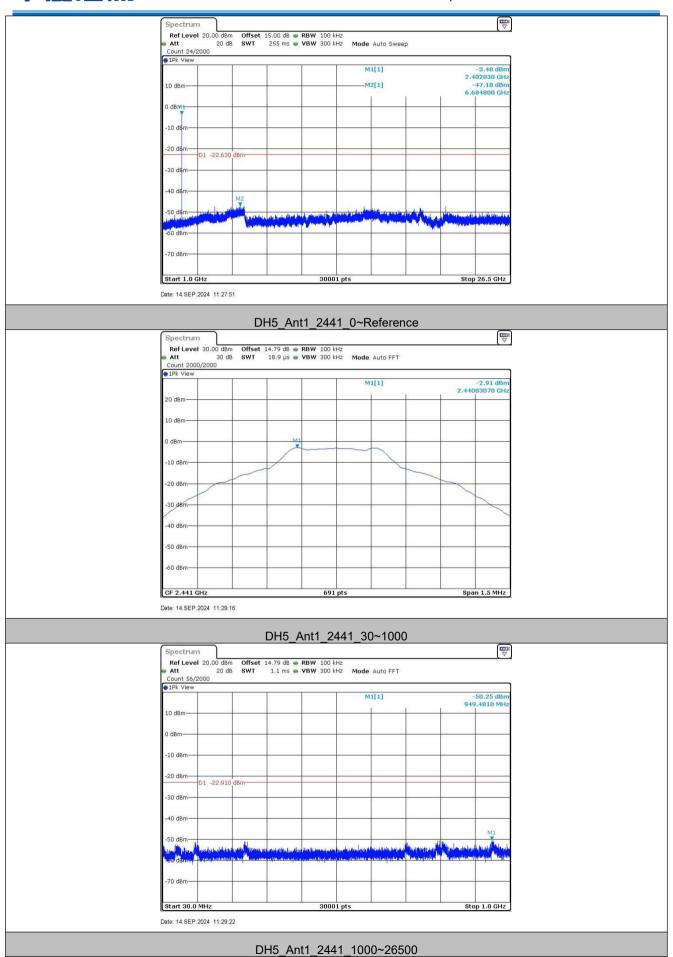
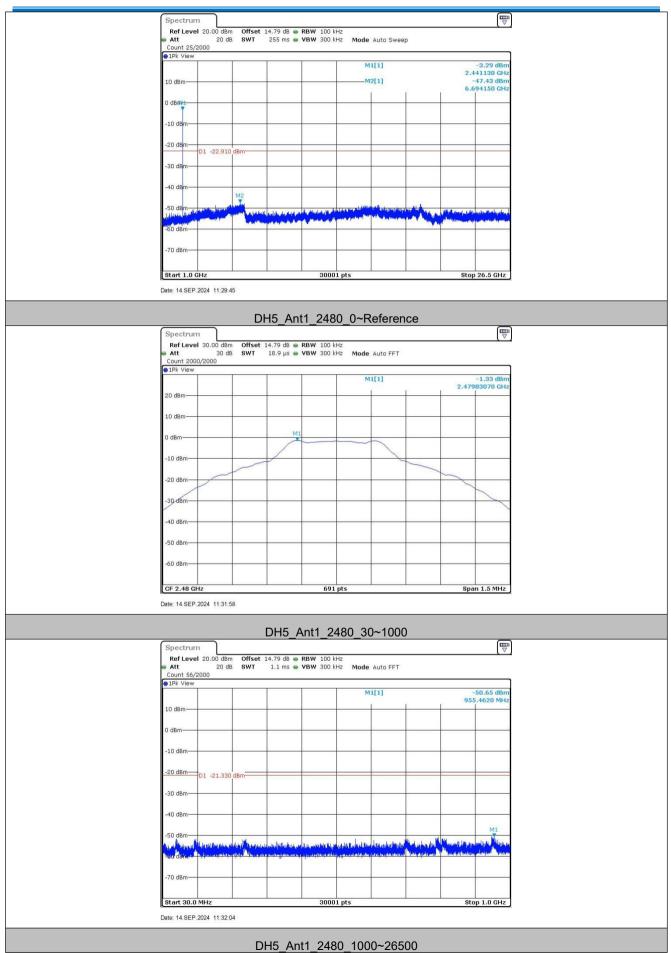


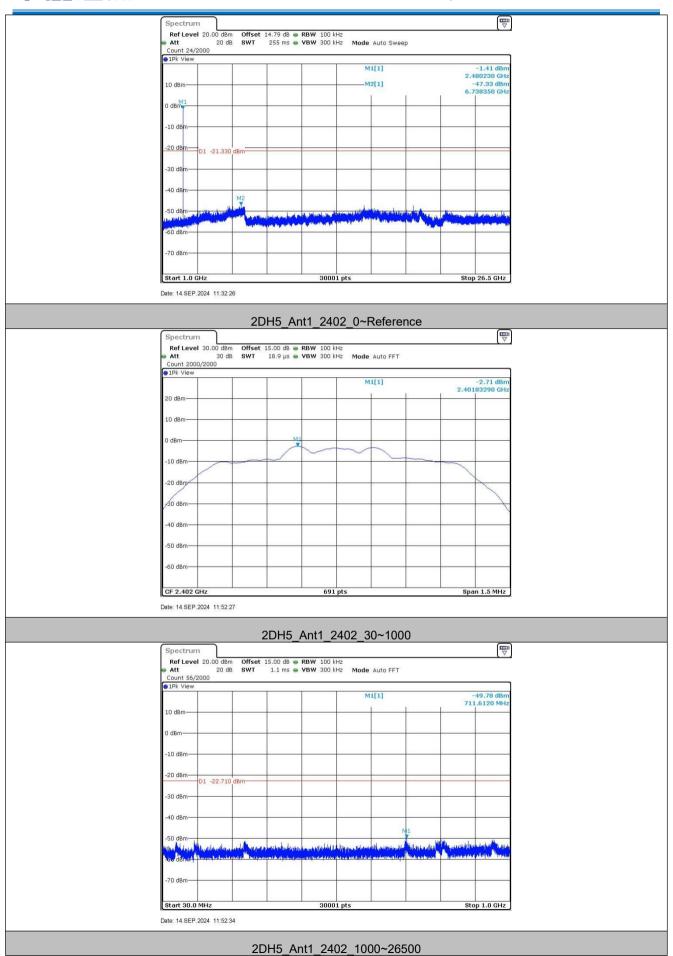
5.9 Spurious RF Conducted Emissions

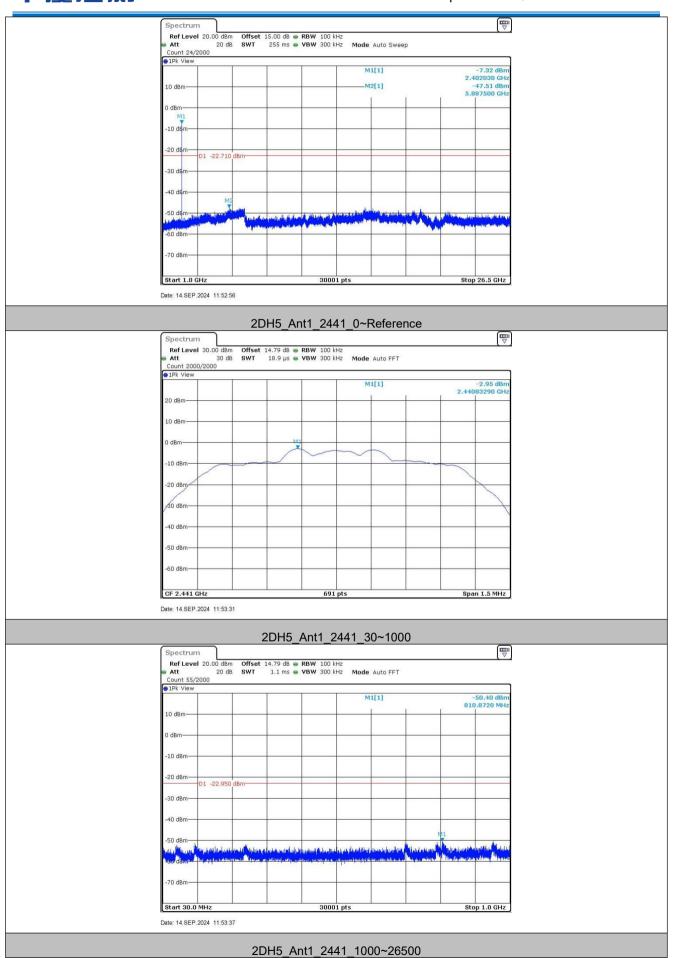
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=cable loss+ attenuation factor.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Pass

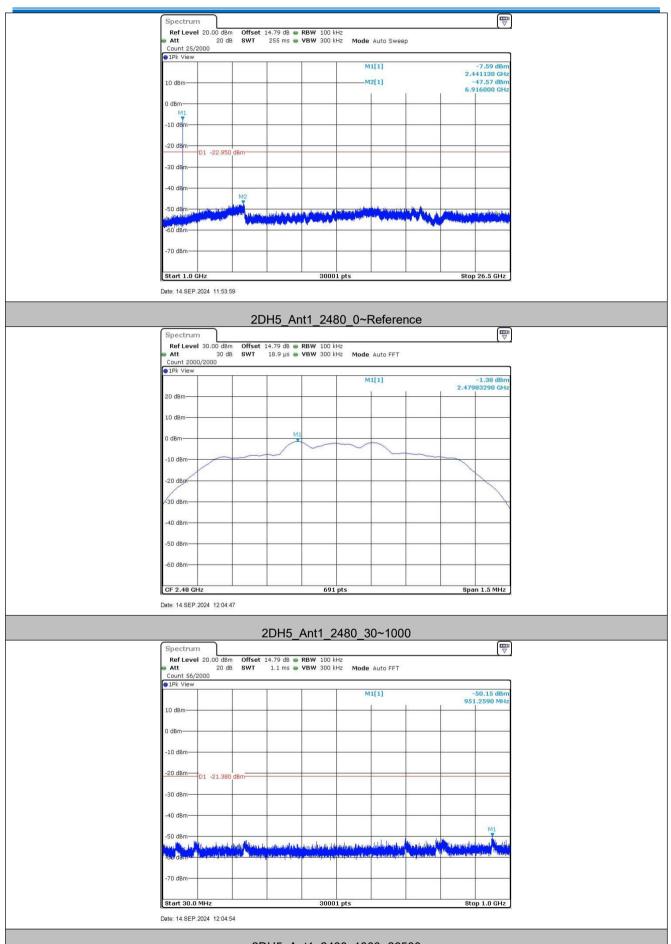


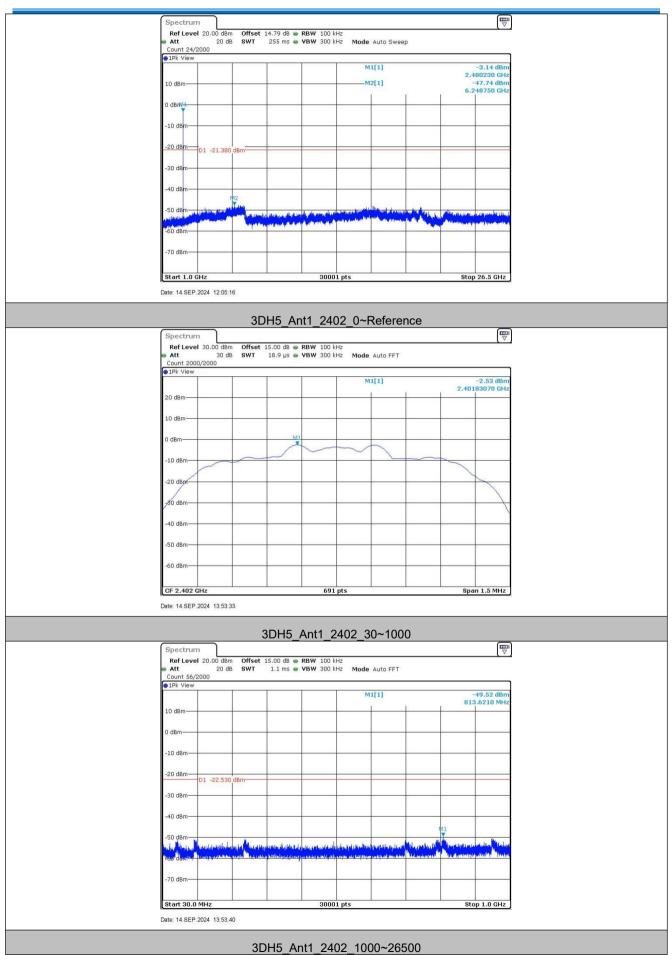
Test plot as follows:



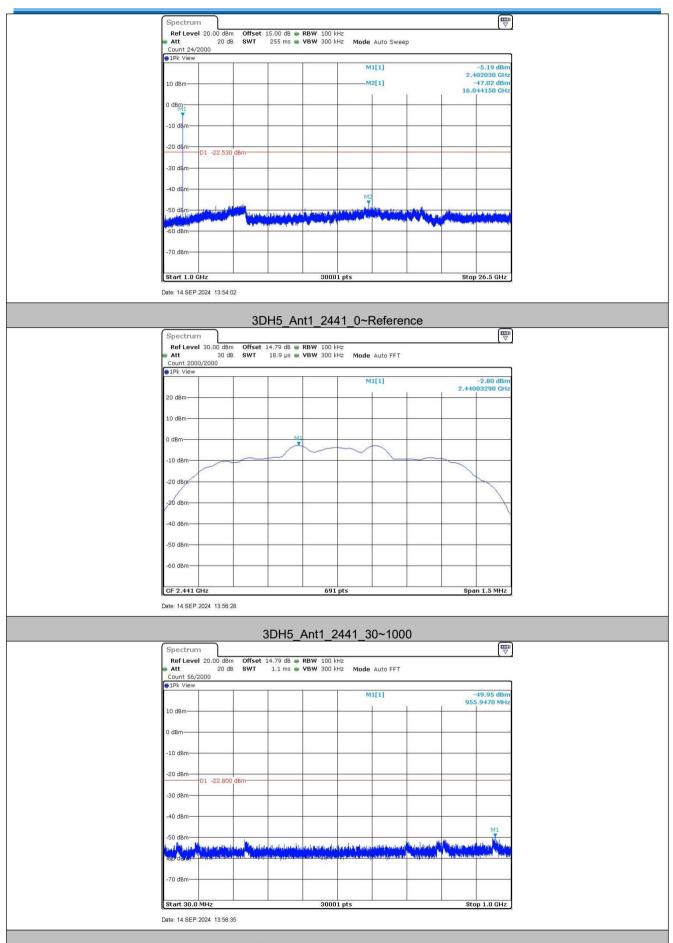


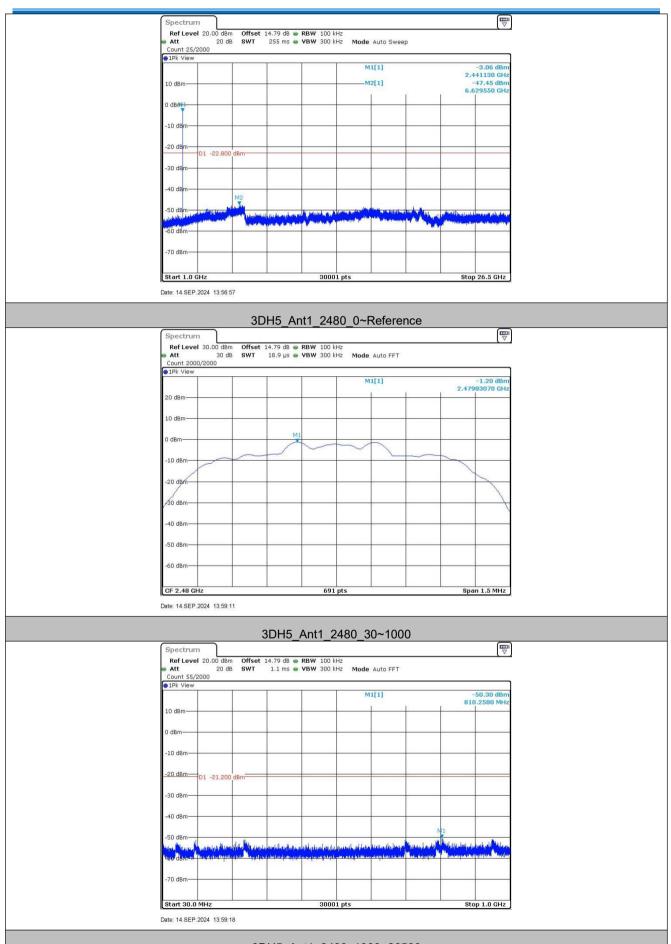




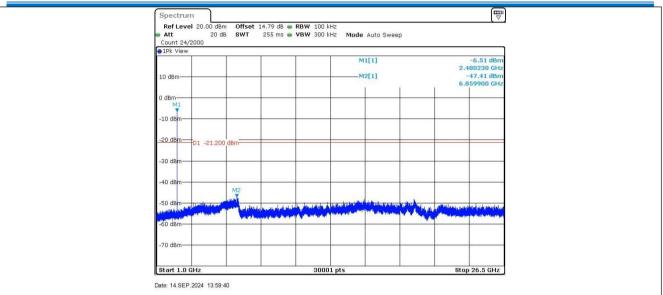


2DH5_Ant1_2480_1000~26500





3DH5_Ant1_2441_1000~26500



3DH5_Ant1_2480_1000~26500

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20240701499E-02

Remark:

Pre test 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

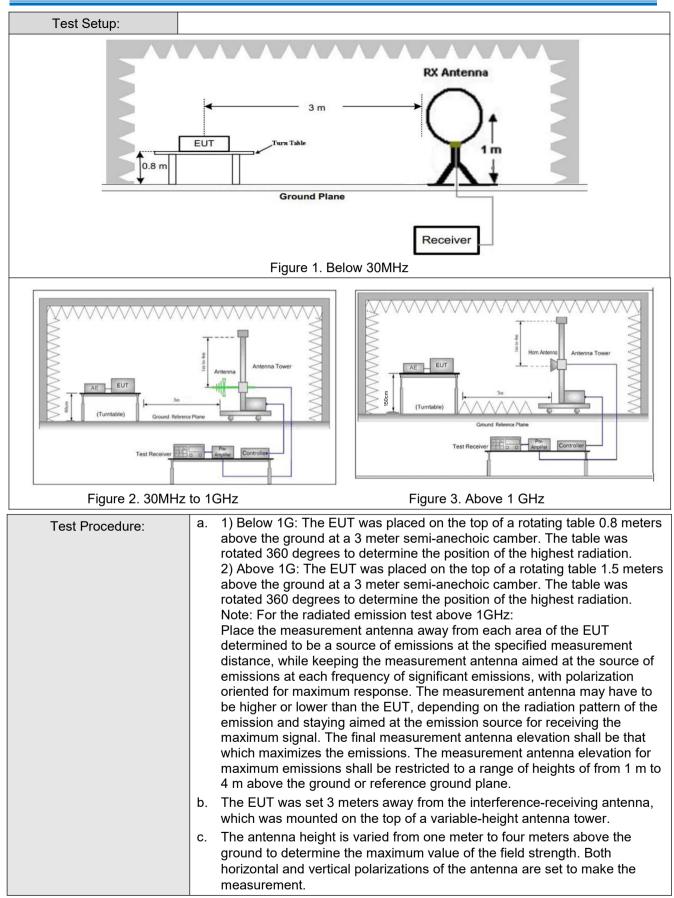
5.10Other requirements Frequency Hopping Spread Spectrum System

•	equency hopping Spread Spectrum System							
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:							
rate from a Pseudorandom o on the average by each trans	nnel frequencies that are selected at the system hopping rdered list of hopping frequencies. Each frequency must be used equally smitter. The system receivers shall have input bandwidths that match the of their corresponding transmitters and shall shift frequencies in smitted signals.							
channels during each transm receiver, must be designed to transmitter be presented with employing short transmission	Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.							
the system to recognize othe independently chooses and a The coordination of frequence	nce within a frequency hopping spread spectrum system that permits er users within the spectrum band so that it individually and adapts its hopsets to avoid hopping on occupied channels is permitted. by hopping systems in any other manner for the express purpose of ccupancy of individual hopping frequencies by multiple transmitters is							
Compliance for section 15.	247(a)(1)							
stage shift register whose 5th outputs are added in a modu	lo-two addition stage. And the result is fed back to the input of the first with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized ges: 9 sequence: 2 ⁹ -1 = 511 bits							
Linear Feedback St	hift Register for Generation of the PRBS sequence							
	m Frequency Hopping Sequence as follow:							
According to Bluetooth Core bandwidths that match the	on the average by each transmitter. Specification, Bluetooth receivers are designed to have input and IF hopping channel bandwidths of any Bluetooth transmitters and shift on with the transmitted signals.							
Compliance for section 15.	247(g)							
pseudorandom hopping frequencies	re Specification, the Bluetooth system transmits the packet with the uency with a continuous data and the short burst transmission from the insmitted under the frequency hopping system with the pseudorandom							

Compliance for section 15.247(h)

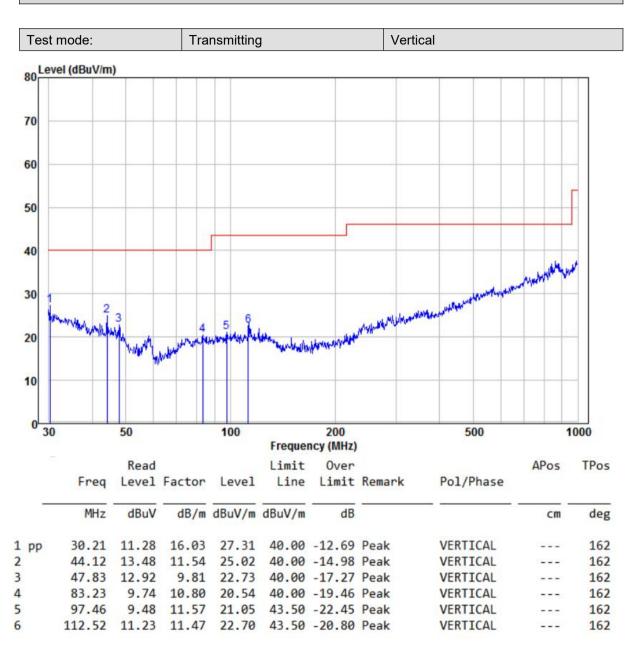
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



5.11 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2013	ANSI C63.10: 2013							
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark]		
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak	1		
	0.009MHz-0.090MHz		Average	10kHz	z 30kHz	Average	1		
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak	1		
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak]		
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average]		
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak]		
	30MHz-1GHz		Peak	120 kH	z 300kHz	Peak			
	Above 1GHz		Peak	1MHz	3MHz	Peak			
			Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (n			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz 500 54.0 Average 3								
	Note: 15.35(b), Unless emissions is 20dE applicable to the e peak emission lev	3 ab equi	ove the maxim pment under t	num permi est. This p	itted average	emission limit			



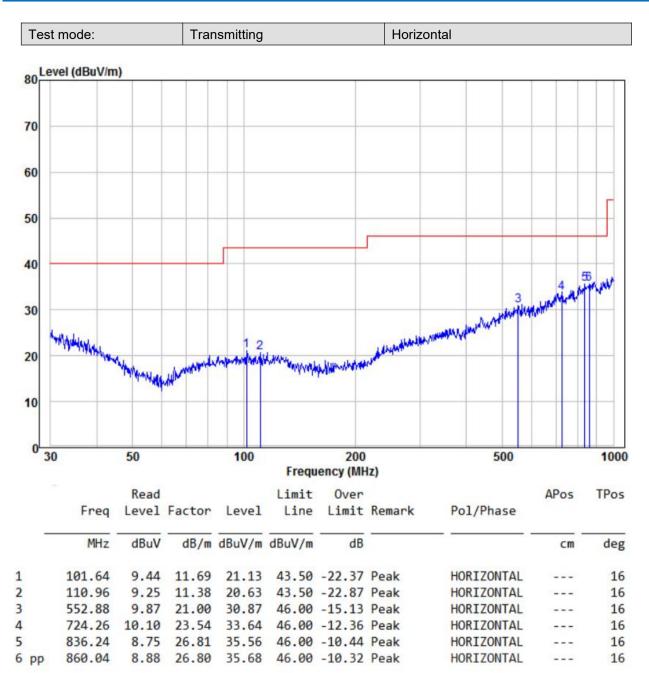
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type Transmitting mode
Final Test Mode:	Only the worst case is recorded in the report.
Test Results:	Pass

5.11.1 Radiated Emission below 1GHz

30MHz~1GHz

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

Remark:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Factor= Antenna Factor + Cable Factor - Preamplifier Factor,

Level = Read Level + Factor,

Over Limit=Level-Limit Line.

5.11.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	53.77	-9.2	44.57	74	-29.43	Peak	Н
2400	55.05	-9.39	45.66	74	-28.34	Peak	Н
4804	52.52	-4.33	48.19	74	-25.81	Peak	Н
7206	48.83	1.01	49.84	74	-24.16	Peak	Н
2390	53.92	-9.2	44.72	74	-29.28	Peak	V
2400	55.35	-9.39	45.96	74	-28.04	Peak	V
4804	52.87	-4.33	48.54	74	-25.46	Peak	V
7206	48.67	1.01	49.68	74	-24.32	Peak	V

Worse case	mode:	GFSK(DH	5)	Test chann	el:	Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	50.85	-4.11	46.74	74	-27.26	peak	Н
7323	49.28	1.51	50.79	74	-23.21	peak	Н
4882	51.48	-4.11	47.37	74	-26.63	peak	V
7323	50.98	1.51	52.49	74	-21.51	peak	V

Worse cas	se mode:	GFSK	(DH5)	Test ch	nannel:	High	nest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2483.5	55.91	-9.29	46.62	74	-27.38	Peak	Н	
4960	50.40	-4.04	46.36	74	-27.64	Peak	Н	
7440	50.66	1.57	52.23	74	-21.77	Peak	Н	
2483.5	54.69	-9.29	45.40	74	-28.60	Peak	V	
4960	50.99	-4.04	46.95	74	-27.05	Peak	V	
7440	48.44	1.57	50.01	74	-23.99	Peak	V	

Shenzhen Huaxia Testing Technology Co., Ltd.

Worse cas	se mode:	π /4DQPS	SK (2DH5)	Test ch	nannel:	Low	/est
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	56.18	-9.2	46.98	74	-27.02	Peak	Н
2400	55.93	-9.39	46.54	74	-27.46	Peak	Н
4804	53.18	-4.33	48.85	74	-25.15	Peak	Н
7206	49.72	1.01	50.73	74	-23.27	Peak	Н
2390	55.72	-9.2	46.52	74	-27.48	Peak	V
2400	56.94	-9.39	47.55	74	-26.45	Peak	V
4804	53.08	-4.33	48.75	74	-25.25	Peak	V
7206	50.66	1.01	51.67	74	-22.33	Peak	V

Worse cas	se mode:	π /4DQP S	SK (2DH5)	Test ch	nannel:	Mid	ldle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
4882	51.60	-4.11	47.49	74	-26.51	peak	Н	
7323	49.44	1.51	50.95	74	-23.05	peak	Н	
4882	52.31	-4.11	48.20	74	-25.80	peak	V	
7323	49.62	1.51	51.13	74	-22.87	peak	V	

Worse cas	se mode:	π /4DQPS	SK (2DH5)	Test ch	nannel:	High	iest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V	
2483.5	56.33	-9.29	47.04	74	-26.96	Peak	Н	
4960	50.72	-4.04	46.68	74	-27.32	Peak	Н	
7440	50.59	1.57	52.16	74	-21.84	Peak	Н	
2483.5	53.83	-9.29	44.54	74	-29.46	Peak	V	
4960	48.94	-4.04	44.90	74	-29.10	Peak	V	
7440	49.06	1.57	50.63	74	-23.37	Peak	V	

Shenzhen Huaxia Testing Technology Co., Ltd.

Report No.: CQASZ20240701499E-02

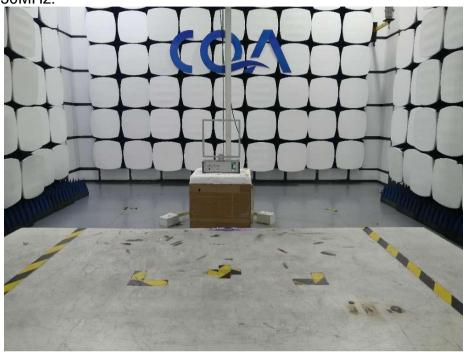
Worse cas	se mode:	8DPSK	(3DH5)	Test ch	nannel:	Low	/est
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.93	-9.2	45.73	74	-28.27	Peak	Н
2400	56.74	-9.39	47.35	74	-26.65	Peak	Н
4804	52.30	-4.33	47.97	74	-26.03	Peak	Н
7206	48.31	1.01	49.32	74	-24.68	Peak	Н
2390	54.25	-9.2	45.05	74	-28.95	Peak	V
2400	55.31	-9.39	45.92	74	-28.08	Peak	V
4804	53.03	-4.33	48.70	74	-25.30	Peak	V
7206	51.12	1.01	52.13	74	-21.87	Peak	V
Worse cas	se mode:	8DPSK	(3DH5)	Test ch	nannel:	Mid	dle
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4882	51.71	-4.11	47.60	74	-26.40	peak	Н
7323	48.77	1.51	50.28	74	-23.72	peak	Н
4882	51.29	-4.11	47.18	74	-26.82	peak	V
7323	49.03	1.51	50.54	74	-23.46	peak	V

Worse cas	se mode:	8DPSK	(3DH5)	Test ch	nannel:	Higł	nest
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	55.87	-9.29	46.58	74	-27.42	Peak	Н
4960	52.02	-4.04	47.98	74	-26.02	Peak	Н
7440	48.60	1.57	50.17	74	-23.83	Peak	Н
2483.5	55.49	-9.29	46.20	74	-27.80	Peak	V
4960	50.88	-4.04	46.84	74	-27.16	Peak	V
7440	49.34	1.57	50.91	74	-23.09	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor


2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Emission

9KHz~30MHz:

30MHz~1GHz:

Above 1GHz:

6.2 Conducted Emission

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20240701499E-01.

*** END OF REPORT ***