$
- Duty Cycle = T_{on} / $(T_{on}+T_{off})$ = 0.393 / (0.393+0.232) = 0.629
- DCF = $10 \times \log(1/\text{Duty Cycle}) \, dB = 10 \times \log(1/0.629) \, dB = 2.01 \, dB$

Note 3: Sample Calculation.

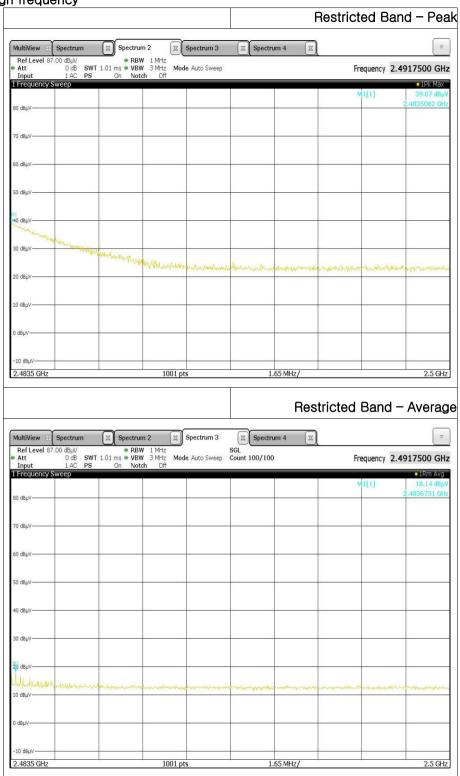

 $\label{eq:margin} \mbox{Margin} = \mbox{Limit} - \mbox{Result} \ \ \, \mbox{Peak Result} = \mbox{Peak Result} = \mbox{Result} = \mbox{Average Result} = \mbox{Average Reading} + \mbox{TF} + \mbox{DCF} \\ \mbox{TF} = \mbox{Ant factor} + \mbox{Cable Loss} + \mbox{Filter Loss} - \mbox{Amp Gain}$

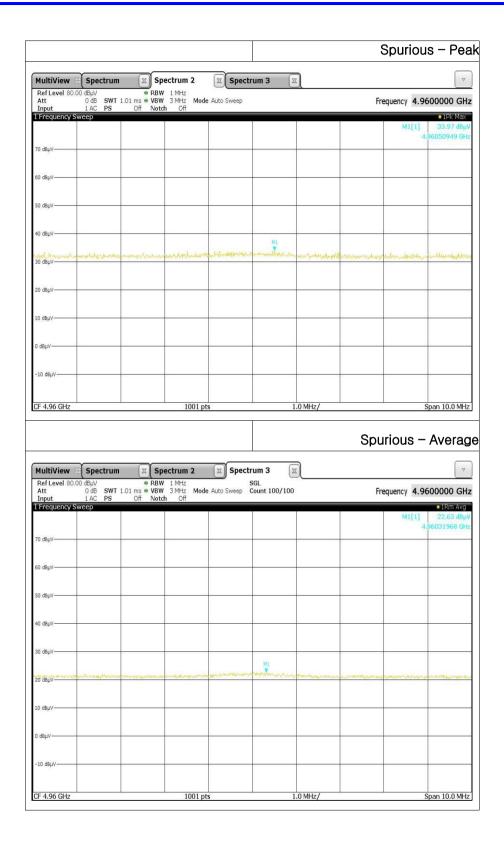


6.6 Test Plot for Radiated Spurious Emission

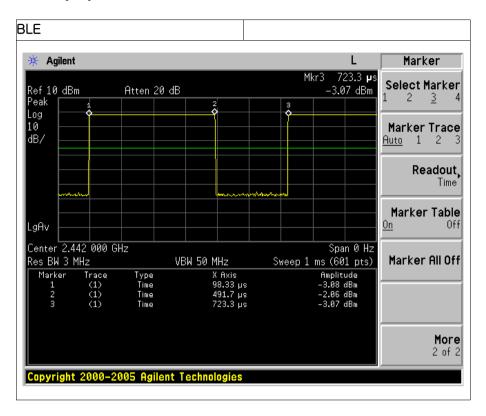

BLE _ Low frequency




BLE _ Middle frequency



BLE _ High frequency



6.7 Test Plot for Duty Cycle

7. Conducted Emission

7.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

7.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

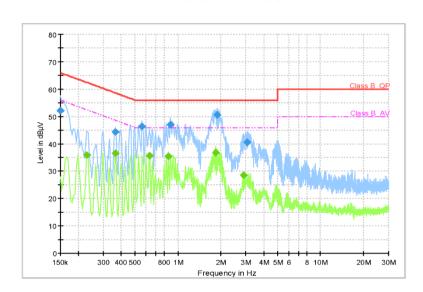
Fraguency Banga (MHz)	Conducted Limit (dBuV)					
Frequency Range (MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

7.3 Test Procedure

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

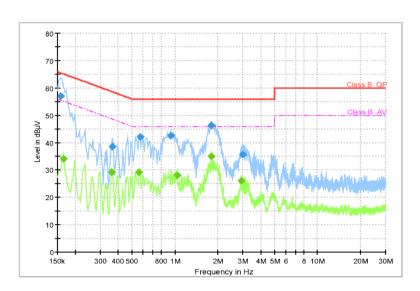


7.4 Test Result

AC Line Conducted Emission (Graph)

BLE_L1

Conducted Emission


Final_Result

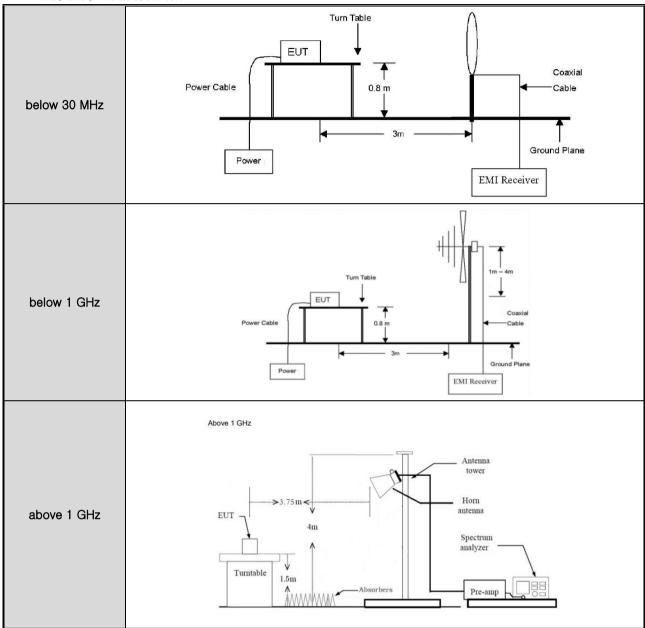
rillai_Res	uit						
Frequency	QuasiPeak	CAverage	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.150	52.16		66.00	13.84	9	L1	19.2
0.230		35.91	52.45	16.54	9	L1	19.3
0.366		36.53	48.59	12.07	9	L1	19.7
0.366	44.25		58.59	14.34	9	L1	19.7
0.560	46.41		56.00	9.59	9	L1	19.8
0.630		35.65	46.00	10.35	9	L1	19.8
0.860		35.47	46.00	10.54	9	L1	19.8
0.890	47.07		56.00	8.93	9	L1	19.7
1.850		36.82	46.00	9.18	9	L1	19.7
1.880	50.60		56.00	5.40	9	L1	19.7
2.890		28.51	46.00	17.49	9	L1	19.7
3.070	40.54		56.00	15.46	9	L1	19.7

BLE_N

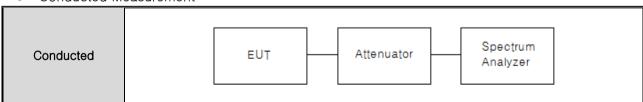
Conducted Emission

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(kHz)		(dB)
0.158	57.14		65.57	8.43	9	N	19.4
0.166		34.15	55.16	21.01	9	N	19.5
0.362		29.23	48.68	19.46	9	N	19.7
0.366	38.55	_	58.59	20.04	9	N	19.7
0.560		29.24	46.00	16.76	9	N	19.8
0.570	42.03		56.00	13.97	9	N	19.8
0.940	42.56		56.00	13.44	9	N	19.7
1.040		28.12	46.00	17.88	9	N	19.7
1.810	46.32		56.00	9.68	9	N	19.7
1.810		35.03	46.00	10.97	9	N	19.7
2.920		26.10	46.00	19.90	9	N	19.7
2.990	35.70	_	56.00	20.30	9	N	19.7



APPENDIX I


TEST SETUP

Radiated Measurement

Conducted Measurement

APPENDIX II

UNCERTAINTY

Measurement Item	Expanded Uncertainty U = &Uc (&=2)
Conducted RF power	0.32 dB
Conducted Spurious Emissions	0.32 dB
Radiated Spurious Emissions	6.34 dB
Conducted Emissions	1.74 dB