

Test report No.: 2430565R-SAUSV01S-A

SAR Test Report (Class II Permissive Change)

Product Name	Intel Wireless 6E AX211
Trademark	tobii dynavox
Model and /or type reference	AX211D2W
Applicant's name / address	Tobii Dynavox LLC 2100 Wharton Street, Suite 400, Pittsburgh PA 15203 United States
Manufacturer´s name	Tobii Dynavox AB
FCC ID	2AAOV-TDI112
Applicable Standard	IEEE 1528-2013 KDB 447498 D01 v06 KDB 865664 D01 v01r04
Test Result	Max. SAR Measurement (1g) 2.4 GHz: 1.100 W/kg 5 GHz: 1.108 W/kg 6 GHz: 0.878 W/kg Max. psPD Measurement (4cm²) 6 GHz: 6.698 W/m²
Verdict Summary	IN COMPLIANCE
Documented By (Senior Project Specialist / April Chen)	April Chen
Tested By (Senior Engineer / Luke Cheng)	April Chen Luke cheng Lan VIN
Approved By (Assistant Manager / San Lin)	San Vin
Date of Receipt	2024/03/19
Date of Issue	2024/08/08
Report Version	V1.0

INDEX

		Page
1.		
	1.1 EUT Description	
	1.2 Antenna List	
	1.3 SAR Test Exclusion Calculation	
	1.4 Test Environment	
	1.5 Measurement procedures	
2.	SAR Measurement System	
	2.1 DASY System Description	
	2.2 Area Scans	
	2.3 DASY E-Field Probe	
	2.4 DATA Acquisition Electronics (DAE) and Measurement Server	14
	2.5 Robot	
	2.6 Device Holder	15
	2.7 Phantom	
3.	Tissue Simulating Liquid	17
	3.1 The composition of the tissue simulating liquid	17
	3.2 Tissue Calibration Result	17
	3.3 Tissue Dielectric Parameters for Phantoms	19
4.	Measurement Procedure	20
	4.1 SAR System Check	20
	4.2 SAR Measurement Procedure	23
5.	RF Exposure Limits	24
6.	Test Equipment List	25
7.	Measurement Uncertainty	27
8.	Conducted Power Measurement (Including tolerance allowed forprod	uction unit) 31
9.	Test Results	
	9.1 Test Results Summary	38
	9.2 Simultaneous Transmission	42
10.	SAR measurement variability	
	Appendix A. System Check Data	
	Appendix B. Highest measurement Data	
	Appendix C. Test Setup Photographs	
	Appendix D. Probe Calibration Data	
	Appendix E. Dipole & Source Calibration	
	Appendix F. Product Photos-Please refer to the file: 2430565R-Product Photos	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Report No.: 2430565R-SAUSV01S-A

Revision History

Report No.	Version	Description	Issued Date
2430565R-SAUSV01S-A	V1.0	Initial issue of report.	2024/08/08

1. General Information

1.1 EUT Description

Product Name	Intel Wireless 6E AX211
Trademark	tobii dynavox
Model and /or type reference	AX211D2W
FCC ID	2AAOV-TDI112
Frequency Range	WLAN 2.4GHz: 2412-2472MHz
	WLAN 5GHz: 5180-5240MHz, 5260-5320MHz, 5500-5720MHz,
	5745-5825MHz, 5845-5885MHz
	WLAN 6GHz: 5955-7115MHz
	BT: 2402-2480MHz
Type of Modulation	802.11b: DSSS
	802.11a/g/n/ac/ax: OFDM, OFDMA
	GFSK(1Mbps) / π /4DQPSK(2Mbps) / 8DPSK(3Mbps)
Antenna Type	PIFA
Device Category	Portable
RF Exposure Environment	Uncontrolled

Summary of test result-Reported 1g SAR (W/Kg)										
Test configuration	DTS	NII	6XD	DSS(BT)						
Standalone	1.100	1.108	0.878	0.096						
Simultaneous	1.692	1.986	1.794	1.986						
Simultaneous	(SPLSR=0.02)	(SPLSR=0.02)								
Summary of test result – Power	er Density									
Test configuration		6>	(D							
APD (W/m²)	5.480									
Reported PD (W/m²)		6.6	98							

Note:

110101									
Host information									
Brand	Product Name	Model No.							
tobii dynavox	Speech Generating Device	TD I-110							

1.2 Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	ARISTOTLE	RFA-27-AP379-4G-175 (Main)	PIFA	2.38 dBi for 2400MHz
				2.19 dBi for 5150~7125MHz
		RFA-27-AP379-4B-95 (Aux)		0.94 dBi for 2400MHz
				2.43 dBi for 5150~7125MHz

Note: The above EUT information by manufacturer.

1.3 SAR Test Exclusion Calculation

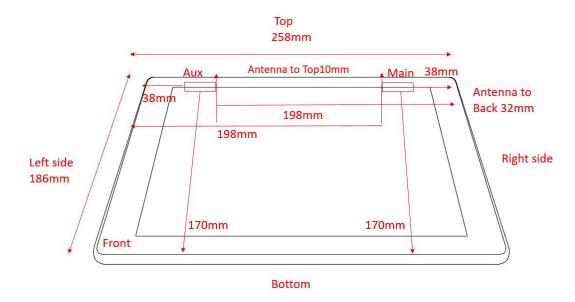
According to KDB Publication 447498 D01, section 4.3.1, per the calculations of item 1 (Power(mW)/separation (mm)*sqrt(f(GHz)≤3.0), SAR is required as shown in the table below where calculated values are greater than 3.0:

SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna < 50mm from the user :

Antenna	Tx	Frequency	Output	Power		Separation distances (mm)					Calculated Threshold Value (≦3.0 SAR is not required)			
		(MHz)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
Main	WiFi	2462	18.5	71	32	38	198	10	170	3.5	2.9	>50mm	11.1	>50mm
Main	WiFi	5240	15	32	32	38	198	10	170	2.3	1.9	>50mm	7.2	>50mm
Main	WiFi	5320	15	32	32	38	198	10	170	2.3	1.9	>50mm	7.3	>50mm
Main	WiFi	5700	15	32	32	38	198	10	170	2.4	2.0	>50mm	7.5	>50mm
Main	WiFi	5825	15	32	32	38	198	10	170	2.4	2.0	>50mm	7.6	>50mm

SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna > 50mm from the user :

		Fraguanay	Output	Power		Separation distances (mm)					Calculated Threshold Value				
Antenna	Tx	Frequency	Output	rowei		Зерагас	ion distanc	es (IIIII)		(SAR test exclusion power,mW)					
		(MHz)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom	
Main	WiFi	2462	18.5	71	32	38	198	10	170	<50mm	<50mm	1575.6	<50mm	1295.6	
Main	WiFi	5240	15	32	32	38	198	10	170	<50mm	<50mm	1545.5	<50mm	1265.5	
Main	WiFi	5320	15	32	32	38	198	10	170	<50mm	<50mm	1545.0	<50mm	1265.0	
Main	WiFi	5700	15	32	32	38	198	10	170	<50mm	<50mm	1542.8	<50mm	1262.8	
Main	WiFi	5825	15	32	32	38	198	10	170	<50mm	<50mm	1542.2	<50mm	1262.2	



SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna < 50mm from the user :

		Fraguenav	Output	Dawar		Separation distances (mm)					Calculated Threshold Value													
Antenna	Tx	Frequency	Output	Power							(≦3.0 SAR is not required)													
					(MHz)	(IVIHZ)	(MHZ)	(IVITZ)	(IVITZ)	(IVII IZ)	(171112)	(12)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
Aux	WiFi	2462	18.5	71	32	198	38	10	170	3.5	>50mm	2.9	11.1	>50mm										
Aux	WiFi	5240	15	32	32	198	38	10	170	2.3	>50mm	1.9	7.2	>50mm										
Aux	WiFi	5320	15	32	32	198	38	10	170	2.3	>50mm	1.9	7.3	>50mm										
Aux	WiFi	5700	15	32	32	198	38	10	170	2.4	>50mm	2.0	7.5	>50mm										
Aux	WiFi	5825	15	32	32	198	38	10	170	2.4	>50mm	2.0	7.6	>50mm										
Aux	вт	2480	10.5	11	32	198	38	10	170	0.6	>50mm	0.5	1.8	>50mm										

SAR exclusion calculations for WiFi-SISO and Bluetooth for antenna > 50mm from the user :

Antenna	Tx	Frequency	Output	Power		Separati	on distanc	es (mm)		Calculated Threshold Value (SAR test exclusion power,mW)				
	(MHz)		dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
Aux	WiFi	2462	18.5	71	32	198	38	10	170	<50mm	1575.6	<50mm	<50mm	1295.6
Aux	WiFi	5240	15	32	32	198	38	10	170	<50mm	1545.5	<50mm	<50mm	1265.5
Aux	WiFi	5320	15	32	32	198	38	10	170	<50mm	1545.0	<50mm	<50mm	1265.0
Aux	WiFi	5700	15	32	32	198	38	10	170	<50mm	1542.8	<50mm	<50mm	1262.8
Aux	WiFi	5825	15	32	32	198	38	10	170	<50mm	1542.2	<50mm	<50mm	1262.2
Aux	ВТ	2480	10.5	11	32	198	38	10	170	<50mm	1575.3	<50mm	<50mm	1295.3

1.4 Test Environment

Ambient conditions in the laboratory:

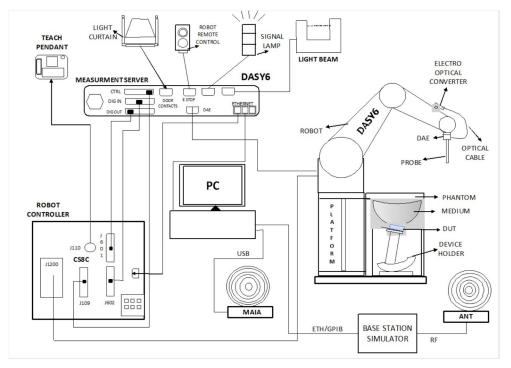
Test Date: 2024/05/12 - 2024/05/23

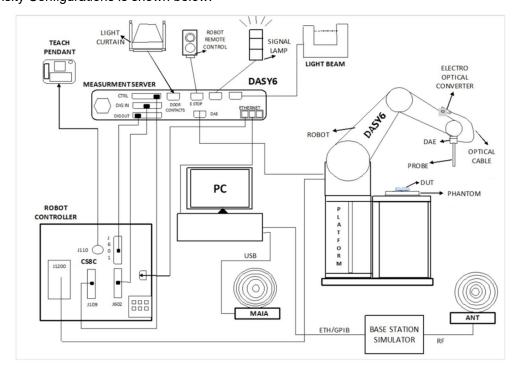
Items	Required	Actual		
Temperature (°C)	18-25	23 ± 2		
Humidity (%RH)	30-70	50 ± 20		

USA	FCC Registration Number: TW0033			
Canada	CAB Identifier Number: TW3023 / Company Number: 26930			
Site Description	Accredited by TAF			
	Accredited Number: 3023			
Test Laboratory	DEKRA Testing and Certification Co., Ltd.			
	Linkou Laboratory			
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C			
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist., Taoyuan City 333411, Taiwan, R.O.C.			
Phone Number	+886-3-275-7255			
Fax Number	+886-3-327-8031			

1.5 Measurement procedures

IEEE 1528-2013
47CFR § 2.1093
KDB 248227 D01 v02r02
KDB 447498 D01 v06
KDB 616217 D04 v01r02
KDB 865664 D01 v01r04
IEC TR 63170:2018


IEC/IEEE 62209-1528:2020


2. SAR Measurement System

2.1 DASY System Description

SAR Configurations is shown below:

Power Density Configurations is shown below:

Page: 10 of 46

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- > The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7/8/10 and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- > The phantom, the device holder and other accessories according to the targeted measurement.

2.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing.

2.2.1 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.2.2 SAR measurement drifts

Before an area scan and after the zoom scan, single point SAR measurements are performed at defined locations to estimate the SAR measurement drift due to device output power variations. If a device is known to drift randomly, additional single point drift reference measurements should be performed at regular intervals throughout the area and zoom scan test durations. The SAR drift shall be kept within ± 5%, whether there are substantial drifts or not. The field difference will be calculated in dB units in the DASY software.

2.2.3 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions.

2.3 DASY E-Field Probe

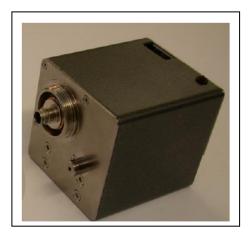
The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards under ISO 17025. The calibration data are in Appendix D.

Isotropic E-Field Probe Specification

Model	Ex3DV4						
Construction	Symmetrical design with triangular core Built-in shielding a	Symmetrical design with triangular core Built-in shielding against static charges					
	PEEK enclosure material (resistant to organic solvents, e.	EEK enclosure material (resistant to organic solvents, e.g., DGBE)					
Frequency	4 MHz – 10 GHz						
	Linearity: ± 0.2 dB (30 MHz to 10 GHz)						
Directivity	± 0.1 dB in TSL (rotation around probe axis)						
	± 0.3 dB in TSL (rotation normal to probe axis)	1					
Dynamic Range	10 μW/g to 100 mW/g						
	Linearity: ± 0.2 dB (noise: typically < 1 μW/g)						
Dimensions	Overall length: 337 mm (Tip: 20 mm)						
	Tip diameter: 2.5 mm (Body: 12 mm)						
	Typical distance from probe tip to dipole centers: 1 mm						
Application	High precision dosimetric measurements in any exposure	scenario (e.g., very strong					
	gradient fields). Only probe which enables compliance test	gradient fields). Only probe which enables compliance testing for frequencies up to 6					
	GHz with precision of better 30%.						

E-Field mm-Wave Probe Specification


Model	EUmmWVx				
Construction	Two dipoles optimally arranged to obtain pseudo-vector information				
	Minimum three measurements/point, 120° rotated around pro	obe axis			
	Sensors (0.8 mm length) printed on glass substrate protected	d by high density foam			
Frequency	750 MHz to 110 GHz				
Dynamic Range	< 20 V/m to 10000 V/m with PRE-10				
	(min < 20 V/m to 2000 V/m)				
Position Precision	< 0.2 mm				
Dimensions	Overall length: 337 mm (tip: 20 mm)				
	Tip diameter: encapsulation 8 mm				
	(internal sensor < 1mm)				
	Distance from probe tip to dipole centers:				
	< 2 mm				
	Sensor displacement to probe's calibration point: < 0.3 mm				
Application	E-field measurements of 5G devices and other mm-wave tran	smitters operating above			
	10GHz in < 2 mm distance from device (free-space)				
	Power density, H-field, and far-field analysis using total field	reconstruction			

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

2.5 Robot

The DASY system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- > High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6 Device Holder

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.7 Phantom

2.7.1 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The device holder positions are adjusted to the standard measurement positions in the three sections. A cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

2.7.2 mmWave Phantom

The mmWave Phantom approximates free-space conditions, allowing to evaluate not only the antenna side of the device but also the front (screen) side or any opposite-radiating side of wireless devices operating above 10 GHz without distorting the RF field. It consists of a 40 mm thick Rohacell plate used as a test bed, which has a loss tangent (tan δ) \leq 0.05 and a relative permittivity (ϵ_r) \leq 1.2. High-performance RF absorbers are placed below the foam.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

beclarable, or mazarabas compon	ento.	
CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using Dielectric Probe Kit and Vector Network Analyzer.

	T:			Relative Permittivity (ɛr)			Conductivity (σ)		
Date	Tissue	Frequency	Management	T	Delta	Manager	Tanat	Delta	Temp.
	Туре	(MHz)	Measured	Target	(%)	Measured	Target	(%)	(°C)
	Head	2450	39.20	39.20	0.00	1.79	1.80	-0.56	
	Head	2412	39.35	39.28	0.18	1.75	1.77	-1.13	
2024/5/22	Head	2437	39.25	39.23	0.05	1.78	1.79	-0.56	22.5
	Head	2441	39.24	39.22	0.05	1.78	1.79	-0.56	
	Head	2462	39.16	39.18	-0.05	1.81	1.81	0.00	
	Head	5250	36.43	35.95	1.34	4.78	4.71	1.49	
	Head	5210	36.54	35.99	1.53	4.72	4.67	1.07	
	Head	5290	36.31	35.91	1.11	4.83	4.75	1.68	
	Head	5600	35.46	35.50	-0.11	5.25	5.07	3.55	
2024/5/23	Head	5530	35.65	35.61	0.11	5.16	5.00	3.20	22.2
2024/3/23	Head	5610	35.46	35.49	-0.08	5.26	5.08	3.54	22.2
	Head	5690	35.22	35.41	-0.54	5.37	5.16	4.07	
	Head	5800	34.91	35.30	-1.10	5.51	5.27	4.55	
	Head	5775	34.98	35.33	-0.99	5.48	5.25	4.38	
	Head	5855	34.76	35.25	-1.39	5.58	5.33	4.69	

Page: 17 of 46

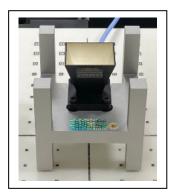
	Tissue Frequency		Relative Permittivity (ɛr)			Conductivity (σ)			Tissue
Date		Frequency (MHz)	Manager	T	Delta	Manager		Delta	Temp.
	Type	(IVITZ)	Measured	Target	(%)	Measured	Target	(%)	(°C)
	Head	6500	35.50	34.50	2.90	6.01	6.07	-0.99	
	Head	6025	35.60	35.07	1.51	5.60	5.51	1.63	
2024/5/12	Head	6185	35.80	34.88	2.64	5.59	5.70	-1.93	22.4
2024/5/12	Head	6505	35.50	34.49	2.92	6.01	6.08	-1.15	22.1
	Head	6825	35.20	34.11	3.20	6.36	6.45	-1.40	
	Head	6985	35.10	33.92	3.48	6.65	6.63	0.30	

3.3 Tissue Dielectric Parameters for Phantoms

The head tissue dielectric parameters recommended by the IEC/IEEE 62209-1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head tissue parameters that have not been specified are interpolated according to the head parameters specified in IEC/IEEE 62209-1528.

Target Frequency	Н	ead
(MHz)	Er	σ (S/m)
450	43.5	0.87
750	41.9	0.89
835	41.5	0.90
900	41.5	0.97
1450	40.5	1.20
1640	40.2	1.31
1750	40.1	1.37
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5000	36.2	4.45
5200	36.0	4.66
5400	35.8	4.86
5600	35.5	5.07
5800	35.3	5.27
6000	35.1	5.48
6500	34.5	6.07
7000	33.9	6.65
7500	33.3	7.24

4. Measurement Procedure


4.1 SAR System Check

4.1.1 Dipoles

The SAR dipoles are optimized symmetrical dipole with λ /4 balun matched to a Flat phantom section filled with tissue simulating liquids. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC signals. They are available for the variety of frequencies between 300MHz and 10 GHz. The provided tripod is used to hold the dipole below the phantom. As the distance between the dipole center and the TSL is critical, a spacer is placed between the dipole and the phantom. The spacing distance is frequency dependent.

4.1.2 Verification Source

The verification sources apply to system check or verification at specific mmWave frequencies. The sources comprisehorn-antennas and very stable signal generators.

4.1.3 SAR System Check Result

- 1. Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %.
- 2. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

-	Input	Measured	Targeted	Normalized	Delta 1g	Measured	Targeted	Normalized	Delta 10g	Tiggue Tomp	
Date	Frequency	Power	1g SAR	1g SAR	1g SAR	±10	10g SAR	10g SAR	10g SAR	±10	Tissue Temp.
(MHz)	(IVITIZ)	(mW)	(W/kg)	(W/kg)	(W/kg)	(%)	(W/kg)	(W/kg)	(W/kg)	(%)	(°C)
2024/5/22	2450	250	13.00	52.40	52	-0.76	6.12	24.60	24.48	-0.49	22.5
2024/5/23	5250	100	7.91	78.10	79.1	1.28	2.27	22.40	22.7	1.34	22.2
2024/5/23	5600	100	7.99	82.30	79.9	-2.92	2.30	23.50	23	-2.13	22.2
2024/5/23	5800	100	8.27	80.20	82.7	3.12	2.35	22.80	23.5	3.07	22.2
2024/5/12	6500	100	29.20	294.00	292	-0.68	5.60	53.90	56	3.90	22.1

4.1.4 Power Density System Check Result

The system performance check verifies that the system operates within its specifications.

The system check is successful if the difference between the normalized measured local power density and the numerically validated target value is within the reported expanded uncertainty of the measurement system.

The recommended settings for measurement of verification sources are listed in the following:

Frequency (GHz)	Grid step	Grid extent X/Y (mm)	Measurement points
10	0.125 (λ/8)	60 / 60	18 x 18

According to the DASY specification in the user's manual and SPEAG's recommendation, the deviation threshold of ± 0.66 dB represents the expanded standard uncertainty for system performance check. The system check is successful if the measured results are within ± 0.66 dB tolerances to the target value shown in the calibration certificate of the verification source.

	Frequency	Distance	Input	Measured	Targeted	Deviation	Measured	Targeted	Deviation
Date (GHz)	(mm)	Power (mW)	Avg 1 cm ² (W/m ²)	Avg 1 cm ² (W/m ²)	(dB)	Avg 4 cm ² (W/m ²)	Avg 4 cm ² (W/m ²)	(dB)	
2024/5/13	10	10	132	234.7	237.00	0.15	185.7	187.00	0.16

Note: The Measured Avg PD was the average of psPDn+, psPDtot+ and psPDmod+, which refers to the demonstration from calibration certificate.

4.2 SAR Measurement Procedure

The Dasy calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

E:RMS electric field strength (V/m)

The SAR / APD measurements for the EUT should be performed on the channel that produces the highest rated output power of each transmitting antenna.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR / APD distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR / APD location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. RF Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, RSS-102 Issue 6, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg
Power density ¹	1 mW/cm ²

Note: $1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last Calibration	Next Calibration
Reference Dipole 2450MHz	Speag	D2450V2	930	2022/11/21	2025/11/20
Reference Dipole 5GHz	Speag	D5GHzV2	1321	2024/03/12	2027/03/11
Reference Dipole 6.5GHz	Speag	D6.5GHzV2	1021	2024/02/12	2027/02/11
Verification Source Antenna 10GHz	Speag	5G Verification Source 10GHz	2006	2024/04/18	2025/04/17
Device Holder	Speag	N/A	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1207	2023/11/22	2024/11/21
Data Acquisition Electronic	Speag	DAE4	1651	2024/02/15	2025/02/14
Data Acquisition Electronic	Speag	DAE4	1791	2024/04/22	2025/04/21
E-Field Probe	Speag	EX3DV4	3698	2023/11/21	2024/11/20
E-Field Probe	Speag	EX3DV4	7784	2024/04/22	2025/04/21
mmWave E-field Probe	Speag	EUmmWV4	9546	2024/04/18	2025/04/17
SAR Software	Speag	DASY52	V52.10.4.1535	N/A	N/A
SAR Software	Speag	DASY8	V16.2.4.2524	N/A	N/A
Power Amplifier	Mini-Circuit	ZVE-8G+	447202211	N/A	N/A
Directional Coupler	Agilent	87300C	MY44300353	N/A	N/A ¹
Attenuator	Woken	WATT-218FS-10	N/A	N/A	N/A ¹
Attenuator	Mini-Circuit	BW-S20W2+	N/A	N/A	N/A ¹
Vector Network Analyzer	Keysight	E5071C	MY46106342	2023/10/27	2024/10/26
Signal Generator	Anritsu	MG3694A	041902	2023/09/07	2024/09/06
Power Meter	Anritsu	ML2487A	6K00001447	2023/11/06	2024/11/05
Power Sensor	Anritsu	MA2411B	1339194	2023/11/06	2024/11/05

Note: 1. System Check, the path loss measured by the network analyzer, includes the signal generator, amplifier, cable, attenuator and directional coupler.

Page: 25 of 46

Per KDB 865664 D01 requirements for dipole calibration, the following are recommended FCC procedures for SAR dipole calibration.

- 1. After a dipole is damaged and properly repaired to meet required specifications.
- 2. When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions.
- 3. When the most recent return-loss, measured at least annually, deviates by more than 20% from the previous measurement (i.e. 0.2 of the dB value) or not meeting the required -20 dB return-loss specification.

	Frequency	Tissue	Return loss	Limit	Date
Calibration	2450 MHz	Head	-26.8	Within 20%	2022/11/21
Measurement	2450 MHz	Head	-26.79	VVILIIII 20%	2023/11/16

4. When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement.

	Frequency	Tissue	Impedance	Limit	Date
Calibration	2450 MHz	Head	53.7	Within 50	2022/11/21
Measurement	2450 MHz	Head	53.82	Within 5Ω	2023/11/16

7. Measurement Uncertainty

Meas	urement un	certain	ty for	300 N	ИHz to	3 GHz	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.
	value	Dist.		1g	10g	(1g)	(10g)
Measurement System Err	ors		•				
Probe Calibration	±12.0%	N	2	1	1	±6.0%	±6.0%
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%
Broadband Signal	±2.8%	R	1.732	1	1	±1.6%	±1.6%
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%
Other Probe+Electronic	±0.8%	N	1	1	1	±0.8%	±0.8%
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±0.006 mm	N	1	0.14	0.14	±0.1%	±0.1%
Data Processing	±1.2%	N	1	1	1	±1.2%	±1.2%
Phantom and Device Erro	ors						·
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
Conductivity (temp.)	±3.3%	R	1.732	0.78	0.71	±1.5%	±1.4%
Phantom Permittivity	±14.0%	R	1.732	0	0	±0.0%	±0.0%
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR res	sults						
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%
Combined Uncertainty						±11.0%	±10.9%
Expanded Uncertainty						±21.9%	±21.7%

Page: 27 of 46

Mea	surement u	ncertai	nty fo	r 3 G	Hz to	6 GHz	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.
	value	Dist.		1g	10g	(1g)	(10g)
Measurement System Err	ors	•	•	•	•		
Probe Calibration	±14.0%	N	2	1	1	±7.0%	±7.0%
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%
Broadband Signal	±2.6%	R	1.732	1	1	±1.5%	±1.5%
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%
Other Probe+Electronic	±1.2%	N	1	1	1	±1.2%	±1.2%
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±0.005 mm	N	1	0.29	0.29	±0.2%	±0.2%
Data Processing	±2.3%	N	1	1	1	±2.3%	±2.3%
Phantom and Device Erro	ors	•	•	•	•		
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
Conductivity (temp.)	±3.4%	R	1.732	0.78	0.71	±1.5%	±1.4%
Phantom Permittivity	±14.0%	R	1.732	0.25	0.25	±2.0%	±2.0%
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR res	sults	-	•		•	•	·
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%
Combined Uncertainty			•			±11.9%	±11.8%
Expanded Uncertainty						±23.8%	±23.6%

Page: 28 of 46

Meas	surement un	certair	nty for	6 GH	lz to	10 GHz	
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.
	value	Dist.		1g	10g	(1g)	(10g)
Measurement System Err	rors	- 1	•	•	•	•	-
Probe Calibration	±18.6%	N	2	1	1	±9.3%	±9.3%
Probe Calibration Drift	±1.7%	R	1.732	1	1	±1.0%	±1.0%
Probe Linearity	±4.7%	R	1.732	1	1	±2.7%	±2.7%
Broadband Signal	±2.6%	R	1.732	1	1	±1.5%	±1.5%
Probe Isotropy	±7.6%	R	1.732	1	1	±4.4%	±4.4%
Other Probe+Electronic	±2.4%	N	1	1	1	±2.4%	±2.4%
RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Probe Positioning	±0.005 mm	N	1	0.5	0.5	±0.3%	±0.3%
Data Processing	±3.5%	N	1	1	1	±3.5%	±3.5%
Phantom and Device Erro	ors	- 1	•	•	•	•	-
Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
Conductivity (temp.)	±2.4%	R	1.732	0.78	0.71	±1.1%	±1.0%
Phantom Permittivity	±14.0%	R	1.732	0.5	0.5	±4.0%	±4.0%
Distance DUT - TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
DUT Modulation	±2.4%	R	1.732	1	1	±1.4%	±1.4%
Time-average SAR	±1.7%	R	1.732	1	1	±1.0%	±1.0%
DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
Val Antenna Unc.	±0.0%	N	1	1	1	±0.0%	±0.0%
Unc. Input Power	±0.0%	N	1	1	1	±0.0%	±0.0%
Correction to the SAR res	sults	-	•	•	•		•
Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
SAR scaling	±0.0%	R	1.732	1	1	±0.0%	±0.0%
Combined Uncertainty						±14.2%	±14.1%
Expanded Uncertainty						±28.4%	±28.3%

Page: 29 of 46

Measu	rement uncertainty	for Power	Density			
Error Description	Uncert.	Prob.	Div.	(ci)	Std. Unc.	(vi)
	Value (±dB)	Dist.			(±dB)	veff
Uncertainty terms dependent on the	, ,	tem			,	
Calibration	0.49	N	1	1	0.49	∞
Probe correction	0	R	1.732	1	0	∞
Frequency response (BW ≤ 1 GHz)	0.2	R	1.732	1	0.12	∞
Sensor cross coupling	0	R	1.732	1	0	∞
Isotropy	0.5	R	1.732	1	0.29	∞
Linearity	0.2	R	1.732	1	0.12	∞
Probe scattering	0	R	1.732	1	0	∞
Probe positioning offset	0.3	R	1.732	1	0.17	∞
Probe positioning repeatability	0.04	R	1.732	1	0.02	∞
Sensor mechanical offset	0	R	1.732	1	0	∞
Probe spatial resolution	0	R	1.732	1	0	8
Field impedance dependance	0	R	1.732	1	0	∞
Amplitude and phase drift	0	R	1.732	1	0	∞
Amplitude and phase noise	0.04	R	1.732	1	0.02	∞
Measurement area truncation	0	R	1.732	1	0	∞
Data acquisition	0.03	N	1	1	0.03	∞
Sampling	0	R	1.732	1	0	∞
Field reconstruction	2	R	1.732	1	1.15	∞
FTE/MEO	0	R	1.732	1	0	∞
Power density scaling	0	R	1.732	1	0	∞
Spatial averaging	0.1	R	1.732	1	0.06	∞
System detection limit	0.04	R	1.732	1	0.02	∞
Uncertainty terms dependent on the	DUT and environn	nental facto	rs			
Probe coupling with DUT	0	R	1.732	1	0	∞
Modulation response	0.4	R	1.732	1	0.23	∞
Integration time	0	R	1.732	1	0	∞
Response time	0	R	1.732	1	0	∞
Device holder influence	0.1	R	1.732	1	0.06	∞
DUT alignment	0	R	1.732	1	0	∞
RF ambient conditions	0.04	R	1.732	1	0.02	∞
Ambient reflections	0.04	R	1.732	1	0.02	∞
Immunity / secondary reception	0	R	1.732	1	0	∞
Drift of the DUT	0.21	R	1.732	1	0.12	∞
Combined Standard Uncertainty					1.33	∞
Expanded Standard Uncertainty (95	%)				2.67	

Page: 30 of 46

8. Conducted Power Measurement (Including tolerance allowed forproduction unit)

WLAN	N 2.4G 2TX SI	so							
	Frequency	Mode	BW	SIS	SO-Main(T) Chain B	K 1)	SI	SO-Aux(TX Chain A	(2)
	rioquoney	Wodo	5**	СН	Avg. Power	Tune-Up Power	СН	Avg. Power	Tune-Up Power
				1	17.92	18.5	1	17.89	18.5
				6	17.98	18.5	6	17.95	18.5
		b	20	11	17.73	18.5	11	17.87	18.5
DSSS/OFDM mode specified maximum output power at an antenna port				12	17.67	18.5	12	17.81	18.5
na				13	15.62	16	13	17.08	17.5
				1	17.56	18.5	1	17.34	18.5
n ar				6	17.57	18.5	6	17.62	18.5
ata		g	20	11	17.51	18.5	11	17.58	18.5
ver				12	15.39	15.5	12	14.69	15.5
pov				13	11.96	12.5	13	12.26	12.5
put				1	17.44	18.5	1	17.53	18.5
out				6	17.38	18.5	6	17.41	18.5
Шш			20	11	17.39	18.5	11	17.38	18.5
axin.				12	15.32	15.5	12	15.36	15.5
E E	WLAN 2.4GHz	n		13	11.77	12.5	13	12.03	12.5
ifiec	WLAIN 2.4GHZ	(HT)		3	15.57	16	3	16.08	16.25
bec				6	17.53	18.5	6	18.21	18.5
e s			40	9	15.46	16	9	17.05	17.5
) Jou				10	12.73	13	10	12.43	13
Σ				11	10.26	10.5	11	11.26	11.5
]HC				1	17.52	18.5	1	17.68	18.5
)/SS				6	17.49	18.5	6	17.52	18.5
DS			20	11	17.41	18.5	11	17.62	18.5
				12	15.42	15.5	12	15.23	15.5
		ax		13	12.26	12.5	13	12.18	12.5
		(HE)		3	15.61	16	3	16.15	16.25
				6	17.53	18.5	6	18.14	18.5
			40	9	15.47	16	9	17.12	17.5
				10	12.37	12.5	10	12.23	13
				11	9.89	10	11	10.98	11.5

Page: 31 of 46

WL	AN 5G 2TX SIS	6O							
				S	ISO-Main(T	X1)	S	SISO-Aux(T)	K2)
	Frequency	Mode	BW		Chain B	T		Chain A	1
	U-NII-1 (5150~5250MHz) U-NII-2A (5250~5350MHz)	Mode	5,,	СН	Avg. Power	Tune-Up Power	СН	Avg. Power	Tune-Up Power
				36	13.77	15	36	13.62	15
			20	40	13.68	15	40	13.57	15
		а	20	44	13.88	15	44	13.58	15
				48	13.91	15	48	13.53	15
				36	13.61	15	36	13.53	15
			00	40	13.68	15	40	13.51	15
		n	20	44	13.74	15	44	13.52	15
ort		(HT)		48	13.69	15	48	13.55	15
la p	U-NII-1		40	38	13.92	15	38	14.08	15
enr	(5150~5250MHz)		40	46	14.02	15	46	14.01	15
ant		ac(VHT)	80	42	14.21	15	42	14.11	15
an				36	14.01	15	36	14.03	15
r at			00	40	14.07	15	40	14.04	15
We			20	44	14.05	15	44	13.91	15
0d		ax (UE)		48	14.09	15	48	13.94	15
tput		(HE)	40	38	13.93	15	38	14.01	15
out			40	46	14.01	15	46	13.92	15
mode specified maximum output power at an antenna port			80	42	13.72	15	42	13.69	15
×i			20	52	13.93	15	52	13.51	15
ma		а		56	13.81	15	56	13.61	15
eq				60	13.86	15	60	13.55	15
Scifi				64	13.63	15	64	13.51	15
sbe				52	13.61	15	52	13.61	15
ge			20	56	13.75	15	56	13.73	15
		n	20	60	13.71	15	60	13.63	15
		(HT)		64	13.64	15	64	13.68	15
OFDM			40	54	13.91	15	54	13.94	15
	U-NII-2A		40	62	13.99	15	62	14.03	15
	(5250~5350MHz)	ac	80	58	14.46	15	58	14.24	15
		(VHT)	160	50	13.69	15	50	13.65	14.5
				52	13.95	15	52	13.92	15
			20	56	14.01	15	56	13.96	15
			20	60	13.94	15	60	14.01	15
		ax		64	13.95	15	64	13.92	15
		(HE)	40	54	13.87	15	54	13.91	15
			40	62	13.95	15	62	13.88	15
			80	58	13.71	15	58	13.71	15
			160	50	13.55	15.00	50	13.65	14.5

				S	ISO-Main(T Chain B	X1)	S	ISO-Aux(T) Chain A	K2)
	Frequency	Mode	BW		ı	Tuna Un			Tuna Un
				СН	Avg. Power	Tune-Up Power	СН	Avg. Power	Tune-Up Power
				100	13.79	15	100	13.79	15
				116	13.67	15	116	13.67	15
			00	124	13.58	15	124	13.59	15
		а	20	132	13.55	15	132	13.51	15
				140	13.57	15	140	13.53	15
				144	13.66	15	144	13.52	15
ort				100	13.75	15	100	13.81	15
اع				116	13.61	15	116	13.79	15
enr			00	124	13.52	15	124	13.75	15
ant		n (HT)	20	132	13.55	15	132	13.57	15
an			·	140	13.72	15	140	13.68	15
rat			·	144	13.81	15	144	13.62	15
Me	OFDM mode specified maximum output power at an antenna port control of the contro			102	14.06	15	102	13.86	15
8				110	14.07	15	110	13.81	15
tbul			40	126	13.81	15	126	14.09	15
no l				134	13.77	15	134	14.02	15
Шn				142	13.82	15	142	14.04	15
Xi	U-NII-2C	ac		106	14.44	15	106	14.22	15
ma	(5470~5725MHz)		80	122	14.38	15	122	14.12	15
eq		(VHT)	T)	138	14.36	15	138	14.18	15
Scifi			160	114	13.51	15	114	13.59	15
sbe				100	14.12	15	100	13.91	15
ge				116	13.87	15	116	13.88	15
E			20	124	13.94	15	124	14.03	15
			20	132	13.91	15	132	13.91	15
P				140	13.95	15	140	13.98	15
				144	14.01	15	144	13.90	15
		O.V.		102	14.06	15	102	14.04	15
		ax (UE)		110	14.03	15	110	14.07	15
		(HE)	40	126	14.05	15	126	13.87	15
				134	13.97	15	134	13.92	15
				142	14.09	15	142	13.99	15
				106	13.69	15	106	13.84	15
			80	122	13.51	15	122	13.78	15
				138	13.56	15	138	13.75	15
			160	114	13.57	15	114	13.86	15

				S	ISO-Main(T Chain B	X1)	S	ISO-Aux(T) Chain A	K2)						
	Frequency	Mode	BW		Avg.	Tune-Up		Avg.	Tune-Up						
				СН	Power	Power	СН	Power	Power						
				149	13.69	15	149	13.56	15						
		а	20	157	13.72	15	157	13.58	15						
				165	13.81	15	165	13.66	15						
				149	13.82	15	149	13.71	15						
oort		_	20	157	13.77	15	157	13.74	15						
la p		n (HT)		165	13.79	15	165	13.82	15						
enr	U-NII-3	(П1)	40	151	13.92	15	151	13.93	15						
ant	(5725~5850MHz)		40	159	14.03	15	159	14.02	15						
an	(3723~3630WIFIZ)	ac(VHT)	80	155	14.37	15	155	14.13	15						
r at				149	13.97	15	149	14.01	15						
We			20	157	14.06	15	157	14.06	15						
t po	O-EDM mode specified maximum output power at an antenna port (2,225~2850MHz) O-NII-4 (2,507-287-11)	ax (HE)		165	14.05	15	165	14.04	15						
tbn			40	151	14.07	15	151	14.08	15						
no				159	14.02	15	159	14.03	15						
l m			80	155	13.59	15	155	13.72	15						
Xin		a	а		169	13.73	15	169	13.64	15					
ma				а	а	а	а	а	а	а	20	173	13.74	15	173
eq				177	13.72	15	177	13.66	15						
ecifi				169	13.68	15	169	13.85	15						
sbe		_	20	173	13.71	15	173	13.81	15						
ge		n (UT)		177	13.66	15	177	13.79	15						
Ĕ		(HT)	40	167	14.11	15	167	14.04	15						
M	U-NII-4		40	175	14.05	15	175	14.06	15						
OF	(5850~5925MHz)	oo/\/UT\	80	171	14.38	15	171	14.12	15						
	(3030~392311112)	ac(VHT)	160	163	13.55	15	163	13.77	15						
				169	14.03	15	169	14.08	15						
			20	173	14.05	15	173	14.03	15						
				177	14.03	15	177	13.95	15						
		ax (UE)	40	167	14.17	15	167	14.02	15						
		(HE)	40	175	14.07	15	175	13.95	15						
			80	171	13.62	15	171	13.81	15						
			160	163	13.52	15	163	13.75	15						

N 6G 2TX SISO											
			SIS	SO-Main(T	X1)	SI	SO-Aux(TX	(2)			
Fraguenov	Mada	D\A/		Chain B			Chain A				
Frequency	Mode	DVV	СП	Avg.	Tune-Up	C	Avg.	Tune-Up			
			СП	Power	Power	C	Power	Power			
			1	6.93	7	1	6.87	7			
		20	45	6.97	7	45	6.88	7			
			93	6.96	7	93	6.91	7			
			3	9.73	10	3	9.59	10			
		40	43	9.72	10	43	9.66	10			
U-NII-5	ax		91	9.65	10	91	9.64	10			
(5925~6425MHz)	(HE)	(HE)	7	12.68	13	7	12.64	13			
			80	39	12.73	13	39	12.54	13		
			87	12.63	13	87	12.62	13			
							15	13.36	13.5	15	13.34
		160	47	13.24	13.5	47	13.31	13.5			
			79	13.21	13.5	79	13.22	13.5			
			97	6.92	7	97	6.89	7			
		20	105	6.81	7	105	6.90	7			
LLNILG	ov.		113	6.87	7	113	6.83	7			
		40	99	9.33	10	99	9.33	10			
(0420°0020IVITZ)	(11⊏)	IE) 40 -	107	9.31	10	107	9.45	10			
		80	103	12.59	13	103	12.72	13			
		Frequency Mode U-NII-5 ax (5925~6425MHz) (HE)	Frequency Mode BW 20 U-NII-5 ax (5925~6425MHz) (HE) 80 160 U-NII-6 ax	Frequency Mode BW CH CH 20 45 93 3 40 43 U-NII-5 ax 91 (5925~6425MHz) (HE) 7 80 39 87 15 160 47 79 20 105 113 U-NII-6 ax 99 U-NII-6 ax 99	Frequency Mode BW SISO-Main(T) Chain B Avg. Power 1 6.93 20 45 6.97 93 6.96 3 9.73 40 43 9.72 91 9.65 (5925~6425MHz) (HE) 80 39 12.73 87 12.63 15 13.36 160 47 13.24 79 13.21 U-NII-6 ax (6425~6525MHz) (HE) U-NII-6 ax (113 6.87 99 9.33	Frequency Mode BW SISO-Main(TX1) Chain B	Frequency Mode BW SISO-Main(TX1) Chain B CH Avg. Tune-Up Power Power 1 6.93 7 1 45 6.97 7 45 93 6.96 7 93 3 9.73 10 3 40 43 9.72 10 43 41 91 9.65 10 91 (5925~6425MHz) (HE) 7 12.68 13 7 15 13.36 13.5 15 160 47 13.24 13.5 47 79 13.21 13.5 79 97 6.92 7 97 20 105 6.81 7 105 113 6.87 7 113 40 99 9.33 10 99	Frequency Mode BW SISO-Main(TX1) Chain B Tune-Up Power Power Power 1 6.93 7 1 6.87 45 6.88 93 6.96 7 93 6.91 3 9.73 10 3 9.59 40 43 9.72 10 43 9.66 91 9.65 10 91 9.64 (HE) 7 12.68 13 7 12.64 80 39 12.73 13 39 12.54 87 12.63 13 87 12.62 15 13.36 13.5 15 13.34 160 47 13.24 13.5 79 13.22 17 97 6.92 7 97 6.89 10 U-NII-6 (6425~6525MHz) U-NII-6 (6425~6525MHz) U-NII-6 (6425~6525MHz) Hode SISO-Aux(TX) Chain B Chain B SISO-Aux(TX) Chain B SISO-Bair Tune-Up Power Power Power Power 1 6.87 7 113 6.83 10 99 9.33			

160

111

13.37

13.5

111

13.35

13.5

				SIS	SO-Main(T)	X1)	SI	SO-Aux(TX	(2)	
	Fraguency	Mode	BW		Chain B		Chain A			
	Frequency	iviode	DVV	СН	Avg.	Tune-Up	СН	Avg.	Tune-Up	
				СП	Power	Power	СП	Power	Power	
				117	6.11	7	117	6.12	7	
por			20	149	6.13	7	149	6.15	7	
u				181	6.18	7	181	6.13	7	
ante				115	9.35	10	115	9.38	10	
ıt an		ax (HE)	40	147	8.87	10	147	8.83	10	
ver a	U-NII-7			179	8.81	10	179	8.88	10	
t pov	OFDM mode specified maximum output power at an antenna port (259 × 250 × 200 ×			119	12.52	13	119	12.66	13	
utpui			80	135	12.41	13	135	12.32	13	
IO E				151	12.45	13	151	12.37	13	
kimu				167	12.34	13	167	12.39	13	
ma)				183	12.31	13	183	12.28	13	
ified				143	13.11	13.5	143	13.20	13.5	
sbec			160	175	13.12	13.5	175	13.22	13.5	
opc :				185	6.19	7	185	6.12	7	
M M			20	209	6.14	7	209	6.18	7	
)FDI				233	5.96	7	233	6.07	7	
	U-NII-8	ax	40	187	8.99	10	187	8.85	10	
		(HE)	40	227	8.85	10	227	8.84	10	
			90	199	12.35	13	199	12.38	13	
			80	215	12.32	13	215	12.39	13	
			160	207	13.28	13.5	207	13.31	13.5	

ВТ	BT Only Support Aux										
				SISO-Aux(TX2)							
_	Frequency	Mode	Modulation		Chain A						
owe	rrequericy	Wode	Modulation	СН	Avg.	Tune-Up					
out p				GH	Power	Power					
maximum output power				0	9.68	10.5					
mnr		BR	GFSK	39	10.32	10.5					
axin				78	10.00	10.5					
		EDR	8DPSK	0	7.11	9.5					
mod	BT 2.4GHz			39	7.37	9.5					
Bluetooth mode				78	7.54	9.5					
luet				0	7.09	9.0					
"		BLE	GFSK	19	7.48	9.0					
				39	7.62	9.0					

9. Test Results

9.1 Test Results Summary

SAR MEASUREME	NT									
Ambient Temperatu	re (°C): 23.	5±2			Relative Humidity (%): 55%					
Liquid Temperature	(°C): 22.5±	:2			Depth of Liquid (c	m): >15				
Test	Dist.	Frequ	uency		cted Power		SAR (W/kg)			
Position	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	- Plot No.		
Test Mode: WLAN2.4GHz_802.11b-1M_ANT Main										
Back	0	6	2437	17.98	18.5	0.032	0.037			
Right-side	0	6	2437	17.98	18.5	0.097	0.112			
Тор	0	1	2412	17.92	18.5	0.674	0.786			
Тор	0	6	2437	17.98	18.5	0.810	0.931			
Тор	0	11	2462	17.73	18.5	0.903	1.100	26		
Test Mode: WLAN2	.4GHz_802.1	11b-1M_A	NT Aux		•					
Back	0	6	2437	17.95	18.5	0.022	0.025			
Left-side	0	6	2437	17.95	18.5	0.035	0.041			
Тор	0	6	2437	17.95	18.5	0.511	0.592			
Test Mode: Bluetoo	th_BT-1M_A	NT Aux	•		•	•	•	•		
Тор	0	39	2441	10.32	10.5	0.070	0.096	39		

- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required.
- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no
 further SAR testing is required in that exposure configuration.

SAR MEASUREME	NT									
Ambient Temperatu	ıre (°C): 23.2	±2			Relative Humidity (%): 57%					
Liquid Temperature	(°C): 22.2 ±2	2			Depth of Liquid (cm): >15					
Test	Dist.	Frequency		Cond	ucted Power (dBm)		SAR V/kg)	Plot No.		
Position	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g			
Test Mode: WLAN5	GHz_802.11	ac80-VHT	T			1		T		
Back	0	58	5290	14.46	15	0.058	0.068			
Right-side	0	58	5290	14.46	15	0.025	0.029			
Тор	0	58	5290	14.46	15	0.360	0.420			
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Au	X				,		
Back	0	58	5290	14.24	15	0.030	0.037			
Left-side	0	58	5290	14.24	15	0.088	0.108			
Тор	0	58	5290	14.24	15	0.902	1.108	27		
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Ma	in						
Back	0	106	5530	14.44	15	0.067	0.078			
Right-side	0	106	5530	14.44	15	0.054	0.064			
Тор	0	106	5530	14.44	15	0.532	0.624			
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Au	X						
Back	0	106	5530	14.22	15	0.084	0.103			
Left-side	0	106	5530	14.22	15	0.070	0.086			
Тор	0	106	5530	14.22	15	0.705	0.870			
Тор	0	122	5610	14.12	15	0.699	0.883			
Тор	0	138	5690	14.18	15	0.762	0.949	33		
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Ma	in						
Back	0	155	5775	14.37	15	0.047	0.055			
Right-side	0	155	5775	14.37	15	0.034	0.041			
Тор	0	155	5775	14.37	15	0.656	0.782			
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Au	x						
Back	0	155	5775	14.13	15	0.053	0.067			
Left-side	0	155	5775	14.13	15	0.037	0.047			
Тор	0	155	5775	14.13	15	0.794	1.000	29		
Test Mode: WLAN5	GHz_802.11	ac80-VHT	0_ANT Ma		•			•		
Back	0	171	5855	14.38	15	0.068	0.081			
Right-side	0	171	5855	14.38	15	0.048	0.057			
Тор	0	171	5855	14.38	15	0.643	0.765			
Test Mode: WLAN5	GHz_802.11	ac80-VHT			•			•		
Back	0	171	5855	14.12	15	0.052	0.065			
Left-side	0	171	5855	14.12	15	0.070	0.089			
Тор	0	171	5855	14.12	15	0.791	0.999	30		

- 1. When multiple transmission modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected.
- 2. When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required in that exposure configuration.
- 3. When the reported SAR of the highest measured maximum U-NII-2A for the exposure configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band.

SAR MEASUREMENT												
Ambient Tempera	ature (°C):	23.1±2			Relative Humidity (%): 58%							
Liquid Temperatu	ure (°C): 22	.1±2			Depth of Liquid (cm): >15							
Test	Dist.	Frequency			cted Power			APD (W/m²)	Plot No.			
Position	(mm)	Ch.	MHz	Meas.	Tune-Up Limit	Meas-1g	Scaled-1g	Meas-4cm ²	FIOLINO.			
Test Mode: WLAN6GHz_802.11ax160-HE0_ANT Main												
Back	0	111	6505	13.37	13.5	0.081	0.086	0.629				
Right-side	0	111	6505	13.37	13.5	0.073	0.078	0.320				
Тор	0	15	6025	13.36	13.5	0.681	0.725	5.000				
Тор	0	47	6185	13.24	13.5	0.598	0.655	4.550				
Тор	0	111	6505	13.37	13.5	0.475	0.505	3.390				
Тор	0	175	6825	13.12	13.5	0.729	0.820	5.120				
Тор	0	207	6985	13.28	13.5	0.590	0.640	4.250				
Test Mode: WLA	N6GHz_80	2.11ax16	60-HE0_ <i>A</i>	NT Aux								
Back	0	111	6505	13.35	13.5	0.048	0.051	0.365				
Left-side	0	111	6505	13.35	13.5	0.043	0.046	0.251				
Тор	0	15	6025	13.34	13.5	0.673	0.720	4.770				
Тор	0	47	6185	13.31	13.5	0.709	0.764	4.900				
Тор	0	111	6505	13.35	13.5	0.823	0.878	5.480	12			
Тор	0	175	6825	13.22	13.5	0.560	0.616	3.940				
Тор	0	207	6985	13.31	13.5	0.414	0.446	2.800				

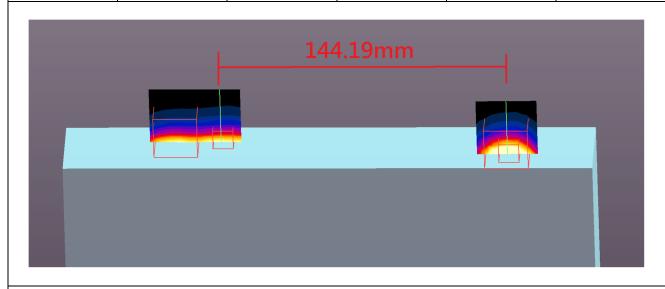
When multiple transmission modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected.

PD MEASUR	PD MEASUREMENT												
Ambient Tem	perature (°0	C): 23.2	±2			Rela	Relative Humidity (%): 55%						
Tool	Dist. (mm)	Frequency		Conducted Power (dBm)		·	psPDn+ (W/m²)		Otot+ (m²)	Uncertainty			
Test Position		Ch.	MHz	Meas.	Tune-Up Limit	Meas-4cm ²	Scaled- 4cm²	Meas-4cm ²	Scaled- 4cm²	Uncertainty Scaling Factor	Plot No.		
Test Mode: V	VLAN6GHz_	802.11	ax160-	HE0_ANT	Main								
Тор	2	15	6025	13.36	13.5	2.790	4.605	3.100	5.116	1.550			
Тор	2	175	6825	13.12	13.5	3.490	6.087	3.840	6.698	1.550	2		
Тор	2	207	6985	13.28	13.5	1.890	3.177	2.140	3.598	1.550			
Test Mode: V	VLAN6GHz_	802.11	ax160-	HE0_ANT	Aux								
Тор	2	47	6185	13.31	13.5	3.160	5.276	3.420	5.710	1.550			
Тор	2	111	6505	13.35	13.5	2.970	4.913	3.170	5.244	1.550			

^{1.} Per WLAN 6 GHz interim test procedure in Oct. 2020 TCBs Workshop notes. At least 5 channels for BW 160MHz should be tested.

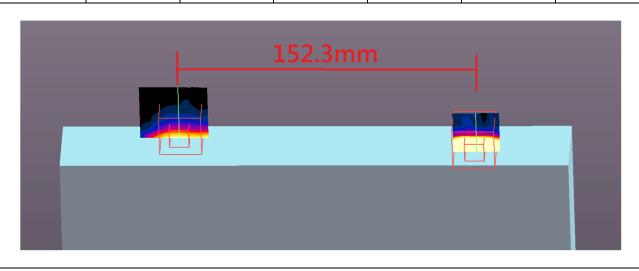
9.2 Simultaneous Transmission

Simultan	imultaneous Transmission Configurations							
1	WLAN 2.4 GHz ANT Main + WLAN 2.4 GHz ANT Aux							
2	WLAN 2.4 GHz ANT Main + Bluetooth Aux							
3	WLAN 5 GHz ANT Main + WLAN 5 GHz ANT Aux							
4	WLAN 5 GHz ANT Main + WLAN 5 GHz ANT Aux + Bluetooth Aux							
5	WLAN 5 GHz ANT Main + Bluetooth Aux							
6	WLAN 6 GHz ANT Main + WLAN 6 GHz ANT Aux							
7	WLAN 6 GHz ANT Main + WLAN 6 GHz ANT Aux + Bluetooth Aux							
8	WLAN 6 GHz ANT Main + Bluetooth Aux							


9.2.1 Simultaneous transmission test exclusion considerations

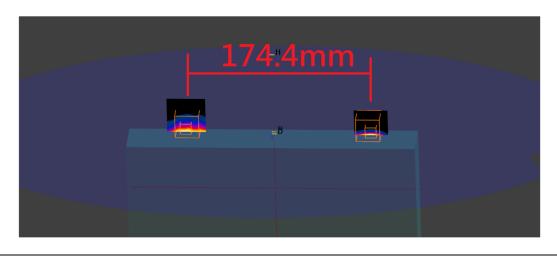
	1	2	3	4	5	6	7	1+2	1+7	3 + 4	3+4+7	3 + 7	5+6	5+6+7	5 + 7
Test Position	WLAN2.4G Hz ANT Main (W/kg)	WLAN2.4G Hz ANT Aux (W/kg)		WLAN5GHz ANT Aux (W/kg)	WLAN6GHz ANT Main (W/kg)	WLAN6GHz ANT Aux (W/kg)	Bluetooth ANT Aux (W/kg)	Σ1-g SAR							
Back at 0 mm	0.037	0.025	0.081	0.103	0.086	0.051	,	0.062	0.037	0.184	0.184	0.081	0.137	0.137	0.086
Left-side at 0 mm	-	0.041		0.108	-	0.046	-	0.041	-	0.108	0.108	-	0.046	0.046	-
Right-side at 0	0.112	-	0.064	,	0.078	1	-	0.112	0.112	0.064	0.064	0.064	0.078	0.078	0.078
Top at 0 mm	1.100	0.592	0.782	1.108	0.820	0.878	0.096	1.692	1.196	1.890	1.986	0.878	1.698	1.794	0.916

When the sum of SAR is larger than the limit, The ratio is determined by $(SAR1 + SAR2)^1.5/Ri$, rounded to two decimal digits, and must be ≤ 0.04 for all antenna pairs in the configuration to qualify for 1-g SAR test exclusion. The estimation result as below:



Test Position	WLAN2.4GHz ANT Main SAR (W/kg)	WLAN2.4GHz ANT Aux SAR (W/kg)	Simultaneous Transmission (W/kg)	Antenna pair in mm	Peak location separation ratio
Тор	1.100	0.592	1.692	144.19	0.02

The ratio of value is less than 0.04, thus simultaneous SAR testing is not needed.


Toot	WLAN5GHz	WLAN5GHz	Bluetooth ANT		Antenna pair in	Peak location
Test Position	ANT Main	ANT Aux SAR	Aux SAR	Transmission	·	separation
	SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	mm	ratio
Тор	0.782	1.108	0.096	1.986	152.3	0.02

The ratio of value is less than 0.04, thus simultaneous SAR testing is not needed.

Test Position	WLAN6GHz	WLAN6GHz	Bluetooth ANT		Antenna pair in	Peak location
	ANT Aux SAR	ANT Main	Aux SAR	Transmission	·	separation
	(W/kg)	SAR (W/kg)	(W/kg)	(W/kg)	mm	ratio
Тор	0.878	0.82	0.096	1.794	174.4	0.01

The ratio of value is less than 0.04, thus simultaneous SAR testing is not needed.

10. SAR measurement variability

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Frequ	uency	SAR 1g (W/kg)					
Channel	MHz	Original	First Repeated				
Channel	IVITZ	Original	Value	Ratio			
11	2462	0.903	0.859	1.051			
58	5290	0.902	0.897	1.006			
111	6505	0.823	0.811	1.015			

Appendix

Appendix A. System Check Data

Appendix B. Highest measurement Data

Appendix C. Test Setup Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix F. Product Photos-Please refer to the file: 2430565R-Product Photos