

Multi-Tech Systems, Inc.

RBS304 Panic Button

FCC 15.247:2024 RSS-Gen Issue 5:2018+A1:2019+A2:2021 RSS-247 Issue 3:2023

Hybrid LoRa transceiver

Report: MLTI0360.0 Rev. 1, Issue Date: July 18, 2024

TABLE OF CONTENTS

Section

Page Number

Certificate of Test	3
Revision History	5
Accreditations	6
Facilities	7
Measurement Uncertainty	8
Test Setup Block Diagrams	9
Product Description	12
Power Settings and Antenna Information	13
Configurations	14
Modifications	16
Spurious Radiated Emissions	17
Duty Cycle	21
Output Power	26
Equivalent Isotropic Radiated Power (EIRP)	30
Emissions Bandwidth (99%)	34
Appendix	38
End of Report	40

CERTIFICATE OF TEST

Last Date of Test: February 14, 2022 Multi-Tech Systems, Inc. EUT: RBS304 Panic Button

Radio Equipment Testing

Standards

Specification	Method		
FCC 15.247:2024			
RSS-Gen Issue 5:2018+A1:2019+A2:2021	ANSI C63.10:2013		
RSS-247 Issue 3:2023			
RSS-247 Issue 3:2023			

Note: RSS-247 Issue 3 has been updated superseding prior Issues and amendments noted within the body of this report. The FCC year has also been updated. The changes between the specifications do not affect the results of the prior testing. The manufacture attests that no changes have been made to the product. See gap analysis for RSS-247 below).

- 1. Modified section 6.2 to clarify that different measurement methods can apply depending on the operating frequency range of the device.
- 2. Added section 6.2.5 to introduce the requirements for devices operating from 5850 5895 MHz and channels that span across 5850 MHz.
- 3. Added section 6.2.5.1 to provide general information and definitions.
- 4. Added section 6.2.5.2 to identify the power limits associated with devices operating in the 5850-5895 MHz band.
- 5. Added section 6.2.5.3 to identify the unwanted emission limits associated with devices operating in the 5850-5895 MHz band.
- 6. Made editorial changes and clarifications, as appropriate.

100 100 000014 00002.2013									
Results									
Test Description	Result FCC Section(s) RSS Section(s)		Section(s) RSS Section(s)		Comments				
Powerline Conducted Emissions (Transmitter)	N/A	15.207	RSS-Gen 8.8	6.2	Not required for a battery powered EUT.				
Spurious Radiated Emissions	Pass	15.247(d)	RSS-247 5.5	6.5, 6.6					
Duty Cycle	N/A	15.247	RSS-Gen 3.2	7.5					
Carrier Frequency Separation	N/A	15.247(a)(1)	RSS-247 5.1(b)	7.8.2	Not included for a C2PC related to adding a new antenna and addressing portable usage.				
Number of Hopping Frequencies	N/A	15.247(a)(1), KDB 558074 10(b)(4)	RSS-247 5.1(d)	7.8.3	Not included for a C2PC related to adding a new antenna and addressing portable usage.				
Dwell Time	N/A	15.247(a)(1), KDB 558074 10(b)(2)	RSS-247 5.1(d)	7.8.4	Not included for a C2PC related to adding a new antenna and addressing portable usage.				
Output Power	Pass	15.247(b)	RSS-247 5.4(d)	11.9					
Equivalent Isotropic Radiated Power (EIRP)	Pass	15.247(b)	RSS-247 5.4(d)	11.9					

Guidance ECC KDB 558074 v05r02:2019

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. MLTI0360.0 Rev.1

CERTIFICATE OF TEST

Band Edge Compliance	N/A	15.247(d)	RSS-247 5.5	7.8.6	Not included for a C2PC related to adding a new antenna and addressing portable usage.
Band Edge Compliance - Hopping Mode	N/A	15.247(d)	RSS-247 5.5	7.8.6	Not included for a C2PC related to adding a new antenna and addressing portable usage.
Emissions Bandwidth (20 dB)	Pass	15.247(a), KDB 558074 10(b)(3)	RSS-247 5.2(a)	7.8.7	
Occupied Bandwidth (99%)	N/A	15.247(a)	RSS-Gen 6.7	7.8.7	Not included for a C2PC related to adding a new antenna and addressing portable usage.
Spurious Conducted Emissions	N/A	15.247(d)	RSS-247 5.5	7.8.8	Not included for a C2PC related to adding a new antenna and addressing portable usage.
Power Spectral Density	N/A	15.247(e), KDB 558074 10(b)(1)	RSS-247 5.2(b)	11.10.2	Not included for a C2PC related to adding a new antenna and addressing portable usage.
Powerline Conducted Emissions (Receiver)	N/A	15.101, 15.107	RSS-Gen 5.2	ANSI C63.4 - 12.2.4	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC. RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.
Radiated Emissions for Receiver	N/A	15.101, 15.109	RSS-Gen 5.2	ANSI C63.4 - 12.2.5	Not included per FCC 15.101 as this will be covered under SDoC rules for the FCC. RSS-Gen section 7 stated receiver requirements only apply to standalone receivers operating in the 30-960 MHz band and this is not a standalone receiver.

Deviations From Test Standards

None

Approved By:

Trevor Buls

Trevor Buls, Principal EMC Test Engineer Signed for and on behalf of Element

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

Report No. MLTI0360.0 Rev.1

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		
01	Corrected configurations, CoT results for output power, test description for emissions bandwidth	2024-07-17	3, 14, 34
01	Added Attestation to appendix	2024-07-18	39
01	Updated SRE data	2024-07-18	19-20
01	Updated Modifications and configurations to reflect updated SRE data.	2024-07-18	14, 16

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission – Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS - Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE						
For details on the Scopes of our Accreditations, please visit:						
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	<u>Texas</u>	Washington		

FACILITIES

	Location	Labs (1)	Address	A2LA (2)	ISED (3)	BSMI (4)	VCCI (5)	CAB (6)	FDA (7)
	California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
⊠	Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
	Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
	Texas	TX01-09	3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	3310.03	2834G	SL2-IN-E-1158R	A-0201	US0191	TL-54
	Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
	Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A

Testing was performed at the following location(s)

See data sheets for specific labs

- The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.) A2LA Certificate No. ISED Company No. BSMI No. VCCI Site Filing No. CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA FDA ASCA No. (1) (2) (3) (4) (5) (6) (7)

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	1.2 dB	-1.2 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	3.2 dB	-3.2 dB

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	uency Range Peak Data Quasi-Peak Data (MHz) (kHz) (kHz)			
0.01 - 0.15	1.0	0.2	0.2	
0.15 - 30.0	10.0	9.0	9.0	
30.0 - 1000	100.0	120.0	120.0	
Above 1000	1000.0	N/A	1000.0	

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Multi-Tech Systems, Inc.
Address:	2205 Woodale Dr
City, State, Zip:	Mounds View, MN 55112
Test Requested By:	Tim Gunn
EUT:	RBS304 Panic Button
First Date of Test:	February 14, 2022
Last Date of Test:	February 14, 2022
Receipt Date of Samples:	February 14, 2022
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The wireless sensors designed and manufactured by Radio Bridge provide full sensor to cloud solutions for Internet of Things (IoT) applications. The wireless single push button sensor can be used as a panic button, PERS, remote control, or other remote push button applications. When the button is pressed, a message is sent over the wireless network.

This radio has both DTS and Hybrid modes. This test report covers Hybrid operation.

Testing Objective:

Seeking to demonstrate compliance of the LoRa radio with operation under FCC 15.247:2024 and RSS-Gen Issue 5:2018+A1:2019+A2:2021, RSS-247 Issue 3:2023 specifications under technology category Other.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Ceramic Chip Antenna	Unictron Technologies Corp.	902-928	0.8

The EUT was tested using the power settings provided by the manufacturer:

SETTINGS FOR ALL TESTS IN THIS REPORT

	Position		
Modulation Types	(if multiple channels)	Frequency (MHz)	Power Setting
CSS Modulation 125 kHz Channel Bandwidth	Low Channel	902.3	18 dBm
	Mid Channel	908.7	18 dBm
	High Channel	914.9	18 dBm

TEST FIRMWARE AND SOFTWARE

Main Processor – PIC18LF26K40 Firmware Version 2.2.14 Radio Processor – 1SJ Firmware Version 1.0.02

Test Software: Tera Term Version 4.106

CONFIGURATIONS

Configuration MLTI0217-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Panic Button	Multi-Tech Systems, Inc.	RBS304	1243133741-0013

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	Lenovo	P15s	PF-2Z6MQL			
Power Supply (Laptop)	Lenovo	14F006V	8SSA10R16898D1SG			
USB to Serial Bridge	N/A	YPU-05	N/A			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Cable (Laptop)	No	1.0 m	No	AC Mains	Power Supply (Laptop)		
DC Cable (Laptop)	No	1.8 m	No	Power Supply (Laptop)	Laptop		
USB Cable	Yes	1.8 m	No	Laptop	USB to Serial Bridge		
Serial Cable	No	0.2 m	No	USB to Serial Bridge	Panic Button		

Configuration MLTI0217-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Panic Button	Multi-Tech Systems, Inc.	RBS304	1243133741-0015			

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	Lenovo	P15s	PF-2Z6MQL			
Power Supply (Laptop)	Lenovo	14F006V	8SSA10R16898D1SG			
USB to Serial Bridge	N/A	YPU-05	N/A			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable (Laptop)	No	1.0 m	No	AC Mains	Power Supply (Laptop)
DC Cable (Laptop)	No	1.8 m	No	Power Supply (Laptop)	Laptop
USB Cable	Yes	1.8 m	No	Laptop	USB to Serial Bridge
Serial Cable	No	0.2 m	No	USB to Serial Bridge	Panic Button

CONFIGURATIONS

Configuration MLTI0217-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Panic Button	Multi-Tech Systems, Inc.	RBS304	1243133741-0023

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	Lenovo	P15s	PF-2Z6MQL			
Power Supply (Laptop)	Lenovo	14F006V	8SSA10R16898D1SG			
USB to Serial Bridge	N/A	YPU-05	N/A			

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Cable (Laptop)	No	1.0 m	No	AC Mains	Power Supply (Laptop)		
DC Cable (Laptop)	No	1.8 m	No	Power Supply (Laptop)	Laptop		
USB Cable	Yes	1.8 m	No	Laptop	USB to Serial Bridge		
Serial Cable	No	0.2 m	No	USB to Serial Bridge	Panic Button		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	2022-01-31	Spurious Radiated Emissions	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	2022-02-14	Duty Cycle	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	2022-02-14	Emissions Bandwidth (20dB)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	2022-02-14	Output Power	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	2022-02-14	Equivalent Isotropic Radiated Power (EIRP)	Tested as delivered to test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

PRESCAN DATA

Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.

These prescans were also referenced in MLTI0360.1

1,000

PSA-ESCI 2022.1.12.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

SRD Transmitting on Low Channel 902.3 MHz, Mid Channel 908.7 MHz, High Channel 914.9 MHz, modulated.
POWER SETTINGS INVESTIGATED
Battery
CONFIGURATIONS INVESTIGATED
MLTI0217 - 1
FREQUENCY RANGE INVESTIGATED

18 GHz

Stop Frequency

Start Frequency 30 MHz SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Filter - Low Pass	Micro-Tronics	LPM50003	HGL	2021-09-10	2022-09-10
Filter - High Pass	Micro-Tronics	HPM50108	HFW	2021-09-10	2022-09-10
Filter - High Pass	Micro-Tronics	HPM50111	HFM	2021-09-10	2022-09-10
Filter - Band Pass/Notch	K&L Microwave	3TNF-500/1000-N/N	HGS	2021-06-28	2022-06-28
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2021-05-18	2022-05-18
Cable	Element	Biconilog Cable	MNX	2022-01-24	2023-01-24
Cable	Element	Double Ridge Guide Horn Cables	MNV	2022-01-24	2023-01-24
Cable	Element	Standard Gain Cable	MNW	2022-01-24	2023-01-24
Antenna - Biconilog	Teseq	CBL 6141B	AYD	2020-02-05	2022-02-05
Attenuator	Coaxicom	3910-20	AXY	2021-09-10	2022-09-10
Attenuator	Coaxicom	3910-10	AWZ	2021-09-10	2022-09-10
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2022-01-24	2023-01-24
Antenna - Standard Gain	ETS-Lindgren	3160-08	AJP	NCR	NCR
Antenna - Standard Gain	ETS-Lindgren	3160-07	AJJ	NCR	NCR
Antenna - Double Ridge	ETS Lindgren	3115	AIB	2020-09-03	2022-09-03
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	2022-01-24	2023-01-24

MEASUREMENT BANDWIDTHS

Frequency Range Peak Data		Quasi-Peak Data	Average Data		
(MHz)	(kHz)	(kHz)	(kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

									EmR5 2021.09.09.0	PSA-ESCI 2022.1.12	
Wo	ork Order:	MLTI	0217		Date	: 2022-	01-31	1 1	D-	11-	
	Project:	No	ne	Te	mperature	: 22.2	2°C	1 K	/^	ll	
	Job Site:	MN	09	-	Humidity	19.89	<u>% RH</u>				
Seria	I Number:	12431337	41-0023	Baron	etric Pres.	1014	mbar	leste	d by: Chris Patterso	n	
0(EUT:	RB5304 Pa	anic Buttor	1							
Conf	iguration:	1 Multi Took	Customa I								
	ustomer:	Multi-Tech	Systems, I	nc.							
A	IT Dework	Nike Fette,	Mike Dau	ĸ							
EL	JI Power:	Battery		L Oh						- duda ta d	
Operati	ing Mode:	SRD Trans	mitting on	Low Char	inel 902.3 I	viHz, iviid Ch	annei 908.	7 MHZ, High Cha	annei 914.9 MHz, mo	dulated.	
Deviations: None											
C	omments:	Duty Cycle 1.8 dB	uty Cycle Correction Factor (DCCF) was applied based on the test mode duty cycle of 65.6% = 10 * LOG(1/0.656) = .8 dB								
Test Speci	ifications						Test Meth	od			
FCC 15.24	7:2022						ANSI C63	.10:2013			
RSS-247: I	ssue 3:202	3					ANSI C63	10:2013			
RSS-Gen I	ssue 5:201	8+A1:2019-	+A2:2021				ANSI C63	.10:2013			
Run #	15	Test Dis	tance (m)	3	Antenn	a Height(s)		1 to 4(m)	Results	Pass	
80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 - 10 - 10 - 10 - 10 - 10 - 1											
0				100)			1000		10000	
						MHz			■ PK ●	AV OP	

Freq	Amplitude (dBuV)	Factor	Antenna Height	Azimuth	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted	Spec. Limit	Compared to Spec. (dB)	
(1112)	(0001)	(00/11)	(motoro)	(009:000)	(00)	(00)			(ub)	(ubuv/iii)	(ubuv/iii)	(00)	Comments
2706.780	48.4	-2.1	1.1	87.0	1.8	0.0	Horz	AV	0.0	48.1	54.0	-5.9	EUT Horz, Low Ch
2706.780	44.7	-2.1	1.4	211.0	1.8	0.0	Vert	AV	0.0	44.4	54.0	-9.6	EUT Horz, Low Ch
2744.870	43.3	-2.0	1.1	85.0	1.8	0.0	Horz	AV	0.0	43.1	54.0	-10.9	EUT Horz, High Ch
2726.220	43.0	-1.9	1.5	82.0	1.8	0.0	Horz	AV	0.0	42.9	54.0	-11.1	EUT Horz, Mid Ch
2725.930	42.6	-1.9	1.1	33.0	1.8	0.0	Vert	AV	0.0	42.5	54.0	-11.5	EUT Horz, Mid Ch
4507.040	29.4	4.8	1.5	323.0	1.8	0.0	Horz	AV	0.0	36.0	54.0	-18.0	EUT Horz, Low Ch
4499.290	29.4	4.8	1.5	39.0	1.8	0.0	Vert	AV	0.0	36.0	54.0	-18.0	EUT Horz, Low Ch
4580.250	28.9	5.1	1.5	291.0	1.8	0.0	Horz	AV	0.0	35.8	54.0	-18.2	EUT Horz, High Ch
4577.210	28.9	5.1	2.4	317.0	1.8	0.0	Vert	AV	0.0	35.8	54.0	-18.2	EUT Horz, High Ch
4533.120	28.8	5.0	1.5	70.0	1.8	0.0	Vert	AV	0.0	35.6	54.0	-18.4	EUT Horz, Mid Ch
4532.250	28.8	4.9	3.0	99.0	1.8	0.0	Horz	AV	0.0	35.5	54.0	-18.5	EUT Horz, Mid Ch
3623.550	31.1	1.3	1.5	297.0	1.8	0.0	Horz	AV	0.0	34.2	54.0	-19.8	EUT Horz, Mid Ch
3596.780	31.4	1.0	1.5	172.0	1.8	0.0	Horz	AV	0.0	34.2	54.0	-19.8	EUT Horz, Low Ch
3623.050	31.0	1.3	1.5	355.0	1.8	0.0	Vert	AV	0.0	34.1	54.0	-19.9	EUT Horz, Mid Ch
3596.910	31.3	1.0	1.9	66.0	1.8	0.0	Vert	AV	0.0	34.1	54.0	-19.9	EUT Horz, Low Ch
3653.390	30.4	1.6	1.5	151.0	1.8	0.0	Vert	AV	0.0	33.8	54.0	-20.2	EUT Horz, High Ch
3653.140	30.3	1.6	1.5	36.0	1.8	0.0	Horz	AV	0.0	33.7	54.0	-20.3	EUT Horz, High Ch
2719.110	31.7	-1.9	1.5	107.0	1.8	0.0	Horz	AV	0.0	31.6	54.0	-22.4	EUT On Side, Low Ch
2745.910	31.8	-2.0	3.8	138.0	1.8	0.0	Vert	AV	0.0	31.6	54.0	-22.4	EUT Horz, High Ch
2718.440	31.6	-1.9	3.5	308.0	1.8	0.0	Vert	AV	0.0	31.5	54.0	-22.5	EUT Vert, Low Ch
2704.980	31.7	-2.1	1.5	231.0	1.8	0.0	Vert	AV	0.0	31.4	54.0	-22.6	EUT On Side, Low Ch
2703.520	31.6	-2.1	1.5	51.0	1.8	0.0	Horz	AV	0.0	31.3	54.0	-22.7	EUT Vert, Low Ch
2706.820	51.1	-2.1	1.1	87.0	0.0	0.0	Horz	PK	0.0	49.0	74.0	-25.0	EUT Horz, Low Ch
2706.940	48.5	-2.1	1.4	211.0	0.0	0.0	Vert	PK	0.0	46.4	74.0	-27.6	EUT Horz, Low Ch
2744.660	48.1	-2.0	1.1	85.0	0.0	0.0	Horz	PK	0.0	46.1	74.0	-27.9	EUT Horz, High Ch
2726.100	47.9	-1.9	1.5	82.0	0.0	0.0	Horz	PK	0.0	46.0	74.0	-28.0	EUT Horz, Mid Ch
2726.020	47.5	-1.9	1.1	33.0	0.0	0.0	Vert	PK	0.0	45.6	74.0	-28.4	EUT Horz, Mid Ch
4555.210	40.6	4.9	3.0	99.0	0.0	0.0	Horz	PK	0.0	45.5	74.0	-28.5	EUT Horz, Mid Ch
4579.750	40.2	5.1	2.4	317.0	0.0	0.0	Vert	PK	0.0	45.3	74.0	-28.7	EUT Horz, High Ch
4506.500	40.1	4.8	1.5	323.0	0.0	0.0	Horz	PK	0.0	44.9	74.0	-29.1	EUT Horz, Low Ch
4566.120	40.0	4.9	1.5	291.0	0.0	0.0	Horz	PK	0.0	44.9	74.0	-29.1	EUT Horz, High Ch
4515.250	39.9	4.8	1.5	39.0	0.0	0.0	Vert	PK	0.0	44.7	74.0	-29.3	EUT Horz, Low Ch
4534.750	39.3	5.0	1.5	70.0	0.0	0.0	Vert	PK	0.0	44.3	74.0	-29.7	EUT Horz, Mid Ch
3660.770	41.6	1.6	1.5	36.0	0.0	0.0	Horz	PK	0.0	43.2	74.0	-30.8	EUT Horz, High Ch
3598.200	42.2	1.0	1.5	172.0	0.0	0.0	Horz	PK	0.0	43.2	74.0	-30.8	EUT Horz, Low Ch
3623.300	41.6	1.3	1.5	355.0	0.0	0.0	Vert	PK	0.0	42.9	74.0	-31.1	EUT Horz, Mid Ch
3668.220	41.2	1.7	1.5	151.0	0.0	0.0	Vert	PK	0.0	42.9	74.0	-31.1	EUT Horz, High Ch
3598.700	41.9	1.0	1.9	66.0	0.0	0.0	Vert	PK	0.0	42.9	74.0	-31.1	EUT Horz, Low Ch
3632.590	40.8	1.3	1.5	297.0	0.0	0.0	Horz	PK	0.0	42.1	74.0	-31.9	EUT Horz, Mid Ch
2717.980	43.2	-1.9	1.5	231.0	0.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	EUT On Side, Low Ch
2703.440	42.9	-2.1	1.5	107.0	0.0	0.0	Horz	PK	0.0	40.8	74.0	-33.2	EUT On Side, Low Ch
2732.820	42.6	-1.9	3.8	138.0	0.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	EUT Horz, High Ch
2718.610	42.4	-1.9	1.5	51.0	0.0	0.0	Horz	PK	0.0	40.5	74.0	-33.5	EUT Vert, Low Ch
2705.150	42.2	-2.1	3.5	308.0	0.0	0.0	Vert	PK	0.0	40.1	74.0	-33.9	EUT Vert, Low Ch

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2021-04-16	2022-04-16
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	Fairview Microwave	18B5W-26	RFY	2021-06-02	2022-06-02
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12

TEST DESCRIPTION

The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

If the transmit duty cycle < 98 percent, burst gating may have been used during some of the other tests in this report to only take the measurement during the burst duration.

EUT	RBS304 Panic Button						Work Order:	MLT10217	
Serial Number	: 1243133741-0015						Date:	14-Feb-22	
Customer	: Multi-Tech Systems, Inc.						Temperature:	22.2 °C	
Attendees	: Mike Dauk						Humidity:	16.4% RH	
Project	: None						Barometric Pres.:	1028 mbar	
Tested by	: Andrew Rogstad		Powe	er: Battery			Job Site:	MN08	
TEST SPECIFICAT	TIONS			Test Method					
FCC 15.247:2022				ANSI C63.10:2013					
RSS-Gen Issue 5:2	2018+A1:2019+A2:2021								
RSS-247 Issue 2:2	017			ANSI C63.10:2013					
COMMENTS									
Reference level of	fset includes measuremen	t cable, attenuator, DC block,	and customer's patch ca	able.					
DEVIATIONS FRO	M TEST STANDARD								
None									
Configuration #	2	Signatura	and	n 40					
		Jighature		Coplan					
		Signature		Constant		Number of	Value	Limit	
		Signature		Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
125k Channel		Signature		Pulse Width	Period	Number of Pulses	Value (%)	Limit (%)	Results
125k Channel	Low Channel, 902.3 MHz	Signature		Pulse Width 334.644 ms	Period 509.789 ms	Number of Pulses	Value (%) 65.6	Limit (%) N/A	Results N/A
125k Channel	Low Channel, 902.3 MHz Low Channel, 902.3 MHz	Signatore		Pulse Width 334.644 ms N/A	Period 509.789 ms N/A	Number of Pulses 1 5	Value (%) 65.6 N/A	Limit (%) N/A N/A	Results N/A N/A
125k Channel	Low Channel, 902.3 MHz Low Channel, 902.3 MHz Mid Channel, 908.7 MHz	Signature		Pulse Width 334.644 ms N/A 334.634 ms	Period 509.789 ms N/A 509.846 ms	Number of Pulses 1 5 1	Value (%) 65.6 N/A 65.6	Limit (%) N/A N/A N/A	Results N/A N/A N/A
125k Channel	Low Channel, 902.3 MHz Low Channel, 902.3 MHz Mid Channel, 908.7 MHz Mid Channel, 908.7 MHz	Signature		Pulse Width 334.644 ms N/A 334.634 ms N/A	Period 509.789 ms N/A 509.846 ms N/A	Number of Pulses 1 5 1 5	Value (%) 65.6 N/A 65.6 N/A	Limit (%) N/A N/A N/A N/A	Results N/A N/A N/A N/A
125k Channel	Low Channel, 902.3 MHz Low Channel, 902.3 MHz Mid Channel, 908.7 MHz Mid Channel, 908.7 MHz High Channel, 914.9 MHz	Signature		Pulse Width 334.644 ms N/A 334.634 ms N/A 334.577 ms	Period 509.789 ms N/A 509.846 ms N/A 509.796 ms	Number of Pulses 1 5 1 5 1	Value (%) 65.6 N/A 65.6 N/A 65.6	Limit (%) N/A N/A N/A N/A	Results N/A N/A N/A N/A
125k Channel	Low Channel, 902.3 MHz Low Channel, 902.3 MHz Mid Channel, 908.7 MHz Mid Channel, 908.7 MHz High Channel, 914.9 MHz	Signature		Pulse Width 334.644 ms N/A 334.634 ms N/A 334.577 ms N/A	Period 509.789 ms N/A 509.846 ms N/A 509.796 ms N/A	Number of Pulses 1 5 1 5 1 5 1 5	Value (%) 65.6 N/A 65.6 N/A 65.6 N/A	Limit (%) N/A N/A N/A N/A N/A	Results N/A N/A N/A N/A N/A N/A

		125k Chann	el. Low Channel	902.3 MHz		
			Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results
	334.644 ms	509.789 ms	1	65.6	N/A	N/A
Keysight Spectrum Analyz	zer - Element Materials Technolc	ogy				- 5 -
LXI RL RF	50 Ω AC	SEN	ISE:INT	ALIGN OFF		09:04:32 AM Feb 14, 2022
	I	PNO: Fast ↔→ FGain:Low	Trig Delay-10.00 m Trig: Video #Atten: 10 dB	s #Avglype	e: Voltage	TYPE WWWWWW DET PPPPP
Ref Offs 5 dB(div Ref 27	set 27.04 dB 7 04 dBm					Mkr2 345.7 ms -7.21 dBm
Log						
22.0						
17.0						\$ ~
12.0						
7.04						
2.04						
-2.96				2		
-7.96				Y		TRIGTAL
-13.0						
-18.0						
Center 902.30000 Res BW 3.0 MHz	0 MHz	#VBW	300 kHz		Sweep 5	Span 0 Hz 50.4 ms (8192 pts)
MKR MODE TRC SCL	x	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ON VALUE
1 N 1 t	<u>11.01 ms</u> 345.7 ms	14.68 dE	3m 3m			
3 N 1 t	520.8 ms	14.68 dE	3m			
5						E
6						
8						
10						
11						
MSG				STATUS		
				010103		
		125k Chann	el. Low Channel	902.3 MHz		
			Number of	Value	Limit	
	Dulos Width	Period	Pulses	(%)	(%)	Results
	Fuise wiath		_	NI/A	NI/A	NI/A
	N/A	N/A	5	IN/A	IN/A	N/A
	N/A	N/A	5	IN/A	IN/A	N/A
🦲 Keysight Spectrum Analyz	N/A	N/A	5	N/A	N/A	N/A
Keysight Spectrum Analyz	Pulse Width N/A ter - Element Materials Technolog 50 Ω AC	N/A	5 ISE:INT	ALIGN OFF	N/A	N/A
Keysight Spectrum Analyz	Puise width N/A ter - Element Materials Technolog 50 Ω AC	N/A pgy SEN PNO: Fast +++	5 ISE:INT Trig: Video	ALIGN OFF #Avg Type	N/A	N/A

		PNO: Fast ↔→→ IFGain:Low	Trig: Video #Atten: 10 dB	#Avg Type: Voltage	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P
5 dB/div Log	Ref Offset 27.04 dB Ref 27.04 dBm				
22.0					
17.0 ——					
12.0					
7.04					
2.04					
-7.96					
-13.0					
-18.0					
Center 9 Res BW 3	02.300000 MHz 3.0 MHz	#VBW	300 kHz		Span 0 Hz Sweep 2.295 s (8192 pts)
MSG				STATUS	

 		125k Chann	el. Mid Channel	908.7 MHz			
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	334.634 ms	509.846 ms	1	65.6	N/A	N/A	
Keysight Spectrum Analyzer	- Element Materials Technolo	qy			anderse derse derse derse derse a		
KI RE !	50 Ω AC	SEN	ISE:INT	ALIGN OFF		09:16:13 AM Feb 14, 2022	
		PNO: Fast 🔸	Trig Delay-10.00 m Trig: Video	s #Avg Type	e: Voltage	TRACE 1 2 3 4 5 6 TYPE WWWWWWW	
		FGain:Low	#Atten: 10 dB				
Ref Offse	et 27.04 dB					Mkr2 345.5 ms	
5 dB/div Ref 27.0	04 dBm					-4.17 aBM	
22.0							
17.0 41						<u>k</u> 3	
12.0							
7.04							
2.04				2			
-2.96				_ •			
-7.96						TRIG LVL	
-13.0							
-18.0							
Center 908.700000) MHz					Span 0 Hz	
Res BW 3.0 MHz		#VBW	300 kHz		Sweep 5	50.4 ms (8192 pts)	
MKR MODE TRC SCL	x	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ION VALUE	
	<u>10.88 ms</u> 345 5 ms	<u>13.49 dE</u> -4 17 dE	3m 3m				
3 N 1 t	520.7 ms	14.65 dE	3m				
4							
6 Contraction							
8							
9							
10							
<			m				
MSG				STATUS			
		125k Chann	el, Mid Channel.	908.7 MHz			
			Number of	Value	Limit		
	Pulse Width	Period	Pulses	(%)	(%)	Results	
	i aloc matri			(/*/	(,)		

🔤 Keysight Sp	ectrum Analyzer - Element Mater	ials Technology			
LXI RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF	09:16:20 AM Feb 14, 2022
		PNO: Fast IFGain:Low	Trig: Video #Atten: 10 dB	#Avg Type: Voltage	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P P P P P P
5 dB/div	Ref Offset 27.04 dB Ref 27.04 dBm				
22.0					
17.0					
12.0					
7.04					
2.04					
-2.96					
7.06					
-7.50					TRIG LVL
-13.0					
-18.0					
Center 90 Res BW 3	08.700000 MHz 3.0 MHz	#\	/BW 300 kHz	s	Span 0 Hz weep 2.295 s (819 <u>2 pts)</u>
MSG				STATUS	

		125k Chani	hei, High Channel	, 914.9 MHz	Linet	
	Dules Wiskle	Devied	Number of	value		Desults
	224 577 mg	500 706 mg	ruises	(%)	(%) N/A	Results
	334.377 1115	509.790 115		05.0	IN/A	IN/A
		er andre andre andre andre a	elen telen telen stelen telen tele	is dates dates a detsa atersa atersa	Tekni tekni tekni tekni tekni t	
Keysight Spectrum Analyzer	- Element Materials Technol 50 Q AC	ogy SE	NSE:INT	ALIGN OFF		09:20:50 AM Feb 14, 2022
			Trig Delay-10.00 m	ns #Avg Type	e: Voltage	TRACE 1 2 3 4 5 6
		PNO: Fast	Trig: Video #Atten: 10 dB			DET P P P P P P
						Mkr2 345 6 ms
Ref Offse	t 27.04 dB M. dBm					-7.28 dBm
Log						
22.0						
17.0						∲ °
12.0						
7.04						
2.04						
-2.96				2		
-7.96				•		
12.0						TRIGLVE
19.0						
-10.0						
Center 914.900000	MHz					Span 0 Hz
Res BW 3.0 MHz		#VBW	/ 300 kHz		Sweep 5	50.4 ms (8192 pts)
MKR MODE TRC SCL	x	Y	FUNCTION	FUNCTION WIDTH	FUNCT	ON VALUE
1 N 1 t 2 N 1 t	<u>11.01 m</u> 345.6 m	s 14.60 d s -7.28 d	Bm Bm			
3 N 1 t	520.8 m	s 14.69 d	Bm			
5						E
6						
8						
10						
MSG				STATUS		
				514103		
		125k Chan	nel High Channel	914 9 MHz		
		120K Ondri	Number of	Value	Limit	
	Pulse Width	Period	Pulses	(%)	(%)	Results

Keysight Spectrum Analyzer - Element Materials Tech	nology			
LX/ R L RF 50 Ω AC	SE	NSE:INT	ALIGN OFF	09:20:58 AM Feb 14, 2022
	PNO: Fast ↔ IFGain:Low	Trig: Video #Atten: 10 dB	#Avg Type: Voltage	TRACE 1 2 3 4 5 6 TYPE WWWWW DET PPPPP
Ref Offset 27.04 dB 5 dB/div Ref 27.04 dBm Log				
22.0				
17.0				
12.0				
7.04				
2.04				
-2.96				
-7.96				TRIG LVL
-13.0				
-18.0				
Center 914.900000 MHz	#\/B)A	300 kHz		Span 0 Hz
MSG	#9094	-300 MHZ	STATUS	weep 2.233 S (8182 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2021-04-16	2022-04-16
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	Fairview Microwave	18B5W-26	RFY	2021-06-02	2022-06-02
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12

TEST DESCRIPTION

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding $[10 \log (1 / D)]$, where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The AVGSA-2 method was modified as the emissions bandwidth (B) was less than the available resolution bandwidth (RBw) of the spectrum analyzer. RBw was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

EUT:	RBS304 Panic Button			Work Order:	MLTI0217						
Serial Number:	1243133741-0015					Date:	14-Feb-22				
Customer:	Multi-Tech Systems, Inc.					Temperature: 22.2 °C					
Attendees:	Mike Dauk	Humidity:	16.7% RH								
Project:	None					Barometric Pres.:	1028 mbar				
Tested by:	Andrew Rogstad		Power:	Battery		Job Site:	MN08				
TEST SPECIFICATIONS Test Method											
FCC 15.247:2022				ANSI C63.10:2013							
RSS-Gen Issue 5:2	2018+A1:2019+A2:2021										
RSS-247 Issue 2:20	017			ANSI C63.10:2013							
COMMENTS											
Reference level off	fset includes measurement	cable, attenuator, DC block, and cus	tomer's patch cabl	e.							
None											
Configuration #	2	Signature	to R	start							
				Avg Cond	Duty Cycle	Value	Limit				
				Pwr (dBm)	Factor (dB)	(dBm)	(dBm)				
								Results			
125k Channel								Results			
125k Channel	Low Channel, 902.3 MHz			18.289	1.8	20.1	30	Results Pass			
125k Channel	Low Channel, 902.3 MHz Mid Channel, 908.7 MHz			18.289 18.305	1.8 1.8	20.1 20.1	30 30	Pass Pass Pass			

		125k Char	nel, Low Channel	, 902.3 MHz		
	Avg Cond	Duty Cycle		Value	Limit	
	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	18.289	1.8		20.1	30	Pass
Keysight Spectrum Analyzer	- Element Materials Techno 50.0 AC	ology	ENSEITINT			09:06:33 AM Feb 14, 2022
				#Avg Type:	RMS	TRACE 1 2 3 4 5 6
		PNO: Fast +++ IFGain:Low	#Atten: 10 dB	Avg Hold: 1	00/100	DET A A A A A A
Ref Offse	t 27.04 dB				Mkr1	902.295 0 MHz
5 dB/div Ref 27.0	04 dBm			4		18.289 dBm
			Ť			
22.0						
			•			
17.0		- mon	~~~~			
		- Area		" "	h	
12.0	I. Carton				South and a second seco	
7.04	N				and real	
7.04	and a start				- w	
2.04	N				<u>ل</u>	¹ и,
ممر	/					W Frank
-2.96 M						by
						u, Lu
-7.96						In the second se
13.0						h
10.0 M						کر
-18.0						
Center 902.3000 M	Hz		*			Span 1,000 MHz
#Res BW 300 kHz		#VBV	V 910 kHz*		#Sweep	601.0 ms (601 pts)
MSG				STATUS		
	Ava Cond	125k Char	nel, Mid Channel	908.7 MHz	Limit	
	Avy Cond Pwr (dBm)	Eactor (dB)		(dBm)	(dBm)	Results

Keysight Sp	ectrum Analyzer - Element Materials Te	chnology			
KI RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF	09:18:12 AM Feb 14, 2022
		PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 TYPE A WWWW DET A A A A A A
5 dB/div	Ref Offset 27.04 dB Ref 27.04 dBm			N	/kr1 908.689 2 MHz 18.305 dBm
22.0					
17.0			¹		
12.0	·····				man when the second sec
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Υ.Υ.				ممسران يورسي وريد
7.04					
2.04					
2.96					
7.96					
13.0					
18.0					
Center 90 #Res BW	08.7000 MHz 300 kHz	#VBI	N 910 kHz*	#Sw	Span 500.0 kHz eep 601.0 ms (601 pts
100				STATUS	



	Pwr (dBm)	Factor (dB)		(dBm)	(dBm)	Results
	18.162	1.8		20	30	Pass
Keysight Spectrum Ar	alyzer - Element Materials Techr 50 Ω AC	iology S	ENSE:INT	ALIGN OFF		09:22:52 AM Feb 14, 202
		PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 10 dB	#Avg Type Avg Hold:	: RMS 100/100	TRACE 1 2 3 4 5 TYPE A WWW DET A A A A A
RefC 5 dB/div <b>Ref</b>	0ffset 27.04 dB 27.04 dBm				Mkr1	914.869 2 MH 18.162 dBn
			Ť			
22.0			. 1			
17.0						
17.0	- martine				mannala	
12.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					V VVVVVVVVVVVVVVVVVVVVV
Ŷ ^Q Ÿ						لمهيد
7.04						
2.04						
-2.96						
-7.96						
-13.0						
-18.0						
Center 914.900 #Res BW 300 k	0 MHz Hz	#VB\	N 910 kHz*		#Sweep	Span 500.0 kH 601.0 ms (601 pts
MSG				STATUS		



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2021-04-16	2022-04-16
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	Fairview Microwave	18B5W-26	RFY	2021-06-02	2022-06-02
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12

#### TEST DESCRIPTION

The fundamental emission output power (maximum average conducted output power) was measured using the channels and modes as called out on the following data sheets. The transmit power was set to its default maximum.

Prior to measuring output power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method AVGSA-2 in section 11.9.2.2.4 of ANSI C63.10:2013 was used to make the measurement. This method uses trace averaging across ON and OFF times of the EUT transmissions in the spectrum analyzer channel power function using an RMS detector. Following the measurement a duty cycle correction was applied by adding  $[10 \log (1 / D)]$ , where D is the duty cycle, to the measured power to compute the average power during the actual transmission times.

The AVGSA-2 method was modified as the emissions bandwidth (B) was less than the available resolution bandwidth (RBw) of the spectrum analyzer. RBw was set wider than B. This follows the guidance of section 11.9.1.1 and is equivalent to a measurement with a power meter AVGPM per section 11.9.2.3.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)



								TbtTx 2021.12.14.1	XMit 2020.12.30.0
EUT:	RBS304 Panic Button						Work Order:	MLTI0217	
Serial Number:	1243133741-0015						Date:	14-Feb-22	
Customer:	Customer: Multi-Tech Systems, Inc.						Temperature:	22.2 °C	
Attendees:	Attendees: Mike Dauk						Humidity:	16.7% RH	
Project:	None						Barometric Pres.:	1028 mbar	
Tested by:	Andrew Rogstad		Power:	Battery			Job Site:	MN08	
TEST SPECIFICAT	IONS			Test Method					
FCC 15.247:2022				ANSI C63.10:2013					
RSS-Gen Issue 5:2	018+A1:2019+A2:2021			ANSI C63.10:2013					
RSS-247 Issue 2:20	017			ANSI C63.10:2013					
COMMENTS									
Reference level off	set includes measurement	cable, attenuator, DC block, and cus	tomer's patch cab	le.					
DEVIATIONS FROM	M TEST STANDARD								
None									
Configuration #	2	Signature	to K	optart					
				Avg Cond Pwr (dBm)	Duty Cycle Factor (dB)	Antenna Gain (dBi)	Value (dBm EIRP)	Limit (dBm EIRP)	Results
125k Channel									
	Low Channel, 902.3 MHz			18.289	1.8	0.8	20.89	36	Pass
	Mid Channel, 908.7 MHz			18.305	1.8	0.8	20.91	36	Pass
	High Channel, 914.9 MHz			18.162	1.8	0.8	20.76	36	Pass





PNO: Fast     Trig: Free Run #Atten: 10 dB     Mkr1 908.689 2 MHz 18.305 dBm       Comparison     Ref Offset 27.04 dB Ref 27.04 dBm     Mkr1 908.689 2 MHz 18.305 dBm       220     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1       120     1     1	LXI RL	RF 50 Ω AC		SENSE:INT	ALIGN OFF	09:18:12 AM Feb 14, 2022
Ref Offset 27.04 dB       Mkr1 908.689 2 MHz 18.305 dBm         200       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1         100       1       1       1			PNO: Fast ↔→	Trig: Free Run #Atten: 10 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A A A A A A
220 220 700 704 206 704 207 704 207 704 208 704 208 704 209 704 209 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 704 200 705 705 705 705 705 705 705 7	5 dB/div	Ref Offset 27.04 dB Ref 27.04 dBm				Mkr1 908.689 2 MHz 18.305 dBm
220 220 200 200 200 200 200 200				Ť		
17.0	22.0			<u> </u>		
120     Model     Model <t< td=""><td>17.0</td><td></td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td></td><td></td><td>m</td></t<>	17.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			m
7.04	12.0 ሌሌ	Vermanner				wwwwwwwwwwwwwwwwwwwww
2.04 -2.96 -7.96 -7.96 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0 -1.3.0	7.04					
2.296 -7 96 -130 -180 Center 908,7000 MHz #Res BW 300 kHz #VBW 910 kHz* #Span 500.0 kHz #Span 500.0 kHz #Span 500.0 kHz #Span 500.0 kHz #Span 500.0 kHz #Span 500.0 kHz #Span 500.0 kHz	2.04					
-7.76 -13.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -1	-2.96					
-13.0 -13.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -18.0 -1	-7.96					
-18.0	-13.0					
Center 908.7000 MHz         Span 500.0 kHz           #Res BW 300 kHz         #VBW 910 kHz*         #Sweep 601.0 ms (601 pts)           Msg         status	-18.0					
Mes Bir Bookinz weep of ito ins (out proj Msg	Center #Res Bl	908.7000 MHz	#\/B	A/ 910 kHz*		Span 500.0 kHz
	MSG				STATUS	



	Avg Cond	Duty Cycle	Antenna Gain	Value	Limit		
	Pwr (dBm)	Factor (dB)	(dBi)	(dBm EIRP)	(dBm EIRP)	Results	
	18.162	1.8	0.8	20.76	36	Pass	
Keysight Spectrum Analyzer	<ul> <li>Element Materials Techno</li> </ul>	ogy		-			x
X RL RF 5	50 Ω AC	S	ENSE:INT	ALIGN OFF	RMS	09:22:52 AM Feb 14, 2 TRACE	.022
		PNO: Fast ↔→ IFGain:Low	Trig: Free Run #Atten: 10 dB	Avg Hold:	100/100		A A
Ref Offset	27.04 dB				Mkr1	914.869 2 M 18.162 dE	HZ 3m
			Ý			1	
22.0			<u>1</u>				
17.0							
17.0					mannaha		
120	man -					Mr. Marine	
www.							Խուլ
7.04							
2.04							
-2.96							
-7.96							
-13.0							
-18.0							
Center 914.9000 M	Hz	#\/B)			#Swoop	Span 500.0 k	Hz
WRCS DW 300 KHZ		#V DV	V STUALIZ	STATIS	#Sweep	001.01115 (001 p	1657
MSG				STATUS			
							_



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Generator - Signal	Keysight	N5171B (EXG)	TEY	2019-12-31	2022-12-31
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2021-04-16	2022-04-16
Block - DC	Fairview Microwave	SD3379	AMI	2021-08-13	2022-08-13
Attenuator	Fairview Microwave	18B5W-26	RFY	2021-06-02	2022-06-02
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2021-09-12	2022-09-12

#### TEST DESCRIPTION

The EUT was set to the channels and modes listed in the datasheet.

The 20 dB emissions bandwidth was measured with the resolution bandwidth set to greater than 1% of the measured emissions bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.



				TbtTx 2021.12.14.1	XMit 2020.12.30.0		
EUT: RBS304	anic Button		Work Order:	MLTI0217			
Serial Number: 1243133	41-0015		Date:	14-Feb-22			
Customer: Multi-Tech Systems, Inc.			Temperature:	22.2 °C			
Attendees: Mike Da	k		Humidity:	16.3% RH			
Project: None			Barometric Pres.:	1028 mbar			
Tested by: Andrew	logstad	Power: Battery	Job Site:	MN08			
TEST SPECIFICATIONS Test Method							
FCC 15.247:2022		ANSI C63.10:2013					
RSS-Gen Issue 5:2018+A1:2019+A2:2021 ANSI C63.10:2013							
RSS-247 Issue 2:2017 ANSI C63.10:2013							
COMMENTS							
Reference level offset includes measurement cable, attenuator, DC block, and customer's patch cable.							
DEVIATIONS FROM TEST STANDARD							
None							
Configuration #	2 Signature	Rogeland					
				Limit			
			Value	(>)	Result		
125k Channel							
Low Channel, 902.3 MHz			163.828 kHz	N/A	N/A		
Mid Channel, 908.7 MHz			162.982 kHz	N/A	N/A		
High Channel, 914.9 MHz		162.384 kHz	N/A	N/A			

Report No. MLTI0360.0 Rev.1





Center 908.7000 MHz #Res BW 10 kHz Span 1.500 MHz Sweep 14.4 ms #VBW 30 kHz Total Power 31.1 dBm **Occupied Bandwidth** 141.26 kHz Transmit Freq Error -1.132 kHz % of OBW Power 99.00 % 163.0 kHz -20.00 dB x dB Bandwidth x dB s 1 DC Coupled



125k Char	nnel, High Channel, 914.9 MHz				
	L	imit			
	Value	(>) Result			
	162.384 kHz	N/A N/A			
Kennishk Construct Andrews Flowerth Materials Technology Deline 2000 D	tester Destr				
CM RL RF 50 Ω Δ DC		09:21:15 AM Feb 14, 2022			
	Center Freq: 914.900000 MHz Trig: Free Run AvalHold: 50/50	Radio Std: None			
#IFGain:Low	#Atten: 10 dB	Radio Device: BTS			
Ref Offset 27.04 dB					
5 dB/div Ref 30.00 dBm					
25.0					
20.0					
15.0					
10.0					
5.00					
0.00					
-5.00					
-15.0					
Center 914.9000 MHz #Res BW 10 kHz	#VBW 30 kHz	Span 1.500 MHz Sweep  14.4 ms			
Occupied Bandwidth	Total Power 31.1 dBm				
141.67 kHz					
Transmit Freq Error -957 Hz	% of OBW Power 99.00 %				
x dB Bandwidth 162.4 kHz	x dB -20. <u>00 dB</u>				
MSG	STATUS 🙏 DC Cou	pled			



# **APPENDIX**



DATE: June 5, 2024



## Attestation for RBS304 reports Project MLTI0360

The project got delayed by other priorities but has been re-activated. The EUT for MLTI0360 reports has not changed since it was tested.

Sincerely,

Tim

Name : Tim Gunn Position: Directory of Technical Engineering Services Company: Multi-Tech Systems, Inc



End of Test Report