

FCC RF Test Report

APPLICANT	:	LG Electronics USA, Inc.
EQUIPMENT	:	Mobile Phone
BRAND NAME	:	LG
MODEL NAME	:	LM-K410FMW, LMK410FMW, K410FMW,
		LM-K410HM, LMK410HM, K410HM
FCC ID	:	ZNFK410HM
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System

The product was received on Jan. 19, 2020 and testing was completed on Mar. 05, 2020. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes, Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	/ISIO	N HISTORY	3
SUI	MMAR	RY OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Test Software	6
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	「RESULT	11
	3.1	6dB Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	24
	3.5	Radiated Band Edges and Spurious Emission Measurement	33
	3.6	AC Conducted Emission Measurement	37
	3.7	Antenna Requirements	
4	LIST	OF MEASURING EQUIPMENT	40
5	UNCE	ERTAINTY OF EVALUATION	41
AP	PENDI	IX A. CONDUCTED TEST RESULTS	
API	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	IX C. RADIATED SPURIOUS EMISSION	
AP	PEND	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR9D2605-01B	Rev. 01	Initial issue of report	Mar. 13, 2020

SUMMARY OF	TEST RESULT
------------	-------------

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
-	-	99% Bandwidth	-	Not Required	-
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.53 dB at 2483.500 MHz
3.6	15.207 AC Conducted Emiss		15.207(a)	Pass	Under limit 9.25 dB at 0.151 MHz
3.7	3.7 15.203 & Antenna Requirement N/A Pass		-		
Remark: Not required means after assessing, test items are not necessary to carry out.					

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

LG Electronics USA, Inc.

1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632

1.2 Manufacturer

LG Electronics USA, Inc.

1000 Sylvan Ave. Englewood Cliffs, New Jersey, United States 07632

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment Mobile Phone		
Brand Name	LG	
Model Name	LM-K410FMW, LMK410FMW, K410FMW, LM-K410HM, LMK410HM, K410HM	
FCC ID	ZNFK410HM	
EUT supports Radios application	GSM/WCDMA/LTE WLAN 2.4GHz 802.11b/g/n HT20 Bluetooth BR/EDR/LE FM Receiver/GNSS	
IMEI Code	Conduced:N/A Conduction: 353672110046132/353672110056131 Radiation: 35367211004905/35367211005905	
EUT Stage	Identical Prototype	

Remark:

1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2. There are two types of EUT sample 1 and sample 2, the differences between two samples are only for SIM slot, sample 1 is Dual SIM slot (Model Name: LM-K410FMW), sample 2 is single SIM slot(Model Name: LM-K410HM), the others all the same, so we chose sample 1 to perform all tests.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	BLE v4.0: 5.52 dBm (0.0036 W)		
	BLE v5.0: 6.02 dBm (0.0040 W)		
Antenna Type / Gain	PIFA Antenna with gain -1.60 dBi		
Type of Modulation	Bluetooth LE : GFSK		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
Test Site Location	TEL : +86-512-57900158			
	FAX : +86-512-57900958			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309	

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

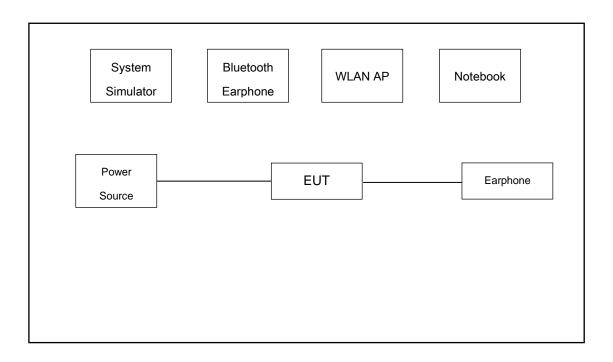
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases			
Test Item	Data Rate / Modulation			
Test item	Bluetooth – LE / GFSK			
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
ICS	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
AC	Mode 1: CSM 850 Idle + Plueteeth Link + WLAN Link (2.4C) + LISP Ceble (Cherging			
Conducted	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable (Charging			
Emission	from Adapter 1) + Earphone 1 + Battery			



2.3 Connection Diagram of Test System

For Radiation

BT Station
EUT

For Conducted Emission

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I		AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.3 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$ = 5.3 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

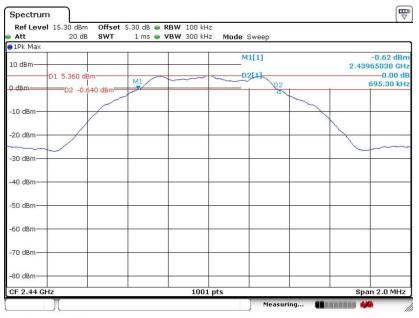
- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

3.1.4 Test Setup


Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.


Bluetooth v4.0

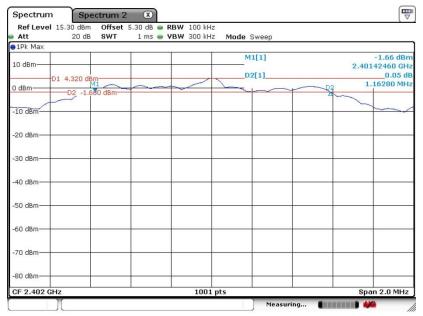
6 dB Bandwidth Plot on Channel 00

Date: 5.MAR.2020 14:13:19

6 dB Bandwidth Plot on Channel 19

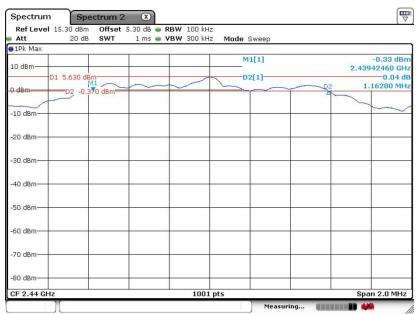
Date: 5.MAR.2020 14:16:22

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: ZNFK410HM



6 dB Bandwidth Plot on Channel 39

Date: 5.MAR.2020 14:19:30


Bluetooth v5.0

6 dB Bandwidth Plot on Channel 00

Date: 5.MAR.2020 15:20:45

6 dB Bandwidth Plot on Channel 19

Date: 5.MAR.2020 15:23:49

6 dB Bandwidth Plot on Channel 39

Att 20 dBm	Offset 5.30 dB F SWT 1 ms V		de Sweep	
1Pk Max				
10 dBm-			M1[1] D2[1]	-1.71 dBn 2.47942060 GH 0.01 dl
D1 4.230 dBm				P2 1.16480 MH
-10 dBm				
-20 dBm-		CA		
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
CF 2.48 GHz	•	1001 pts		Span 2.0 MHz

Date: 5.MAR.2020 15:27:11

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.2 Method AVGPM-G method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

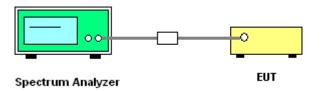
3.2.6 Test Result of Average Output Power (Reporting Olny)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

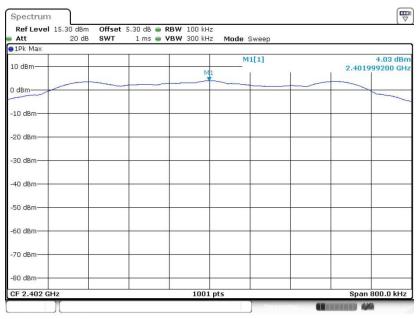
3.3.3 Test Procedures

- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

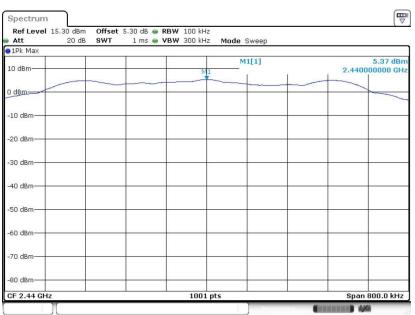
3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

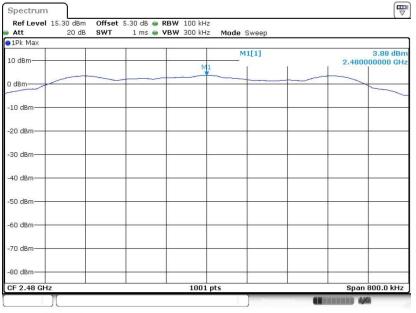


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

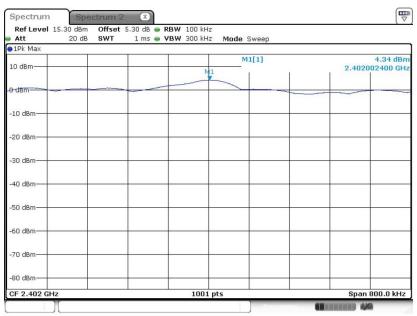

Bluetooth v4.0

PSD 100kHz Plot on Channel 00

Date: 5.MAR.2020 14:13:53


PSD 100kHz Plot on Channel 19

Date: 5.MAR.2020 14:17:02

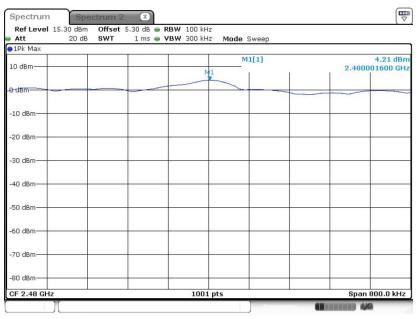

PSD 100kHz Plot on Channel 39

Date: 5.MAR.2020 14:20:20

Bluetooth v5.0

PSD 100kHz Plot on Channel 00

Date: 5.MAR.2020 15:21:14

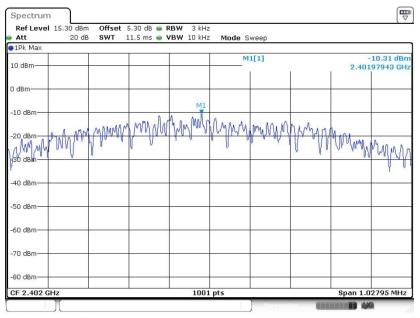


PSD 100kHz Plot on Channel 19

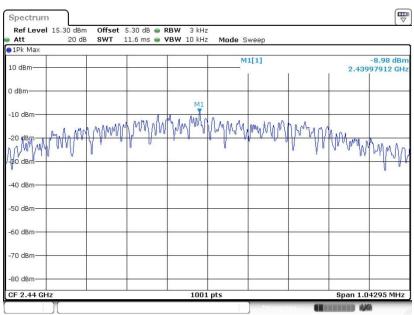
Att 20 1Pk Max) dB SWT	1 III5 🖤 VE	300 kHz	Mode Sweep	,		
LO dBm			MI	M1[1]	Ĩ	2.4400	5.66 dBn 002400 GH: I
dBm-							
10 dBm							
20 dBm							
30 dBm							
40 dBm							
50 dBm							
60 dBm						-	
70 dBm	_						+
80 dBm							

Date: 5.MAR.2020 15:24:21

PSD 100kHz Plot on Channel 39

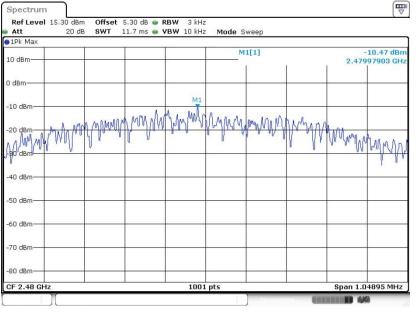

Date: 5.MAR.2020 15:27:36

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

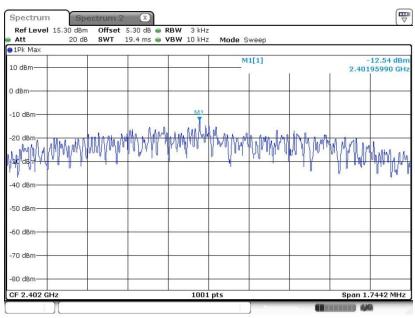

Bluetooth v4.0

PSD 3kHz Plot on Channel 00

Date: 5.MAR.2020 14:13:37

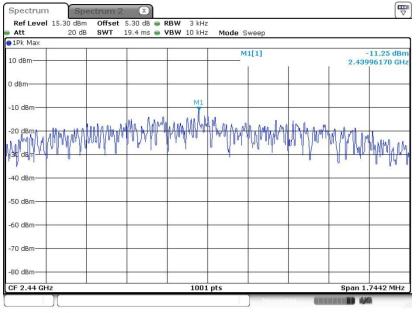

PSD 3kHz Plot on Channel 19

Date: 5.MAR.2020 14:16:43

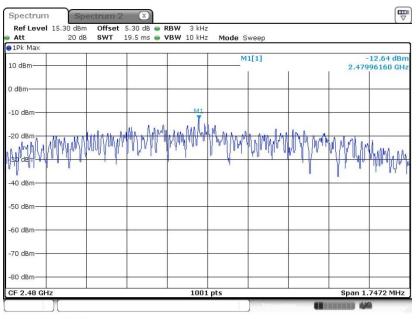

PSD 3kHz Plot on Channel 39

Date: 5.MAR.2020 14:19:55

Bluetooth v5.0


PSD 3kHz Plot on Channel 00

Date: 5.MAR.2020 15:20:56



PSD 3kHz Plot on Channel 19

Date: 5.MAR.2020 15:24:02

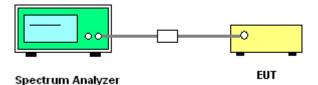
PSD 3kHz Plot on Channel 39

Date: 5.MAR.2020 15:27:22

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

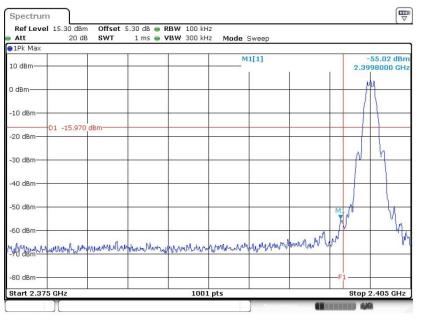

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

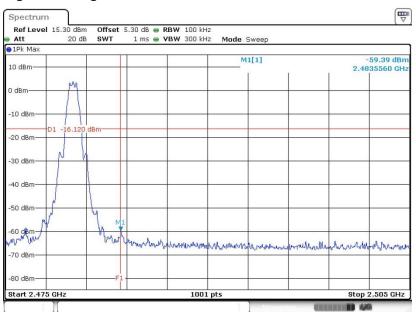
3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



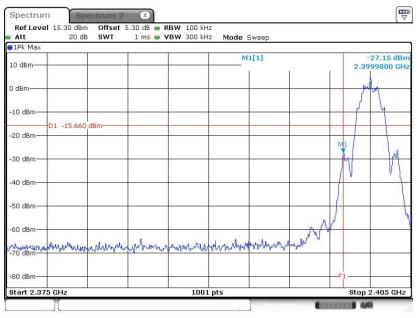
3.4.5 Test Result of Conducted Band Edges Plots


Bluetooth v4.0

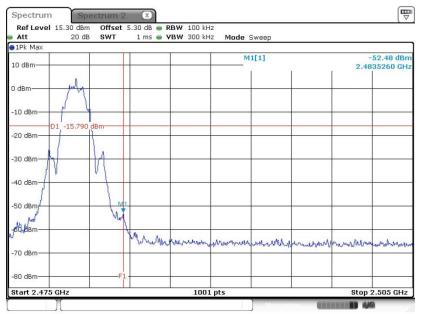
Low Band Edge Plot on Channel 00

Date: 5.MAR.2020 14:14:01

High Band Edge Plot on Channel 39



Date: 5.MAR.2020 14:20:30

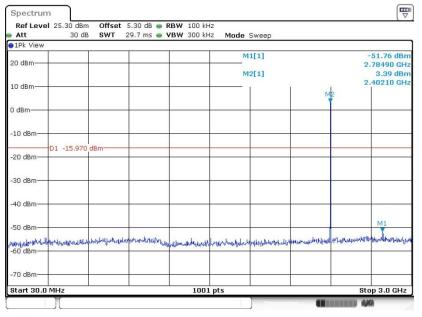

Bluetooth v5.0

Low Band Edge Plot on Channel 00

Date: 5.MAR.2020 15:21:24

High Band Edge Plot on Channel 39

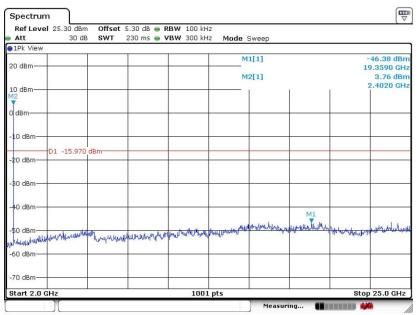
Date: 5.MAR.2020 15:27:57



3.4.6 Test Result of Conducted Spurious Emission Plots

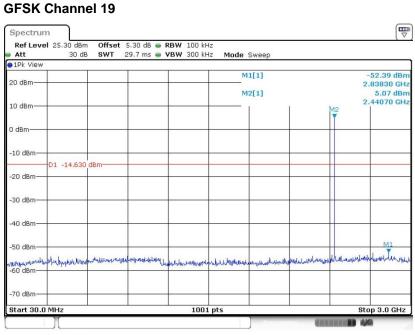
Bluetooth v4.0

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

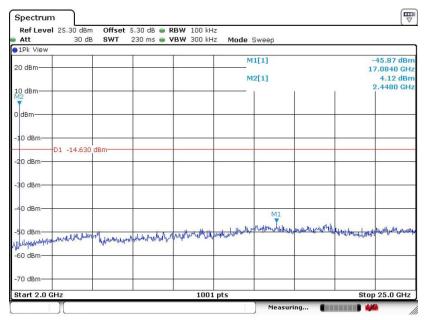

GFSK Channel 00

Date: 5.MAR.2020 14:14:12

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

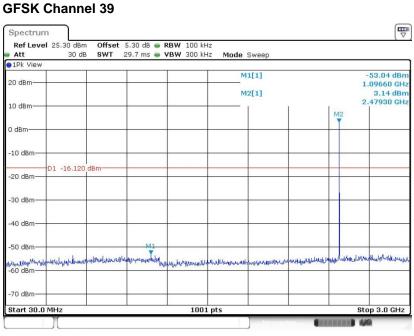

GFSK Channel 00

Date: 5.MAR.2020 14:14:38

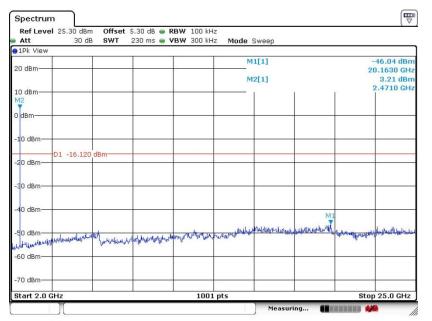


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 5.MAR.2020 14:17:26


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 5.MAR.2020 14:17:43



Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 5.MAR.2020 14:20:46

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 5.MAR.2020 14:21:04

Bluetooth v5.0

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

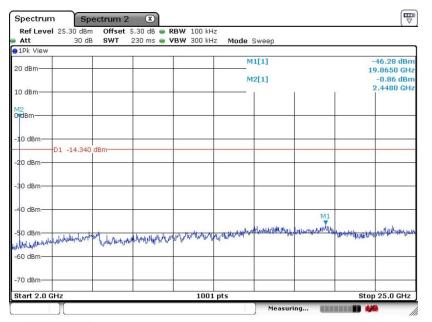
GFSK Channel 00

Date: 5.MAR.2020 15:21:36

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 00 trum 2 🛛 🗶 Spectrum Sp Offset 5.30 dB • RBW 100 kHz SWT 230 ms • VBW 300 kHz Ref Level 25.30 dBm 30 dB Att Mode Sweep ⊖1Pk View M1[1] 46.63 dBn 20 dBm-19.7500 GHz M2[1] -1.86 dBn 2.4020 GH 10 dBmddBm-10 dBm D1 -15.660 dBm 20 dBm 0 dBr +0 dBm M1 -50 dBm of Multing the market the solf total approximate and the second of the -60 dBm -70 dBm 1001 pts Stop 25.0 GHz Start 2.0 GHz

Date: 5.MAR.2020 15:21:44



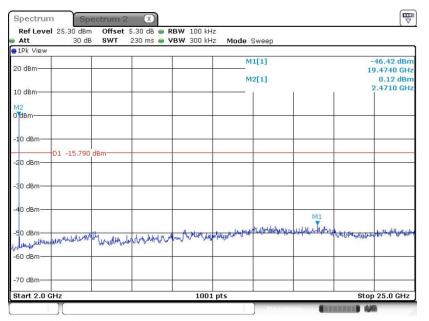
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Spectrum Spectru					
		100 kHz			
Att 30 dB SV	VT 29.7 ms 👄 VBW	300 kHz Mode	Sweep		
		1	M1[1]	-50.61	dBi
20 dBm-			10141	1.7553	
			M2[1]	2.02	
10 dBm			I 1	M2	
) dBm				Y	
-10 dBm					
D1 -14.340 dBm-				_	
-20 dBm					
-30 dBm					
-40 dBm					
		M	1		
50 dBm		Ī			
approximation and the formation and a started in the	anny historical indications and	in an and the state of the second	growned, we block to be the second of the second se	hurbert to Valer handfore	stright
60 dBm					
-70 dBm					
Start 30.0 MHz		1001 pts		Stop 3.0	GH

Date: 5.MAR.2020 15:24:39

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 5.MAR.2020 15:25:19


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Ref Level			5.30 dB 😑						
Att 1Pk View	30 dB	SWT	29.7 ms 🥌	VBW 300 kH	z Mode	Sweep			
20 dBm						1[1] 2[1]			-53.46 dBr 2.90060 GH 1.75 dBr
10 dBm					<u> </u>		Ĭ	í	2.47930 GH
0 dBm								M2	
-10 dBm						·			
-20 dBm	1 -15.790	dBm							
-30 dBm									_
-40 dBm									-
-50 dBm									MI
60 dBm	when have been and a second	hunder	hardonaliththauthy	unalmonterballed	mununluhy	dimendulation report	hipderethindus	punliniphism	hand
-70 dBm									_
Start 30.0 M	Hz			1001	nts			Si	top 3.0 GHz

GFSK Channel 39

Date: 5.MAR.2020 15:28:09

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

Date: 5.MAR.2020 15:28:17

3.5 Radiated Band Edges and Spurious Emission Measurement

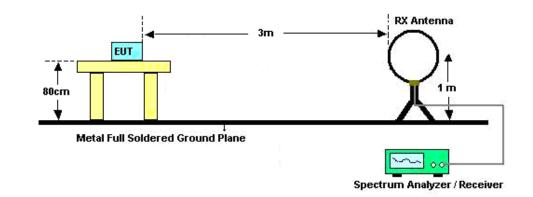
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

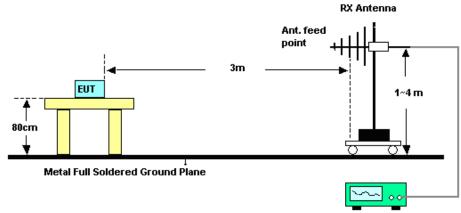
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

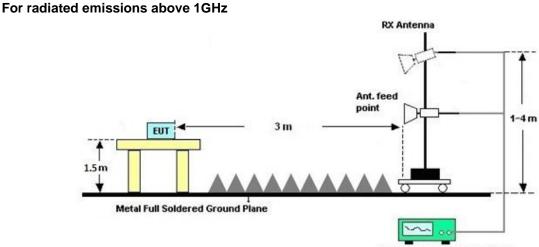
The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup


For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

Spectrum Analyzer / Receiver

Sporton International (Kunshan) Inc. TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: ZNFK410HM Page Number: 35 of 41Report Issued Date: Mar. 13, 2020Report Version: Rev. 01Report Template No.: BU5-FR15CBT4.0 Version 2.0

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.6 AC Conducted Emission Measurement

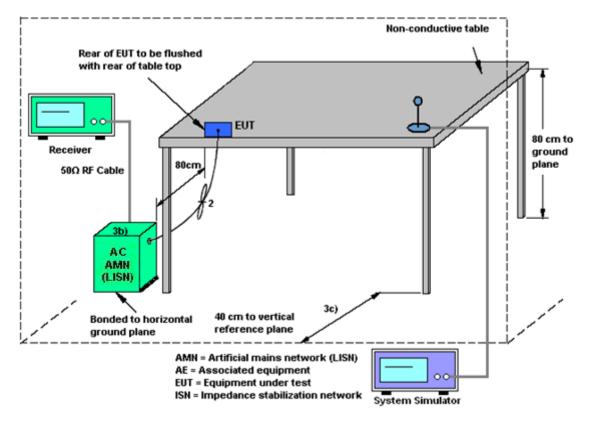
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Nov. 02, 2019	Mar. 05, 2020	Nov. 01, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 08, 2020	Mar. 05, 2020	Jan. 07, 2021	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 08, 2020	Mar. 05, 2020	Jan. 07, 2021	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY572901 57	3Hz~8.5GHz;M ax 30dBm	Jul. 18, 2019	Mar. 02, 2020	Jul. 17, 2020	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 16, 2019	Mar. 02, 2020	Apr. 18, 2020	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	Mar. 02, 2020	Nov. 09, 2020	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 30, 2019	Mar. 02, 2020	May 29, 2020	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75959	1GHz~18GHz	Jan. 27, 2020	Mar. 02, 2020	Jan. 26, 2021	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 08, 2020	Mar. 02, 2020	Jan. 07, 2021	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	Mar. 02, 2020	Aug. 05, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2020	Mar. 02, 2020	Jan. 13, 2021	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 16, 2019	Mar. 02, 2020	Aug. 15, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2019	Mar. 02, 2020	Apr. 14, 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Mar. 02, 2020	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 02, 2020	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Mar. 02, 2020	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Feb. 25, 2020	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	Feb. 25, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	Feb. 25, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	Feb. 25, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.006

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Appendix A. Conducted Test Results

Report Number : FR9D2605-01B

Bluetooth v4.0

Bluetooth Low Energy

Test Engineer:	Lex Wu	Temperature:	20~26	°C
Test Date:	2020/3/5	Relative Humidity:	40~51	%

					<u>6d</u>	<u>1ES1</u> B and 99%	RESULTS 6 Occupie	
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.03	0.69	0.50	Pass
BLE	1Mbps	1	19	2440	1.03	0.70	0.50	Pass
BLE	1Mbps	1	39	2480	1.03	0.70	0.50	Pass

TEST RESULTS DATA Peak Power Table

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	4.24	30.00	-1.60	2.64	36.00	Pass
BLE	1Mbps	1	19	2440	5.52	30.00	-1.60	3.92	36.00	Pass
BLE	1Mbps	1	39	2480	5.13	30.00	-1.60	3.53	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	2.14	4.09
BLE	1Mbps	1	19	2440	2.14	5.42
BLE	1Mbps	1	39	2480	2.14	4.27

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	4.03	-10.31	-1.60	8.00	Pass			
BLE	1Mbps	1	19	2440	5.37	-8.98	-1.60	8.00	Pass			
BLE	1Mbps	1	39	2480	3.88	-10.47	-1.60	8.00	Pass			

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Report Number : FR9D2605-01B

Bluetooth v5.0

Bluetooth Low Energy

Test Engineer:	Lex Wu	Temperature:	20~26	°C
Test Date:	2020/3/5	Relative Humidity:	40~51	%

					<u>6d</u>	<u>TEST </u> B and 99%	RESULTS 6 Occupie	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	2.06	1.16	0.50	Pass
BLE	1Mbps	1	19	2440	2.07	1.16	0.50	Pass
BLE	1Mbps	1	39	2480	2.06	1.16	0.50	Pass

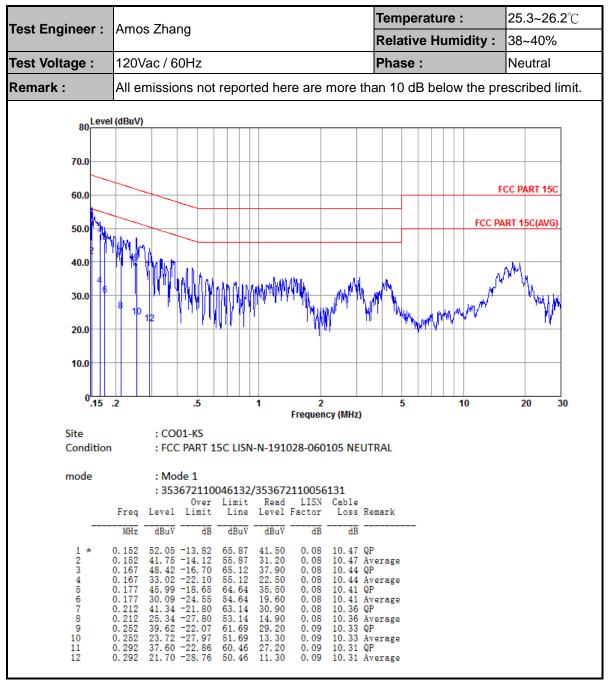
TEST RESULTS DATA Peak Power Table

	Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
ĺ	BLE	1Mbps	1	0	2402	4.97	30.00	-1.60	3.37	36.00	Pass
	BLE	1Mbps	1	19	2440	6.02	30.00	-1.60	4.42	36.00	Pass
	BLE	1Mbps	1	39	2480	4.88	30.00	-1.60	3.28	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> (Reporting Only)

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
BLE	1Mbps	1	0	2402	2.14	4.76
BLE	1Mbps	1	19	2440	2.14	5.99
BLE	1Mbps	1	39	2480	2.14	4.80

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	4.34	-12.54	-1.60	8.00	Pass
BLE	1Mbps	1	19	2440	5.66	-11.25	-1.60	8.00	Pass
BLE	1Mbps	1	39	2480	4.21	-12.64	-1.60	8.00	Pass


Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit.

Appendix B. AC Conducted Emission Test Results

Toot Engineer	Amon Zhong	Temperature :	25.3~26.2℃
Test Engineer :	Amos Zhang	Relative Humidity :	38~40%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Remark :	All emissions not reported here are more the	nan 10 dB below the pr	escribed limit.
80	l (dBuV)		
70.0			
60.0		F	CC PART 15C
50.0		FCC P/	ART 15C(AVG)
40.0	s in the second se		h des
30.0		No bert Manager	Maril
20.0		In the Angle where	- W
10.0			
0.15	.2 .5 1 2	5 10	20 30
C!+-	Frequency (MHz)		
Site Condition	: CO01-KS : FCC PART 15C LISN-L-191028-060105 LINE		
mode	: Mode 1 : 353672110046132/353672110056131		
	Over Limit Read LISN Cable Freq Level Limit Line Level Factor Loss R	lemark	
	MHz dBuV dB dBuV dBuV dB dB		
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	iverage JP iverage JP iverage JP iverage JP iverage	
12 13	0.302 25.46 -24.73 50.19 15.10 0.05 10.31 A 0.350 41.54 -17.42 58.96 31.20 0.05 10.29 Q 0.350 24.44 -24.52 48.96 14.10 0.05 10.29 A	lverage)P	

Note:

- 1. Level(dB μ V) = Read Level(dB μ V) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Radiated Spurious Emission

Bluetooth v4.0

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2347.31	55.56	-18.44	74	47.66	32.1	7.23	31.43	296	311	Ρ	Н
		2377.73	45.87	-8.13	54	37.98	32.03	7.28	31.42	296	311	А	Н
	*	2402	99.6	-	-	91.71	32	7.3	31.41	296	311	Ρ	Н
BLE CH 00	*	2402	99.04	-	-	91.15	32	7.3	31.41	296	311	А	Н
2402MHz		2380.59	56.27	-17.73	74	48.38	32.03	7.28	31.42	100	247	Ρ	V
240211112		2375	45.85	-8.15	54	37.96	32.03	7.28	31.42	100	247	А	V
	*	2402	101.79	-	-	93.9	32	7.3	31.41	100	247	Ρ	V
	*	2402	101.23	-	-	93.34	32	7.3	31.41	100	247	А	V
		2484.88	56.55	-17.45	74	48.19	32.27	7.48	31.39	275	228	Ρ	Η
		2483.5	47.47	-6.53	54	39.11	32.27	7.48	31.39	275	228	А	н
51 5	*	2480	99.96	-	-	91.6	32.27	7.48	31.39	275	228	Ρ	н
BLE CH 39	*	2480	99.33	-	-	90.97	32.27	7.48	31.39	275	228	А	Н
2480MHz		2497.84	55.92	-18.08	74	47.58	32.2	7.52	31.38	100	250	Ρ	V
2400101112		2483.5	47.46	-6.54	54	39.1	32.27	7.48	31.39	100	250	А	V
	*	2480	100.77	-	-	92.41	32.27	7.48	31.39	100	250	Ρ	V
	*	2480	100.27	-	-	91.91	32.27	7.48	31.39	100	250	А	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	е.						

_	BLE (Harmonic @ 3m)												
BLE	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Pos	Peak Avg. (P/A)	
BLE		4806	39.52	-34.48		56.42	34.2	10.49	61.59	178	266	P	H
CH 00 2402MHz		4806	40.14	-33.86	74	57.04	34.2	10.49	61.59	250	185	Ρ	V
515		4878	39.67	-34.33	74	56.57	34.13	10.58	61.61	179	265	Р	Н
BLE		7320	41.29	-32.71	74	53.41	36.6	13.62	62.34	179	265	Р	н
CH 19 2440MHz		4880	40	-34	74	56.9	34.13	10.58	61.61	263	160	Р	V
244010172		7320	41.9	-32.1	74	54.02	36.6	13.62	62.34	263	160	Р	V
		4962	40.79	-33.21	74	57.65	34.1	10.68	61.64	201	241	Р	Н
BLE		7440	40.78	-33.22	74	53.2	36.4	13.58	62.4	201	241	Р	Н
CH 39 2480MHz		4960	39.23	-34.77	74	56.09	34.1	10.68	61.64	267	154	Р	V
240011112		7440	40.62	-33.38	74	53.04	36.4	13.58	62.4	267	154	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	e.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		31.94	16.53	-23.47	40	25.46	22.94	1.1	32.97	-	-	Ρ	Н
		128.94	16.82	-26.68	43.5	30.13	17.8	1.83	32.94	-	-	Р	Н
		157.07	16.61	-26.89	43.5	31.54	16.01	2.01	32.95	-	-	Р	Н
		484.93	21.51	-24.49	46	28.14	23.22	3.39	33.24	-	-	Р	Н
0.4011-		756.53	26.19	-19.81	46	29.49	25.58	4.22	33.1	-	-	Р	Н
2.4GHz BLE		938.89	28.9	-17.1	46	29.16	26.89	4.69	31.84	100	0	Р	Н
LF		31.94	17.2	-22.8	40	26.13	22.94	1.1	32.97	-	-	Р	V
		84.32	17.31	-22.69	40	35.15	13.54	1.55	32.93	-	-	Ρ	V
		147.37	13.89	-29.61	43.5	28.17	16.73	1.95	32.96	-	-	Р	V
		467.47	20.58	-25.42	46	27.56	22.91	3.34	33.23	-	-	Р	V
		807.94	26.87	-19.13	46	29.35	26.13	4.33	32.94	-	-	Ρ	V
		954.41	28.17	-17.83	46	28.08	27.04	4.72	31.67	100	0	Ρ	V
Remark		o other spurio I results are F		st limit li	ne.								

Bluetooth v5.0

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2359.53	56.31	-17.69	74	48.42	32.07	7.25	31.43	298	311	Ρ	Н
		2337.43	45.92	-8.08	54	38.03	32.1	7.23	31.44	298	311	А	Н
	*	2402	99.34	-	-	91.45	32	7.3	31.41	298	311	Ρ	Н
BLE CH 00	*	2402	98.76	-	-	90.87	32	7.3	31.41	298	311	А	Н
2402MHz		2382.93	55.77	-18.23	74	47.88	32.03	7.28	31.42	100	250	Ρ	V
240210112		2389.95	45.87	-8.13	54	37.98	32	7.3	31.41	100	250	А	V
	*	2402	101.73	-	-	93.84	32	7.3	31.41	100	250	Ρ	V
	*	2402	101.2	-	-	93.31	32	7.3	31.41	100	250	А	V
		2498.2	56.29	-17.71	74	47.95	32.2	7.52	31.38	275	231	Ρ	Н
		2483.5	47.24	-6.76	54	38.88	32.27	7.48	31.39	275	231	А	Н
	*	2480	99.8	-	-	91.44	32.27	7.48	31.39	275	231	Ρ	Н
BLE CH 39	*	2480	99.34	-	-	90.98	32.27	7.48	31.39	275	231	А	Н
2480MHz		2494.42	56.91	-17.09	74	48.57	32.2	7.52	31.38	100	250	Ρ	V
240011112		2483.5	47.34	-6.66	54	38.98	32.27	7.48	31.39	100	250	А	V
	*	2480	100.36	-	-	92	32.27	7.48	31.39	100	250	Ρ	V
	*	2480	99.91	-	-	91.55	32.27	7.48	31.39	100	250	А	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

_	BLE (Harmonic @ 3m)												
BLE	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Pos	Peak Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		4806	40.13	-33.87	74	57.03	34.2	10.49	61.59	187	245	Р	Н
CH 00 2402MHz		4806	39.96	-34.04	74	56.86	34.2	10.49	61.59	221	201	Р	V
		4878	38.99	-35.01	74	55.89	34.13	10.58	61.61	180	271	Р	н
BLE		7320	42.01	-31.99	74	54.13	36.6	13.62	62.34	180	271	Ρ	Н
CH 19 2440MHz		4880	41.51	-32.49	74	58.41	34.13	10.58	61.61	217	128	Р	V
244010112		7320	41.54	-32.46	74	53.66	36.6	13.62	62.34	217	128	Р	V
		4960	39.97	-34.03	74	56.83	34.1	10.68	61.64	266	360	Р	н
BLE CH 39		7440	41.86	-32.14	74	54.28	36.4	13.58	62.4	266	360	Ρ	Н
2480MHz		4962	39.77	-34.23	74	56.63	34.1	10.68	61.64	100	0	Р	V
24001112		7440	41.33	-32.67	74	53.75	36.4	13.58	62.4	100	0	Р	V
Remark		o other spurio I results are P		st Peak	and Averag	e limit lin	е.						

2.4GHz 2400~2483.5MHz

Emission below 1GHz

2.4GHz BLE (LF)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		34.85	17.13	-22.87	40	27.8	21.2	1.08	32.95	-	-	-	Н
		87.23	15.53	-24.47	40	32.96	14.17	1.33	32.93	-	-	Р	Н
		128.94	16.92	-26.58	43.5	30.23	17.8	1.83	32.94	-	-	Р	Н
		486.87	21.25	-24.75	46	27.83	23.26	3.4	33.24	-	-	Р	Н
0.4011-		741.98	25.79	-20.21	46	29.35	25.4	4.18	33.14	-	-	Р	Н
2.4GHz BLE		931.13	28.29	-17.71	46	28.74	26.81	4.68	31.94	100	0	Р	Н
LF		34.85	16.21	-23.79	40	26.88	21.2	1.08	32.95	-	-	Р	V
		59.1	16.14	-23.86	40	34.62	12.64	1.82	32.94	-	-	Р	V
		90.14	16.71	-26.79	43.5	33.84	14.8	0.99	32.92	-	-	Р	V
		509.18	22	-24	46	28.28	23.6	3.37	33.25	-	-	Р	V
		656.62	23.85	-22.15	46	28.42	24.77	3.96	33.3	-	-	Р	V
		950.53	28.97	-17.03	46	28.96	27	4.71	31.7	100	0	Р	V
Remark		o other spurio I results are F		st limit li	ne.								

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

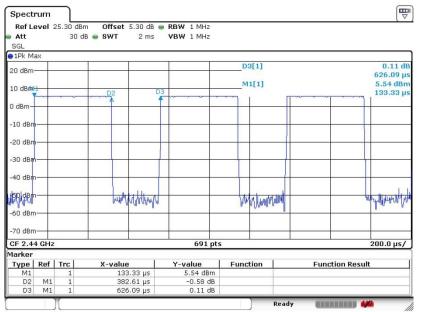
1. Level(dBµV/m)

= Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

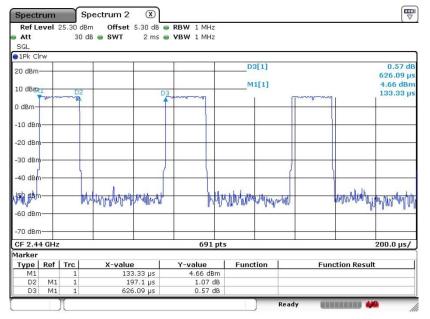
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)


Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots


Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
Bluetooth –LE v4.0	61.11	0.383	2.614	2.7kHz
Bluetooth –LE v5.0	31.48	0.197	5.074	5.1kHz

Bluetooth – LE v4.0

Bluetooth – LE v5.0

