

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Intel Mobile Communication 100 Center Point Circle, Suite 200 Columbia, SC 29210 Dates of Test: Test Report Number: August 12-14, 2015

SAR.20150807

FCC ID: PD98260D2 (Contains Model 8260D2W)
IC Certificate: 1000M-8260D2 (Contains Model 8260D2W)

Model(s): T03D

Contains WLAN Model(s): Intel® Dual Band Wireless-AC 8260 (Model 8260D2W)

Test Sample: Engineering Unit Same as Production

Serial Number: Eng 1

Equipment Type: Wireless Module Installed in Notebook/Tablet

Classification: Portable Transmitter Next to Body

TX Frequency Range: 2412 – 2462 MHz; 5180 – 5320 MHz; 5500 – 5700 MHz; 5745 – 5825 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 2450 MHz (b) – 15.00 dB, 2450 MHz (g) – 15.00 dB, 2450 MHz (n20) – 15.00 dB,

2450 MHz (n40) - 15.00 dB, 5250 MHz (a) - 13.50 dB, 5250 MHz (n20) - 13.50 dB, 5250 MHz (n40) - 13.50 dB, 5250 MHz (ac) - 13.50 dB, 5600 MHz (a) - 13.50 dB, 5600 MHz (n20) - 13.50 dB, 5600 MHz (n40) - 13.50 dB, 5600 MHz (ac) - 13.50 dB, 5800 MHz (n20) - 13

5800 MHz (ac) - 13.50 dB Conducted

Signal Modulation: DSSS, OFDM

Antenna Type: Amphenol, P/N WT5637-15-002-C (Tx1) and WT5637-41-005-C (Tx2); PIFA Antenna

Application Type: Certification FCC Rule Parts: Part 2, 15C, 15E

KDB Test Methodology: KDB 447498 D01 v05r02, KDB 248227 v02, KDB 616217 D04 v01

Industry Canada: RSS-102 Issue 5, Safety Code 6

Maximum SAR Value: 0.64 W/kg Reported Max. Simultaneous SAR: 1.05 W/kg Reported

Separation Distance: 2.1 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [5]	
2. SAR Measurement Setup	5
Robotic System	5
System Hardware	5
System Electronics	6
Probe Measurement System	6
3. Probe and Dipole Calibration	14
4. Phantom & Simulating Tissue Specifications	15
Head & Body Simulating Mixture Characterization	15
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	16
Uncontrolled Environment	16
Controlled Environment	16
6. Measurement Uncertainty	17
7. System Validation	18
Tissue Verification	18
Test System Verification	18
8. SAR Test Data Summary	
Procedures Used To Establish Test Signal	19
Device Test Condition	
SAR Data Summary – 2450 MHz Body 802.11b & BT	
SAR Data Summary – 5250 MHz Body 802.11a	39
SAR Data Summary – 5600 MHz Body 802.11a	40
SAR Data Summary – 5800 MHz Body 802.11a	
SAR Data Summary – Simultaneous Evaluation	
9. Test Equipment List	43
10. Conclusion	
11. References	_
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	
Appendix G – Validation Summary	103

1. Introduction

This measurement report shows compliance of the Intel Mobile Communications Model 8260D2W installed in Dell Model T03D FCC ID: PD98260D2 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 1000M-8260D2 with RSS102 Issue 5 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Intel Mobile Communications Model 8260D2W installed in Dell Model T03D and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2003 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the 8260D2W installed in Dell Model T03D wireless modem. The table also shows the tolerance for the power level for each mode.

Band	Technology	3GPP Nominal Power dBm	Setpoint Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
WLAN – 2.4 GHz	802.11b	N/A	13.5	±1.5	12.0	15.0
WLAN – 2.4 GHz	802.11g/n(Ch. 6)	N/A	13.5	±1.5	12.0	15.0
WLAN – 5 GHz Band I, II, III, IV	802.11an/ac	N/A	12	±1.5	10.5	13.5

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

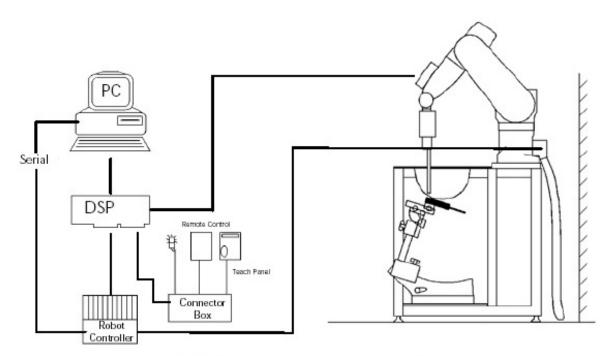


Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe Specifications

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200

MHz, 5300 MHz, 5600 MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

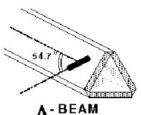
Linearity: ±0.2dB (30 MHz to 6 GHz)

Dynamic: 10 mW/kg to 100 W/kg

Range: Linearity: ±0.2dB

Dimensions: Overall length: 330 mm

Tip length: 20 mm


Body diameter: 12 mm

Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of wireless device

A 52/1111

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds), σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T \, / \, \Delta t$, the initial rate of tissue

heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

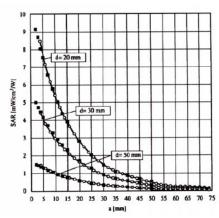


Figure 2.4 E-Field and Temperature Measurements at 900MHz

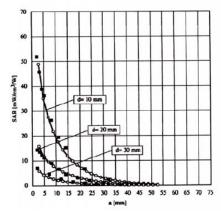


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

with
$$V_i = \text{compensated signal of channel i}$$
 (i=x,y,z)
$$U_i = \text{input signal of channel i}$$
 (i=x,y,z)
$$C_i = \text{crest factor of exciting field}$$
 (DASY parameter)
$$C_i = C_i + U_i^2 \cdot \frac{cf}{dcp_i}$$
 (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z) Norm_i = sensor sensitivity of channel i (i = x,y,z) $\mu V/(V/m)^2$ for E-field probes ConvF = sensitivity of enhancement in solution E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^{\,2} \cdot \frac{\sigma}{\rho \cdot 1000} \hspace{1cm} \text{with} \hspace{1cm} \begin{array}{ll} \text{SAR} & = \text{local specific absorption rate in W/g} \\ E_{tot} & = \text{total field strength in V/m} \\ \sigma & = \text{conductivity in [mho/m] or [Siemens/m]} \\ \rho & = \text{equivalent tissue density in g/cm}^3 \end{array}$$

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges					
Frequency range	Grid spacing				
≤ 2 GHz	≤ 15 mm				
2 – 4 GHz	≤ 12 mm				
4 – 6 GHz	≤ 10 mm				

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

• A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges						
Frequency range	Grid spacing	Grid spacing	Minimum zoom			
Frequency range	for x, y axis	for z axis	scan volume			
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm			
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm			
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm			
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm			
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm			

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on Efield probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom: SAM Twin Phantom (V4.0) **Shell Material:** Vivac Composite

Thickness: $2.0 \pm 0.2 \text{ mm}$

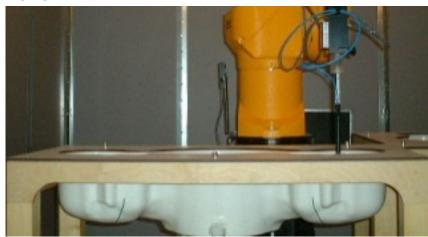


Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. Probe and Dipole Calibration

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528-2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 4.1 Typical Composition of Ingredients for Tissue

		Simulating Tissue					
Ingredients	2450 MHz Body	5250 MHz Body	5600 MHz Body	5785 MHz Body			
Mixing Percentage							
Water	73.20						
Sugar	0.00	7					
Salt	0.04	Proprietary Mixture					
HEC	0.00	Proc	cured from Spe	eag			
Bactericide	0.00	7					
DGBE	26.70	7					
Dielectric Constant Tarç	jet 52.70	48.96	48.47	48.25			
Conductivity (S/m) Targ	jet 1.95	5.35	5.77	5.96			

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

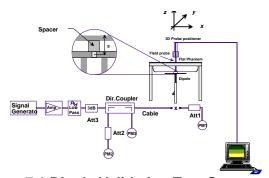
7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters

		2450 MHz Body		5200 MHz Body	
Date(s)		Aug.	13, 2015	Aug.	12, 2015
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured
Dielectric Constant: ε		52.70	52.53	49.01	48.88
Conductivity: σ		1.95	1.98	5.30	5.28
		5600 [MHz Body	5800 1	MHz Body
Date(s)		Aug.	12, 2015	Aug.	12, 2015
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured
Dielectric Constant: ε		48.47	48.28	48.20	47.98
Conductivity: σ		5.77	5.76	6.00	5.99

See Appendix A for data printout.


Test System Verification

Prior to assessment, the system is verified to the ±10% of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 7.2 System Dipole Validation Target & Measured

				<u> </u>		
	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation Target and Fast SAR to SAR (%)	Plot Number
13-Aug-2015	2450 MHz	51.50	50.90	Body	- 1.17	1
12-Aug-2015	5200 MHz	73.40	73.00	Body	- 0.54	2
12-Aug-2015	5600 MHz	79.10	79.60	Body	+ 0.63	3
12-Aug-2015	5800 MHz	72.90	72.50	Body	- 0.55	4

See Appendix A for data plots.

Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

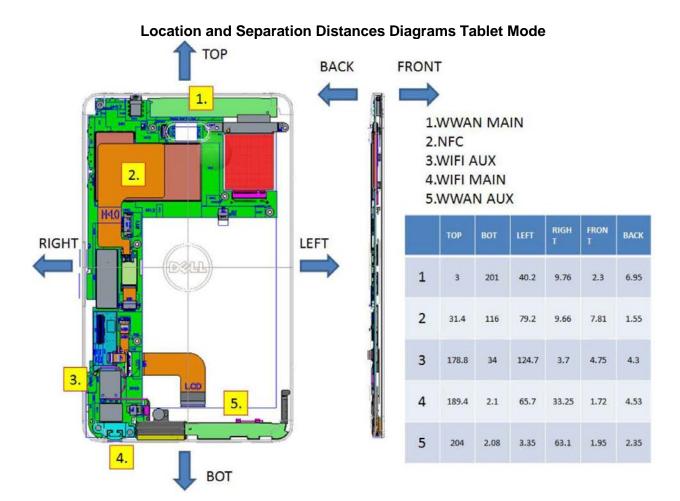
The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The EUT was tested in on all sides of the device where the antenna was within 25 mm of that side in the tablet mode. All measurements were conducted with the side of the device in direct contact with the phantom. For sides of the antenna which were not measured in this report, the SAR was conduct on the module in the modular approval with the maximum distance of 8 mm on all six sides of the antenna. Therefore, the requirements mentioned in RSS-102 Supplementary Procedures (SPR)-001 – SAR Testing Requirements with Regards to Bystanders for Laptop Type Computers with Antennas Built-In on Display Screen (Laptop/Tablet Mode) are covered.

The Bluetooth transmitter does simultaneously transmit with the WiFi transmitter. When the BT is turned on, it transmits on Main and the WiFi transmits on Aux. Simultaneous transmission is evaluated on page 42.


The main antenna was evaluated for stand-alone SAR per RSS-102 Issue 5 for BT. The Tablet Back, Short Side and Long Edge was tested. The remaining sides were excluded due to distance from the antenna (See pages 24-37). Please see data sheet summary on page 38.

The data rates used when evaluating the WiFi transmitter were the lowest data rates for each mode. The device was operating at its maximum output power at the lowest data rate for all measurements.

The tablet was using the Intel test utility DRTU Version 1.8.3-01382 and the device driver was version 18.10.0.19.

The device was on a minimum of 10 cm of Styrofoam during each test. The following is a pictorial drawing of the locations and separation distances.

		Bandwidth		Frequency	Data		Power
Band	Mode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)
			1	2412			14 92
			6 11	2437 2462		Chain A	15.00 14.96
	802.11b	20	1	2412	1 Mbps		14.93
			6	2437		Chain B	15.00
			11	2462			14.91
			6	2412 2437		Chain A	14.87 14.86
	902.11~	20	11	2462	C Mbns		14.92
	802.11g	20	1	2412	6 Mbps		14.83
			6 11	2437		Chain B	14.88
2450 MHz			1	2462 2412			14.90 14.82
			6	2437		Chain A	14.83
	802.11n	20	11	2462	HT4		14.87
			1	2412		Chain B	14.85
			6 11	2437 2462		Chain B	14.81 14.88
			3	2422			14.80
			6	2437		Chain A	14.83
	802.11n	40	9	2452	HT4		14.82
			<u>3</u>	2422 2437		Chain B	14.84 14.82
			9	2452		onam s	14.80
			36	5180			13.46
			40	5200		Chain A	13.44
			44 48	5220 5240	6 Mbps		13.50 13.42
	802.11a	20	36	5180		Chain B	13.44
			40	5200			13.41
			44	5220			13.50
			48 36	5240 5180	HT4	Chain A	13.46 13.40
	802.11n		40	5200			13.38
5.15-5.25 GHz			44	5220			13.35
		20	48	5240		Chain B	13.36
			36 40	5180 5200			13.33 13.35
			44	5220			13.37
			48	5240			13.38
			38	5190	HT4	Chain A	13.34
	802.11n	40	46 38	5230 5190			13.32 13.31
			46	5230	HT4	Chain B	13.33
	802.11ac	80	42	5210	VHT6	Chain A	13.30
			52	5260	-	Chain B	13.32 13.42
			56 56	5280		Chair- A	13.46
	1		60	5300		Chain A	13.50
	802.11a	20	64	5320	6 Mbps		13.47
	1		52 56	5260 5280	,		13.40 13.44
			60	5300		Chain B	13.44
			64	5320			13.42
5.25-5.35 GHz	1		52	5260			13.41
	1		56 60	5280 5300		Chain A	13.43 13.39
	002.41	20	64	5320			13.39
	802.11n	20	52	5260	HT4		13.32
	1		56	5280		Chain B	13.33
	1		60 64	5300 5320		Chain B	13.34
			54	5270			13.31 13.30
	802.11n	40	62	5310	HT4	Chain A	13.32
	002.1111	40	54	5270	HT4	Chain B	13.33
	<u> </u>		62	5310			13.31
	802.11ac	80	58	5290	VHT6	Chain A	13.33

MHz	Band	Mode	Bandwidth	Channel	Frequency	Data	Antonna	Power
104 5520 1344 1345 1	banu	iviode	(MHz)	Channel	(MHz)	Rate	Antenna	(dBm)
108								13 42
112 5550 1344 1350 1345 1345 1345 1345 1345 1345 1345 1345								
116								
120 5600 Chain A 13.44 124 5620 13.55 136 5680 13.55 136 5680 13.55 136 5680 13.55 136 5680 13.43 136 5680 13.43 136 5680 13.43 136 5680 13.43 136 5680 13.43 136 5680 13.43 136 5680 13.44 136 5550 Chain B 13.45 136 5680 13.55 127 5660 13.45 138 5660 13.55 139 5660 13.45 130 5600 Chain B 130 130 130 131 132 5660 13.45 132 5660 13.45 133 133 133 134 5600 Chain B 13.33 13.34 132 5660 13.35 134 5600 Chain B 13.34 13.35 136 5680 Chain B 13.33 13.34 137 138 5640 138 5540 Chain B 13.33 13.34 138 5640 Chain B 13.33 13.34 138 5640 Chain B 133 133 134 5670 Chain B 133 Chain B 134 Chain B 135 Chain B 136 Chain B 137 Chain B 138 Chain B								
128 5640 13.4 13.4 13.4 13.4 13.4 13.4 13.5 1							Chain A	13.44
802.11a 20 140 5700 6 Mbps 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13.4				124	5620			13.50
\$02.11a								13.40
\$02.11a								
\$02.113								
104 5520 1344 1		802.11a	20			6 Mbps		13.42
112 5560 13.34 116 5580 120 5600 13.55 120 5600 13.55 121 5600 13.55 122 5660 13.45 133 5680 13.45 134 5580 13.45 135 5680 13.35 140 5700 13.44 112 5560 13.33 116 5580 13.33 116 5580 13.33 120 5500 13.33 121 5560 13.33 122 5660 13.33 123 5660 13.33 124 5620 13.33 135 5680 13.33 136 5680 13.33 137 5600 147 13.35 140 5700 141 15 5580 13.33 124 5620 13.33 125 5660 13.33 126 5680 13.34 127 5560 13.35 128 5640 13.33 129 5600 13.34 120 5600 13.34 121 5560 13.33 136 5680 13.44 137 5660 13.33 138 5660 13.34 140 5700 13.34 140 5700 13.34 140 5700 13.34 140 5700 13.34 140 5700 13.34 140 5700 13.35 131 5550 13.33 132 5660 13.34 133 5670 13.35 134 5670 13.35 135 5550 13.33 136 5680 13.44 140 5720 144 5720 144 5720 Chain A 13.34 133 Chain A 13.34 134 5670 13.35 135 5650 13.33 136 5660 13.34 137 5750 13.35 138 5750 13.35 139 5750 13.35 130 5750 13.35 131 5750 13.35 132 5660 13.35 133 5670 13.35 134 5670 13.35 135 5750 13.35 136 5660 13.35 137 5750 13.35 138 5750 13.35 139 5750 13.35 130 5750 13.35 131 5750 13.35 132 5660 13.35 133 5750 13.35 134 5670 13.35 135 5750 13.35 136 5660 13.35 137 5750 13.35 138 5750 13.35 139 5750 13.35 130 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 5750 13.35 131 575								13.44
116 5580 13.55 13.55 13.60 13.55 13.60								13.40
120 5600 Chain B 13.43 124 5620 13.56 128 5640 13.57 132 5660 13.43 136 5680 13.56 140 5700 13.44 100 5500 13.33 108 5540 13.33 116 5580 13.33 117 5560 13.33 120 5600 Chain A 13.33 132 5660 13.33 133 5660 13.34 140 5700 HT4 150 130 130 130 140 5520 133 150 150 130 130 150 150 130 130 150 150 130 130 150 150 130 130 150 150 130 130 150 150 130 130 150 150 130 130 150 130 130								
124 5620 13.55 13.40							Chain B	
128 5640 13.4 13.4 13.5 1							Chain b	
136 5680 1335 140 5700 13.4 100 5500 13.3 104 5520 13.3 108 5540 112 5560 1112 5560 13.3 112 5560 13.3 120 5600 Chain A 13.3 121 5660 13.3 122 5660 13.3 123 5660 13.3 124 5620 13.3 135 5680 13.3 136 5680 13.3 137 5660 13.3 138 5540 13.3 104 5520 13.3 104 5520 13.3 104 5520 13.3 116 5580 13.3 116 5580 13.3 117 5560 13.3 120 5600 Chain B 13.3 131 5660 13.3 132 5660 13.3 133 5660 13.3 134 5670 13.3 135 5680 13.3 136 5680 13.3 137 5660 13.3 138 5580 13.3 139 5660 13.3 130 5550 13.3 131 5550 Chain A 13.3 132 5660 13.3 133 5670 13.3 134 5670 13.3 135 5580 Chain B 13.3 136 5680 13.3 137 5680 Chain B 13.3 138 5580 Chain B 13.3 139 5680 Chain B 13.3 130 5550 Chain B 13.3 131 5580 Chain B 13.3 132 5680 Chain B 13.3 133 5670 Chain A 13.3 134 5670 13.3 135 5680 Chain B 13.3 136 5680 Chain B 13.3 137 Chain B 13.3 138 5580 Chain B 13.3 139 Chain B 13.3 130 Chain B 13.3								13.47
140 5700 13.4 13.5 1								13.42
100 5500 13.35								13.50
104 5520 13.32 13.36								
108 5540 112 5560 13.38 13.38 120 5600 13.38								
112 5560 13.38 13.39 124 5560 13.30 13.39 13								13.36
120 5600 13.33 13.34 13.35 13.44 13.35 13.44 13.35 13.44 13.35 13.44 13.35 13.45 13.36								13.38
124 5620 13.34 13.34 13.35 13.34 13.36 13.34 13.37 13.36						HT4	Chain A	13.35
128 5640 13.38 13.40 13.39 13.40			20					
132 5660 13.44 13.550 13.650								
136 5680 13.38 13.38 13.38 13.39								
802.11n 20								13.38
100 5500 13.32 13.33 13.34 13.34 13.34 13.35	5600 MHz	802 11n			5700			13.35
108 5540 113 34 110 116 5580 120 5600 124 5620 128 5640 132 5660 133 32 5660 133 32 5660 133 32 5660 133 34 36 36 36 36 36 36		002.1111					Chain B	13.32
112 5560 13.36 13.40 13.41 13.41 13.42 13.41 13.42 13.41 13.42 13.41 13.42 13.41 13.42 13.43 13.43 13.44								
116								
120 5600 Chain B 13.33 124 5620 13.8 128 5640 13.30 132 5660 13.34 140 5700 13.4 140 5700 13.34 110 5550 Chain A 13.33 126 5610 13.3 110 5550 13.36 1110 5550 13.36 1110 5550 13.36 1110 5550 13.36 1110 5550 Chain B 13.33 126 5610 13.36 134 5670 Chain B 13.36 20 144 5720 Chain B 13.36 13.37 Chain B 13.36 13.38 Chain B 13.36 13.39 Chain B 13.36 13.30 Chain B 13.36 13.31 Chain B 13.36 13.32 Chain B 13.36 13.33 Chain B 13.36 13.34 5670 Chain B 13.36 13.35 Chain B 13.36 13.36 Chain B 13.36 13.37 Chain B 13.36 13.38 Chain B 13.36 13.39 Chain B 13.36 13.30 Chain B 13.36 13.31 Chain B 13.36 13.32 Chain B 13.36 13.33 Chain B 13.36 13.34 5670 Chain B 13.36 13.35 Chain B 13.36 13.36 Chain B 13.36 13.37 Chain B 13.36 13.38 Chain B 13.36 13.39 Chain B 13.36 13.30 Chain B 13.36 13.30 Chain B 13.36 13.30 Chain A 13.37 13.30 Chain B 13.36 13.30 Ch								
128 5640 13.30 132 5660 13.34 140 5700 13.44 110 5550 13.35 110 5550 13.36 126 5610 13.37 110 5550 13.36 126 5610 13.37 118 5580 Chain B 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 126 5610 13.37 127 138 138 138 138 138 148 5580 Chain B 158 158 13.36 158 158 13.37 158 138 138 158 138 138 158 138 138 158 138 138 158 138 138 158 138 138 158 138 158 138 138 158 138 138 158 138								13.33
132 5660 13.34 13.41 140 5700 13.35 110 5550 13.36 13.41 140								13.39
136 5680 13.42 140 13.42 140 13.42 140 140 13.42 140 140 13.42 140 140 13.42 140 140 140 140 142 15710 140 140 142 15710 140 140 142 15710 140 140 142 15710 140 143 150 140 143 15710 150								13.30
802.11n 40 5700 13.44 102 5510 13.35 110 5550 Chain A 13.33 126 5610 13.37 134 5670 13.33 110 5550 Chain B 13.33 126 5610 13.35 118 5580 Chain B 13.33 126 5610 13.35 118 5580 Chain B 13.33 126 5610 13.35 127 5720 Chain B 13.36								
802.11n 40 113 5550 Chain A 13.33 13.35 126 5510 118 5580 Chain A 13.34 5670 113.35 118 5580 Chain B 13.35 13.4 5670 13.35 126 5610 13.35 126 5610 13.35 126 5610 13.35 126 5610 13.35 13.4 5670 13.35 13.4 5670 Chain B 13.36 13.36 13.4 5670 Chain B 13.36 Chain A 13.37 Chain B 13.37 Chain A 13.37 Chain A 13.37 Chain B 13.37 C						+		
802.11n 40 118 5580 Chain A 13.36 13.36 13.36 13.37 13.40 13.37 13.40 13.36 13.37 13.36 13.37 13.36 13.37 13.36 13.37 13.37 13.38 13.39 13						1		13.35
802.11n 40 126 5610 13.37 13.37 13.4 5670 14.4 15.550 15.50 15.50 16.50				110	5550			13.36
802.11n 40 134 5670 HT4 13.30 102 5510 13.33 110 5550 Chain B 13.31 126 5610 13.35 134 5670 Chain B 13.31 20 144 5720 VHT0 Chain B 13.30 Chain A 13.32							Chain A	13.32
102 5510 114 13.33 110 5550 13.35 118 5580 118 5580 126 5610 13.35 134 5670 13.36 13.37 13.37 13.38 13.39								
110 5550 Chain B 13.39 118 5580 Chain B 13.31 126 5610 13.35 134 5670 Chain A 13.34 13.34 5670 Chain A 13.34 Chain B 13.31 Chain B 13.31 Chain B 13.31 Chain A 13.32 Chain A 13.32 Chain A 13.32 Chain A 13.33 Chain A		802.11n	40			HT4		
118 5580 Chain B 13.31 126 5610 13.35 134 5670 Chain A 13.36 20 144 5720 VHTO Chain B 13.31 40 142 5710 VHTO Chain A 13.32 Chain A 13.33								13.39
126 5610 13.35 134 5670 13.36 20 144 5720 Chain A 13.36 Chain B 13.31 Chain A 13.32 Chain B 13.33 Chain A 13.32							Chain B	13.31
20 144 5720 Chain A 13.34 Chain B 13.30 Chain B 13.30 Chain A 13.32 Chain A 13.32				126	5610			13.35
20 144 5720 VHT0 Chain B 13.30 Chain A 13.32				134	5670		GI : ·	13.36
40 142 5710 VHIO Chain A 13.32			20	144	5720			
						VHT0		
			40	142	5710		Chain B	13.37
		902 1122		106	5530		2	13.30
802.11dC 122 5610 Chain A 13.32		0U2.11dC		122	5610		Chain A	13.32
			80			VHT6		13.33
106 5530 13.32						-	Chain B	13.34
								13.32 13.31

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Power (dBm)
			149	5745			13 42
			153	5765			13.46
			157	5785		Chain A	13.50
			161	5805			13.41
	802.11a	20	165	5825	6 Mbps		13.47
	002.114	20	149	5745	O IVIDPS		13.44
			153	5765		Chain B	13.40
			157	5785			13.50
			161	5805			13.42
			165	5825			13.45
			149	5745	нтв	Chain A Chain B	13.39
			153	5765			13.34
5800 MHz			157	5785			13.32
3000 141112			161	5805			13.37
	802.11n	20	165	5825			13.36
	002.121.1		149	5745			13.35
			153	5765			13.38
			157	5785			13.37
			161	5805			13.35
			165	5825			13.38
			151	5755		Chain A	13.32
	802.11n	40	159	5795	HT8		13.33
			151	5755	1110	Chain B	13.31
			159	5795			13.34
	802.11ac	80	155	5775	VHT6	Chain A	13.30
		00	133 3773			Chain B	13.31

Figure 8.1 Test Reduction Table – 2.4 GHz Main

Mode	Side	Required	Tested/Reduced
		Channel	
		1 – 2412 MHz	Reduced ⁴
	Back	6 – 2437 MHz	Tested
		11 – 2462 MHz	Tested
		1 – 2412 MHz	Reduced ³
	Right	6 – 2437 MHz	Reduced ³
802.11b		11 – 2462 MHz	Reduced ³
002.110		1 – 2412 MHz	Reduced ¹
	Bottom	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ³
	Top & Left	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
	Right	1 – 2412 MHz	Reduced ²
		6 – 2437 MHz	Reduced ²
802.11g		11 – 2462 MHz	Reduced ²
602.11g	Bottom	1 – 2412 MHz	Reduced ²
		6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Top & Left	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
802.11n	Right	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Bottom	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Top & Left	6 – 2437 MHz	Reduced ²
	'	11 – 2462 MHz	Reduced ²

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the highest report SAR for DSSS is ≤ 1.2 W/kg, OFDM modes are not required per KDB 248227 D01 v02.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Reduced⁴ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Calculations for test exclusion for Bottom, Left and Right side.

Maximum power: 39.8 mW Top distance: 189.4 mm Right Side distance: 33.25 mm Left Side distance: 65.7

The closest distance is from the right side. Therefore, if the right side is excluded the top and left side would also be excluded.

 $[(39.8 \text{ mW})/(33.25 \text{ mm})]^*\sqrt{2.462}=1.88 \text{ which is equal to or less than 3.0.}$

Figure 8.2 Test Reduction Table - 2.4 GHz Aux

i igaio c	12 1001 1100	action rabio	211 O112 / tux
Mode	Side	Required Channel	Tested/Reduced
		1 – 2412 MHz	Reduced ⁵
	Back	6 – 2437 MHz	Tested
		11 – 2462 MHz	Tested
		1 – 2412 MHz	Reduced ⁵
	Right	6 – 2437 MHz	Tested
000 116		11 – 2462 MHz	Tested
802.11b		1 – 2412 MHz	Reduced ¹
	Bottom	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ³
	Top & Left	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
	Right	1 – 2412 MHz	Reduced ²
		6 – 2437 MHz	Reduced ²
000 11 ~		11 – 2462 MHz	Reduced ²
802.11g		1 – 2412 MHz	Reduced ²
	Bottom	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Top & Left	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Right	6 – 2437 MHz	Reduced ²
802.11n		11 – 2462 MHz	Reduced ²
002.1111		1 – 2412 MHz	Reduced ²
	Bottom	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Top & Left	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
a made di alta a como al 12 a	2 dD balayy tha limit	the remaining channels or	a not required nor KDD 447.

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the highest report SAR for DSSS is ≤ 1.2 W/kg, OFDM modes are not required per KDB 248227 D01 v02.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Reduced⁴ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02 section 5.1.1 3) page 9.

Reduced⁵ – When the reported SAR is >0.4 W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 39.8 mW Top distance: 178.8 mm Left Side distance: 124.7

The closest distance is from the left side. Therefore, if the left side is excluded the bottom would also be excluded.

 $[(3.0)/(\sqrt{2.462})]*50 \text{ mm}]+[(124.7-50 \text{ mm})*10]=842 \text{ mW}$ which is greater than 39.8 mW

Figure 8.3 Test Reduction Table – 5.1 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		36 – 5180 MHz	Reduced ²
	Back	40 – 5200 MHz	Reduced ²
	Dack	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ³
		40 – 5200 MHz	Reduced ³
	Right	44 – 5220 MHz	Reduced ³
802.11a/n20		48 – 5240 MHz	Reduced ³
5150 MHz		36 – 5180 MHz	Reduced ²
	Bottom	40 – 5200 MHz	Reduced ²
	BOLLOTT	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Top & Left	36 – 5180 MHz	Reduced ³
		40 – 5200 MHz	Reduced ³
		44 – 5220 MHz	Reduced ³
		48 – 5240 MHz	Reduced ³
	Back	38 – 5190 MHz	Reduced ²
		46 – 5230 MHz	Reduced ²
	Right	38 – 5190 MHz	Reduced ³
802.11n40	rtigrit	46 – 5230 MHz	Reduced ³
5150 MHz	Bottom	38 – 5190 MHz	Reduced ²
	Dottom	46 – 5230 MHz	Reduced ²
	Top & Left	38 – 5190 MHz	Reduced ³
	-	46 – 5230 MHz	Reduced ³
	Back	42 – 5210 MHz	Reduced ²
802.11ac	Right	42 – 5210 MHz	Reduced ²
5210 MHz	Bottom	42 – 5210 MHz	Reduced ²
	Top & Left	42 – 5210 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the highest reported SAR is ≤ 1.2 W/kg in U-NII-2A, U-NII-1 is not required per KDB 248227 D01 v02 section 5.3.1 1) page 11.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Reduced⁴ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02 section 5.1.1 3) page 9.

Calculations for test exclusion for Bottom, Left and Right side.

Maximum power: 22.4 mW Top distance: 189.4 mm Right Side distance: 33.25 mm Left Side distance: 65.7

The closest distance is from the right side. Therefore, if the right side is excluded the top and left side would also be excluded.

 $[(22.4 \text{ mW})/(33.25 \text{ mm})]*\sqrt{5.24}=1.54 \text{ which is equal to or less than } 3.0.$

Figure 8.4 Test Reduction Table - 5.1 GHz Aux

Mode	Side	Required Channel	Tested/Reduced
		36 – 5180 MHz	Reduced ²
	Back	40 – 5200 MHz	Reduced ²
	Dack	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Right	44 – 5220 MHz	Reduced ²
802.11a/n20		48 – 5240 MHz	Reduced ²
5150 MHz		36 – 5180 MHz	Reduced ²
	Bottom	40 – 5200 MHz	Reduced ²
	Bottom	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Top & Left	36 – 5180 MHz	Reduced ³
		40 – 5200 MHz	Reduced ³
		44 – 5220 MHz	Reduced ³
		48 – 5240 MHz	Reduced ³
	Back	38 – 5190 MHz	Reduced ²
		46 – 5230 MHz	Reduced ²
	Right	38 – 5190 MHz	Reduced ²
802.11n40	rtigitt	46 – 5230 MHz	Reduced ²
5150 MHz	Bottom	38 – 5190 MHz	Reduced ²
	Dottom	46 – 5230 MHz	Reduced ²
	Top & Left	38 – 5190 MHz	Reduced ³
	•	46 – 5230 MHz	Reduced ³
	Back	42 – 5210 MHz	Reduced ²
802.11ac	Right	42 – 5210 MHz	Reduced ²
5210 MHz	Bottom	42 – 5210 MHz	Reduced ²
	Top & Left	42 – 5210 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the highest reported SAR is ≤ 1.2 W/kg in U-NII-2A, U-NII-1 is not required per KDB 248227 D01 v02 section 5.3.1 1) page 11.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Reduced⁴ – When the reported SAR is >0.8 W/kg, test the next highest configuration until the SAR value is ≤ 1.2 W/kg per KDB 248227 D01 v02 section 5.1.1 3) page 9.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 22.4 mW Top distance: 178.8 mm Left Side distance: 124.7

The closest distance is from the left side. Therefore, if the left side is excluded the bottom would also be excluded.

 $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{124.7-50 \text{ mm}\}*10]=812 \text{ mW}$ which is greater than 22.4 mW

Figure 8.5 Test Reduction Table – 5.2 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		52 – 5260 MHz	Reduced ¹
	Back	56 – 5280 MHz	Reduced ¹
	Dack	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ³
		56 – 5280 MHz	Reduced ³
	Right	60 – 5300 MHz	Reduced ³
802.11a/n20		64 – 5320 MHz	Reduced ³
5250 MHz		52 – 5260 MHz	Reduced ¹
	Bottom	56 – 5280 MHz	Reduced ¹
	Bottom	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
	Top & Left	52 – 5260 MHz	Reduced ³
		56 – 5280 MHz	Reduced ³
		60 – 5300 MHz	Reduced ³
		64 – 5320 MHz	Reduced ³
	Back	54 – 5270 MHz	Reduced ²
		62 – 5310 MHz	Reduced ²
	Right	54 – 5270 MHz	Reduced ³
802.11n40	rtigrit	62 – 5310 MHz	Reduced ³
5250 MHz	Bottom	54 – 5270 MHz	Reduced ²
	Dottom	62 – 5310 MHz	Reduced ²
	Top & Left	54 – 5270 MHz	Reduced ³
	-	62 – 5310 MHz	Reduced ³
	Back	58 – 5290 MHz	Reduced ²
802.11ac	Right	58 – 5290 MHz	Reduced ³
5210 MHz	Bottom	58 – 5290 MHz	Reduced ²
	Top & Left	58 – 5290 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Calculations for test exclusion for Bottom, Left and Right side.

Maximum power: 22.4 mW Top distance: 189.4 mm Right Side distance: 33.25 mm Left Side distance: 65.7

The closest distance is from the right side. Therefore, if the right side is excluded the top and left side would also be excluded.

 $[(22.4 \text{ mW})/(33.25 \text{ mm})]*\sqrt{5.32}=1.55 \text{ which is equal to or less than 3.0.}$

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Figure 8.6 Test Reduction Table – 5.2 GHz Aux

Mode	Side	Required Channel	Tested/Reduced
		52 – 5260 MHz	Reduced ¹
	Back	56 – 5280 MHz	Reduced ¹
	Dack	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ¹
		56 – 5280 MHz	Reduced ¹
	Right	60 – 5300 MHz	Tested
802.11a/n20		64 – 5320 MHz	Reduced ¹
5250 MHz		52 – 5260 MHz	Reduced ¹
	Bottom	56 – 5280 MHz	Reduced ¹
	BOLLOTT	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
	Top & Left	52 – 5260 MHz	Reduced ³
		56 – 5280 MHz	Reduced ³
		60 – 5300 MHz	Reduced ³
		64 – 5320 MHz	Reduced ³
	Back	54 – 5270 MHz	Reduced ²
		62 – 5310 MHz	Reduced ²
	Right	54 – 5270 MHz	Reduced ²
802.11n40	Right	62 – 5310 MHz	Reduced ²
5250 MHz	Bottom	54 – 5270 MHz	Reduced ²
	Dottom	62 – 5310 MHz	Reduced ²
	Top 9 Loft	54 – 5270 MHz	Reduced ³
	Top & Left	62 – 5310 MHz	Reduced ³
	Back	58 – 5290 MHz	Reduced ²
802.11ac	Right	58 – 5290 MHz	Reduced ²
5210 MHz	Bottom	58 – 5290 MHz	Reduced ²
	Top & Left	58 – 5290 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 22.4 mW Top distance: 178.8 mm Left Side distance: 124.7

The closest distance is from the left side. Therefore, if the left side is excluded the bottom would also be excluded.

 $[\{[(3.0)/(\sqrt{5.32})]*50 \text{ mm}\}]+[\{124.7-50 \text{ mm}\}*10]=812 \text{ mW}$ which is greater than 22.4 mW

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Figure 8.7 Test Reduction Table – 5.6 GHz Main

riguie o		dection rable –	
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Tested
	Back	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Tested
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ³
		104 – 5520 MHz	Reduced ³
		108 – 5540 MHz	Reduced ³
		112 – 5560 MHz	Reduced ³
		116 – 5580 MHz	Reduced ³
	Right	120 – 5600 MHz	Reduced ³
	· ·	124 – 5620 MHz	Reduced ³
		128 – 5640 MHz	Reduced ³
		132 – 5660 MHz	Reduced ³
		136 – 5680 MHz	Reduced ³
802.11a		140 – 5700 MHz	Reduced ³
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Tested
	Bottom	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Tested
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ³
		104 – 5520 MHz	Reduced ³
		108 – 5540 MHz	Reduced ³
		112 – 5560 MHz	Reduced ³
		116 – 5580 MHz	Reduced ³
	Top & Left	120 – 5600 MHz	Reduced ³
	TOP & LOIL	124 – 5620 MHz	Reduced ³
		128 – 5640 MHz	Reduced ³
		132 – 5660 MHz	Reduced ³
		136 – 5680 MHz	Reduced ³
		140 – 5700 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the reported SAR for the initial position is > 0.4 W/kg, test next subsequent highest output power channel until SAR is ≤ 0.8 W/kg, then all other test position/configurations are not required per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom, Left and Right side.

Maximum power: 22.4 mW Top distance: 189.4 mm Right Side distance: 33.25 mm Left Side distance: 65.7

The closest distance is from the right side. Therefore, if the right side is excluded the top and left side would also be excluded.

 $[(22.4 \text{ mW})/(33.25 \text{ mm})]*\sqrt{5.70}=1.61$ which is equal to or less than 3.0.

Figure 8.8 Test Reduction Table – 5.6 GHz Main

i igaio c			
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Back	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Right	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
802.11n		140 – 5700 MHz	Reduced ²
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Bottom	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Top & Left	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²

Reduced² – When the reported SAR for the initial position is > 0.4 W/kg, test next subsequent highest output power channel until SAR is ≤ 0.8 W/kg, then all other test position/configurations are not required per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Figure 8.9 Test Reduction Table - 5.6 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		106 – 5530 MHz	Reduced ²
	Back	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Right	122 – 5610 MHz	Reduced ²
802.11ac		138 – 5690 MHz	Reduced ²
5600 MHz	Bottom	106 – 5530 MHz	Reduced ²
		122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Top & Left	122 – 5610 MHz	Reduced ²
1	,	138 – 5690 MHz	Reduced ²

Reduced² – When the reported SAR for the initial position is > 0.4 W/kg, test next subsequent highest output power channel until SAR is ≤ 0.8 W/kg, then all other test position/configurations are not required per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Figure 8.10 Test Reduction Table - 5.6 GHz Aux

		uuction rabie -	- 3.0 GHZ AUX
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Reduced ¹
	Back	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Tested
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Reduced ¹
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Reduced ¹
	Right	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Tested
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Reduced ¹
802.11a		140 – 5700 MHz	Reduced ¹
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Bottom	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ³
		104 – 5520 MHz	Reduced ³
		108 – 5540 MHz	Reduced ³
		112 – 5560 MHz	Reduced ³
		116 – 5580 MHz	Reduced ³
	Top & Left	120 – 5600 MHz	Reduced ³
		124 – 5620 MHz	Reduced ³
		128 – 5640 MHz	Reduced ³
		132 – 5660 MHz	Reduced ³
		136 – 5680 MHz	Reduced ³
		140 – 5700 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 22.4 mW Top distance: 178.8 mm Left Side distance: 124.7

The closest distance is from the left side. Therefore, if the left side is excluded the bottom would also be excluded.

 $[\{[(3.0)/(\sqrt{5.70})]*50 \text{ mm}\}]+[\{124.7-50 \text{ mm}\}*10]=809 \text{ mW}$ which is greater than 22.4 mW

Figure 8.11 Test Reduction Table - 5.6 GHz Aux

		Dervired Channel	
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Back	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Right	120 – 5600 MHz	Reduced ²
	_	124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
802.11n		140 – 5700 MHz	Reduced ²
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Bottom	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Top & Left	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Figure 8.12 Test Reduction Table – 5.6 GHz Aux

Mode	Side	Required Channel	Tested/Reduced
		106 – 5530 MHz	Reduced ²
	Back	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Right	122 – 5610 MHz	Reduced ²
802.11ac		138 – 5690 MHz	Reduced ²
5600 MHz	Bottom	106 – 5530 MHz	Reduced ²
		122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Top & Left	122 – 5610 MHz	Reduced ²
	•	138 – 5690 MHz	Reduced ²

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Figure 8.13 Test Reduction Table - 5.8 GHz Main

		uction rable -	- J.O GI IZ IVIAII
Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ⁴
		153 – 5765 MHz	Reduced ⁴
	Back	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ⁴
		165 – 5825 MHz	Tested
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Right	157 – 5785 MHz	Reduced ³
		161 – 5805 MHz	Reduced ³
802.11a		165 – 5825 MHz	Reduced ³
5800 MHz		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Bottom	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Top & Left	157 – 5785 MHz	Reduced ³
	•	161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
		149 – 5745 MHz	Reduced ⁴
		153 – 5765 MHz	Reduced ⁴
	Back	157 – 5785 MHz	Reduced ⁴
		161 – 5805 MHz	Reduced ⁴
		165 – 5825 MHz	Reduced ⁴
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Right	157 – 5785 MHz	Reduced ³
	3	161 – 5805 MHz	Reduced ³
802.11n		165 – 5825 MHz	Reduced ³
5800 MHz		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Bottom	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Top & Left	157 – 5785 MHz	Reduced ³
		161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
	Back	155 – 5775 MHz	Reduced ⁴
802.11ac	Right	155 – 5775 MHz	Reduced ³
5775 MHz	Bottom	155 – 5775 MHz	Reduced ²
	Top & Left	155 – 5775 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Reduced⁴ – When the reported SAR for the initial position is > 0.4 W/kg, test next subsequent highest output power channel until SAR is ≤ 0.8 W/kg, then all other test position/configurations are not required per KDB 248227 D01 v02 section 5.1.1 2) page 9.

Calculations for test exclusion for Bottom, Left and Right side.

Maximum power: 22.4 mW Top distance: 189.4 mm Right Side distance: 33.25 mm Left Side distance: 65.7

The closest distance is from the right side. Therefore, if the right side is excluded the top and left side would also be excluded.

 $[(22.4 \text{ mW})/(33.25 \text{ mm})]^*\sqrt{5.825}=1.63$ which is equal to or less than 3.0.

Figure 8.14 Test Reduction Table - 5.8 GHz Aux

		duction rable -	- J.O GITZ AUX
Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Back	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Right	157 – 5785 MHz	Tested
	-	161 – 5805 MHz	Reduced ¹
802.11a		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Bottom	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Top & Left	157 – 5785 MHz	Reduced ³
	Top a Lon	161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Back	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Right	157 – 5785 MHz	Reduced ²
	Right	161 – 5805 MHz	Reduced ²
802.11n		165 – 5825 MHz	Reduced ²
5800 MHz		149 – 5745 MHz	Reduced ²
3000 WII 12		153 – 5765 MHz	Reduced ²
	Bottom	157 – 5785 MHz	Reduced ²
	DOLLOITI	161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Top & Left	157 – 5785 MHz	Reduced ³
	ιορα Leit	161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
	Back	155 – 5825 MHz	Reduced ²
000 1100			
802.11ac	Right	155 – 5775 MHz	Reduced ² Reduced ²
5775 MHz	Bottom	155 – 5775 MHz	
	Top & Left	155 – 5775 MHz	Reduced ³

Reduced¹ – When the tested channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the reported SAR is <0.4 W/kg, no further testing for that configuration is required per KDB 248227 D01 v02 section 5.1.1 1) page 9.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 22.4 mW Top distance: 178.8 mm Left Side distance: 124.7

The closest distance is from the left side. Therefore, if the left side is excluded the bottom would also be excluded.

[{[(3.0)/($\sqrt{5.825}$)]*50 mm}]+[{124.7-50 mm}*10]=809 mW which is greater than 22.4 mW

SAR Data Summary – 2450 MHz Body 802.11b & BT

ME	MEASUREMENT RESULTS													
Diet Con		Antonna	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported SAR				
Plot	t Gap Antenn	Antenna	Position	MHz	Ch.	Wodulation	Antenna	(dBm)	(W/kg)	(W/kg)				
					2437	6	DSSS	Main	15.00	0.413	0.41			
			Back	2462	11	DSSS	Iviairi	14.96	0.316	0.32				
				2437	6	DSSS	Aux	15.00	0.641	0.64				
1				2462	11	DSSS		14.91	0.646	0.66				
	0	A	Amphopol	Amphanal	Amphanal	Amphonol	Dialet	2437	6	OFDM	A	15.00	0.451	0.45
	mm	Amphenol	Right	2462	11	OFDM	Aux	14.91	0.441	0.45				
			Dottom	2437	6	DSSS	Main	15.00	0.312	0.31				
			Bottom	2437	6	DSSS	Aux	15.00	0.398	0.40				
					Back	2440	39	GFSK	Main	11.39	0.176	0.18		
			Bottom	2440	39	GFSK	ivialli	11.39	0.123	0.13				

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	Battery is fully charged for a	III tests.		
	Power Measured		□ERP	EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	ılator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	$\sum N/A$
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 5250 MHz Body 802.11a

ME	MEASUREMENT RESULTS											
Plot	Gap	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR		
FIOL	Gap		1 03111011	MHz	Ch.	Wiodulation		(dBm)	(W/kg)	(W/kg)		
2					Back	5300	60	OFDM	Main	13.50	0.305	0.31
	0 mm	Amphonol		5300	60	OFDM	Aux	13.50	0.287	0.29		
	0 mm Amphenol	mm Amphenoi	nm Amphenol	m Amphenol -	Right	5300	60	OFDM	Aux	13.50	0.300	0.30
			Bottom	5300	60	OFDM	Main	13.50	0.127	0.13		

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged fo	r all tests.		
	Power Measured	⊠Conducted	□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	☐Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	⊠Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simulator	
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
5.	Tissue Depth is at least 15	5.0 cm		

SAR Data Summary - 5600 MHz Body 802.11a

ME	MEASUREMENT RESULTS																													
Plot Gap	Gan	Antenna	Position	Frequency		Modulation	Antenna	End Power	Measured SAR	Reported SAR																				
	Сар		1 03111011	MHz	Ch.	Modulation	Antoma	(dBm)	(W/kg)	(W/kg)																				
3			Back	5580	116	OFDM	Main	13.50	0.597	0.60																				
				5620	124	OFDM	IVIAITI	13.50	0.524	0.52																				
	0 mm	A I I	A b l	A	Amahanal	Amahanal	Amahanal	Amphonol	Amphonol	Amphanal	Amphonol	Amahanal	Amphonol	Amphenol	Amphenol	Amphenol		5620	124	OFDM	Aux	13.50	0.337	0.34						
	0 mm Amphenol	Amphenoi	Right	5620	124	OFDM	Aux	13.50	0.348	0.35																				
				D.	Rottom	5580	116	OFDM	Main	13.50	0.547	0.55																		
		Bottom	5620	124	OFDM	ividili	13.50	0.488	0.49																					

Body 1.6 W/kg (mW/g) averaged over 1 gram

1.	Battery is fully charged for all	tests.		
	Power Measured	⊠Conducted	□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simula	ntor
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	$\sum N/A$

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – 5800 MHz Body 802.11a

ME	MEASUREMENT RESULTS													
Plot Ga	Gap	Antenna	Position	Frequency		Modulation	Antenna -	End Power	Measured SAR	Reported SAR				
FIOL	Gap	Aineilla	FUSILIOII	MHz	Ch.	Woddiation	Antenna	(dBm)	(W/kg)	(W/kg)				
4								5785	157	OFDM	Main	13.50	0.457	0.46
	0		Back	5825	165	OFDM	IVIAIII	13.47	0.341	0.34				
	0 mm Amphenol	Amphenol	5785	157	OFDM	Λ.13v	13.50	0.287	0.29					
			Right	5785	157	OFDM	Aux	13.50	0.341	0.34				
			Bottom	5785	157	OFDM	Main	13.50	0.368	0.37				

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	Battery is fully charged for a	all tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	ulator
4.	Test Configuration	☐With Belt Clip	Without Belt Cli	p N/A

5. Tissue Depth is at least 15.0 cm

SAR Data Summary – Simultaneous Evaluation

MEA	MEASUREMENT RESULTS - BT									
Freque	requency Modulation		Frequ	ency	Modulation	SAR₁	SAR ₂	SAR Total		
MHz	Ch.	modulation	MHz	Ch.	Modulation	6 7.11.1		31 11 1 0 000		
2462	11	DSSS	2440	39	GFSK	0.64	0.18	0.82		
5300	60	OFDM	2440	39	GFSK	0.30	0.18	0.48		
5620	124	OFDM	2440	39	GFSK	0.35	0.18	0.53		
5825	157	OFDM	2440	39	GFSK	0.34	0.18	0.52		

Body
1.6 W/kg (mW/g)
averaged over 1 gram

The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v05r02 section 4.3.2 page 11.

MEA	MEASUREMENT RESULTS - MIMO									
Freque	Frequency Modulation		Frequ	ency	Modulation	SAR ₁ - Main	SAR ₂ - Aux	SAR Total		
MHz	Ch.	modulation	MHz	Ch.	Modulation	Oraci mani	Ortitz rtax	J. II. I Glai		
2437	6	DSSS	2462	11	DSSS	0.41	0.64	1.05		
5300	60	OFDM	5300	60	OFDM	0.31	0.30	0.61		
5580	116	OFDM	5620	124	OFDM	0.60	0.35	0.95		
5785	157	OFDM	5785	157	OFDM	0.46	0.34	0.80		

Body
1.6 W/kg (mW/g)
averaged over 1 gram

In MIMO mode, the sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v05r02 section 4.3.2 page 11.

9. Test Equipment List

Table 9.1 Equipment Specifications

Туре	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1065
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	04/15/2016	04/15/2015	1416
SPEAG E-Field Probe EX3DV4	04/27/2016	04/27/2015	3662
Speag Validation Dipole D2450V2	12/04/2015	12/04/2012	829
Speag Validation Dipole D5GHzV2	12/11/2015	12/11/2012	1085
Agilent N1911A Power Meter	05/20/2017	05/20/2015	GB45100254
Agilent N1922A Power Sensor	06/25/2017	06/25/2015	MY45240464
Advantest R3261A Spectrum Analyzer	03/26/2017	03/26/2015	31720068
Agilent (HP) 8350B Signal Generator	03/26/2017	03/26/2015	2749A10226
Agilent (HP) 83525A RF Plug-In	03/26/2017	03/26/2015	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/26/2017	03/26/2015	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/26/2017	03/26/2015	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/31/2017	03/31/2015	MY48360364
Anritsu MT8820C	07/28/2017	07/28/2015	6201176199
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits BW-N20W5+ Fixed 20 dB	N/A	N/A	N/A
Attenuator			
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5 GHz)	N/A	N/A	N/A

10. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

11. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.
- [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.
- [6] Industry Canada, RSS 102 Issue 5, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2015.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

^{*} value interpolated

Test Result for UIM Dielectric Parameter Wed 12/Aug/2015 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM ***********

^{*} value interpolated

RF Exposure Lab

Plot 1

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 1.98 \text{ S/m}$; $\epsilon_r = 52.53$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

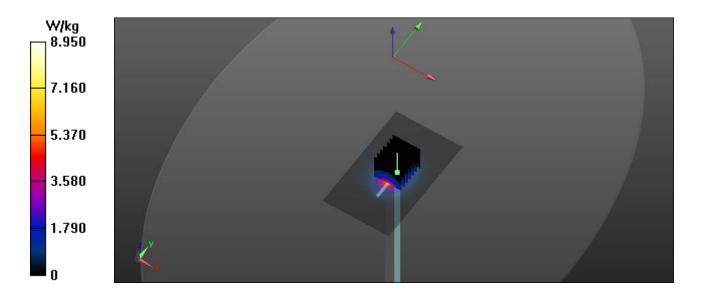
Test Date: Date: 8/13/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.08, 7.08, 7.08); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

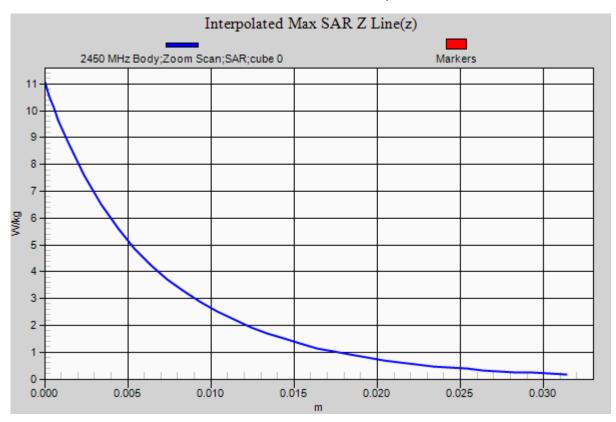
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.95 W/kg


Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.963 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 11.02 W/kg

Pin= 100 mW

SAR(1 g) = 5.09 W/kg; SAR(10 g) = 2.38 W/kg Maximum value of SAR (measured) = 8.92 W/kg

RF Exposure Lab

Plot 2

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.28$ S/m; $\epsilon_r = 48.88$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

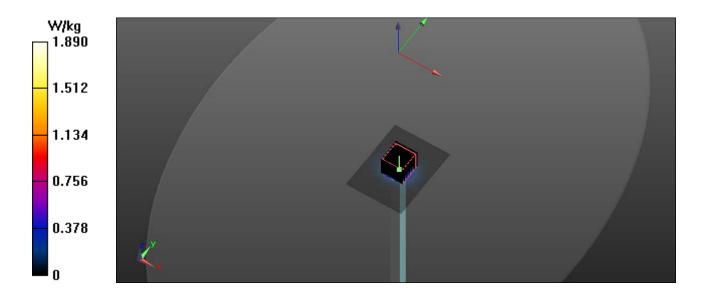
Test Date: Date: 8/12/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662: ConvF(4.45, 4.45, 4.45); Calibrated: 4/27/2015:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

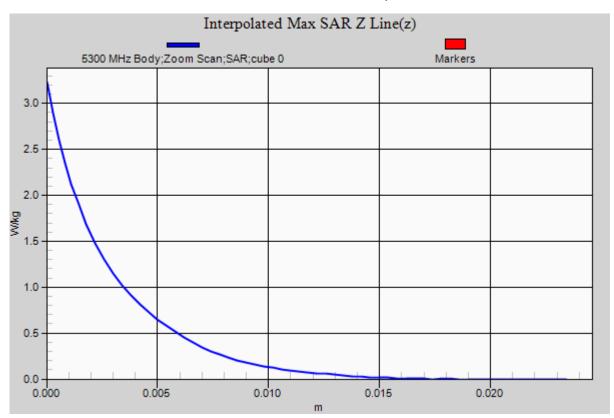
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5200 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.87 W/kg


Body Verification/5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.521 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 3.26 W/kg

Pin=10 mW

SAR(1 g) = 0.73 W/kg; SAR(10 g) = 0.201 W/kg Maximum value of SAR (measured) = 1.88 W/kg

RF Exposure Lab

Plot 3

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.76$ S/m; $\epsilon_r = 48.28$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

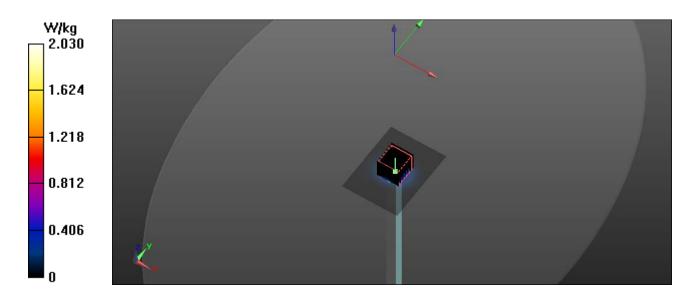
Test Date: Date: 8/12/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(3.8, 3.8, 3.8); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

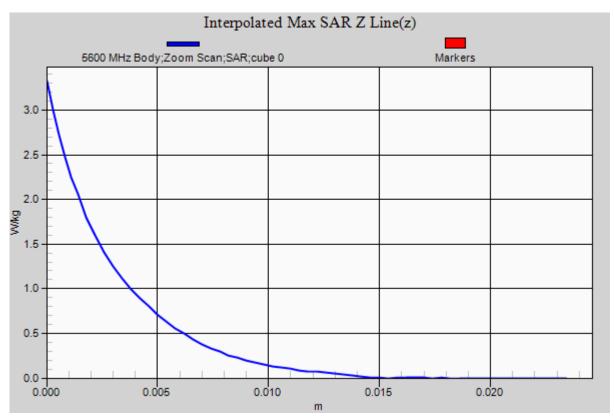
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5600 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.03 W/kg


Body Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.672 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.35 W/kg

Pin=10 mW

SAR(1 g) = 0.796 W/kg; SAR(10 g) = 0.219 W/kg Maximum value of SAR (measured) = 2.04 W/kg

RF Exposure Lab

Plot 4

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 47.98$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

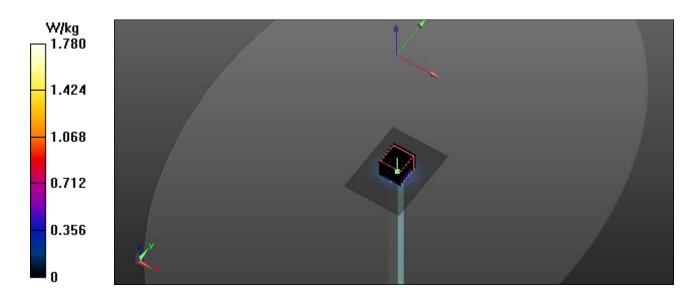
Test Date: Date: 8/12/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662: ConvF(3.99, 3.99, 3.99); Calibrated: 4/27/2015:

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

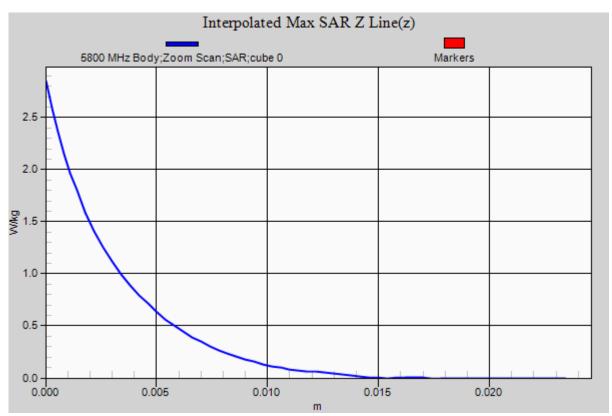
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5800 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.78 W/kg


Body Verification/5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.159 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 2.86 W/kg

Pin=10 mW

SAR(1 g) = 0.725 W/kg; SAR(10 g) = 0.200 W/kg Maximum value of SAR (measured) = 1.77 W/kg

Appendix B – SAR Test Data Plots

RF Exposure Lab

Plot 1

DUT: T03D; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 2.002 \text{ S/m}$; $\epsilon_r = 52.516$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: Date: 8/13/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.08, 7.08, 7.08); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

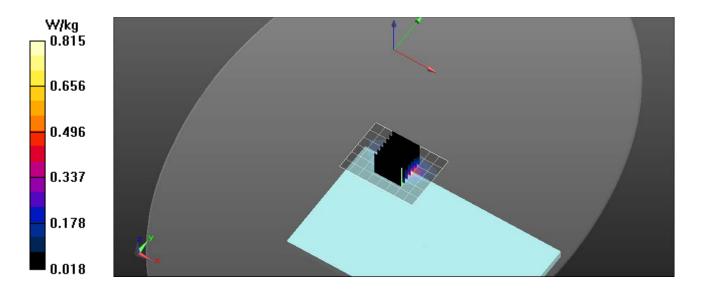
Procedure Notes:

2450 MHz/Tablet Back Aux High/Area Scan (9x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.938 W/kg

2450 MHz/Tablet Back Aux High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 15.67 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 2.00 W/kg

SAR(1 g) = 0.646 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.815 W/kg

RF Exposure Lab

Plot 2

DUT: T03D; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5300 MHz; $\sigma = 5.4$ S/m; $\epsilon_r = 48.73$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

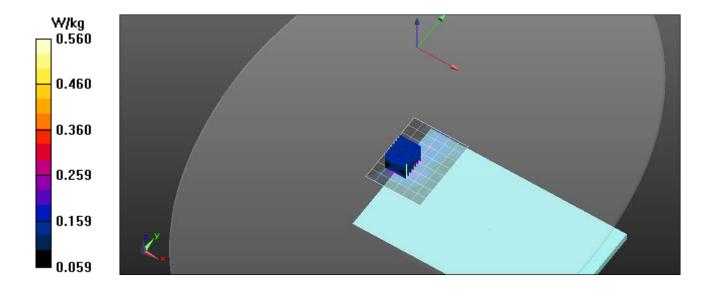
Test Date: Date: 8/12/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.3, 4.3, 4.3); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


5200 MHz/Tablet Back Main 60/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.397 W/kg

5200 MHz/Tablet Back Main 60/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.271 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.305 W/kg

Maximum value of SAR (measured) = 0.560 W/kg

RF Exposure Lab

Plot 3

DUT: T03D; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5580 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5580 MHz; $\sigma = 5.73$ S/m; $\epsilon_r = 48.31$; $\rho = 1000$ kg/m³

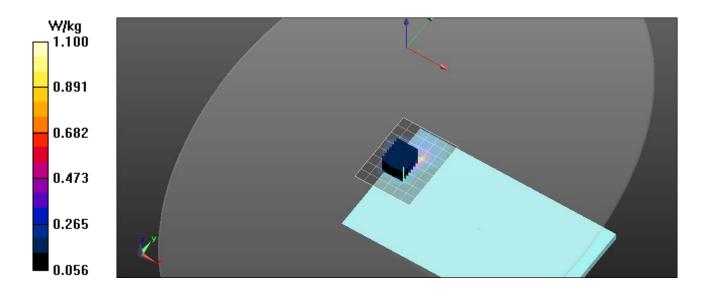
Phantom section: Flat Section

Test Date: Date: 8/13/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(3.8, 3.8, 3.8); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Procedure Notes:

5600 MHz/Tablet Back Main 116/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.868 W/kg

5600 MHz/Tablet Back Main 116/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 6.739 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.95 W/kg

SAR(1 g) = 0.597 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

RF Exposure Lab

Plot 4

DUT: T03D; Type: Tablet PC; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5785 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 5.975$ S/m; $\epsilon_r = 48.003$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 8/13/2015; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(3.99, 3.99, 3.99); Calibrated: 4/27/2015;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 4/15/2015 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: 1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

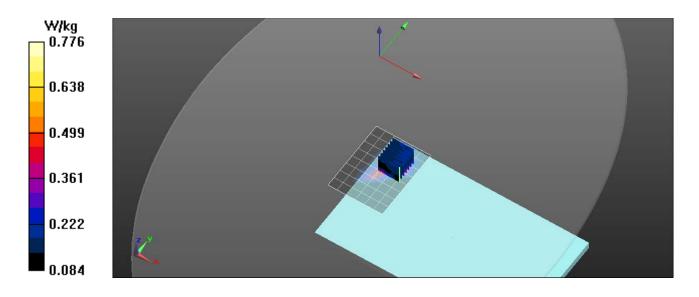
Procedure Notes:

5800 MHz/Tablet Back Main 157/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.643 W/kg

5800 MHz/Tablet Back Main 157/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 6.546 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.74 W/kg

SAR(1 g) = 0.457 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.776 W/kg

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: EX3-3662_Apr15

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3662**

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date: April 27, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Certificate No: EX3-3662_Apr15

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
O Chandanda	ID	Check Date (in house)	Scheduled Check
Secondary Standards RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Name Function Signature
Calibrated by: Jeton Kastrati Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: April 28, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Page 1 of 11

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques". June 2013

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 – SN:3662 April 27, 2015

Probe EX3DV4

SN:3662

Manufactured: Calibrated:

October 20, 2008 April 27, 2015

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Basic Calibration Parameters

Dasic Cambration Fara	Sensor X	Sensor Y	Sensor Z	Unc (k=2) ± 10.1 %	
Norm $(\mu V/(V/m)^2)^A$	0.44	0.47	0.52		
DCP (mV) ^B	101.9	95.6	97.9		

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [⊦] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.2	±3.0 %
		Υ	0.0	0.0	1.0		140.2	
		Z	0.0	0.0	1.0		142.2	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3662 April 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
150	52.3	0.76	10.87	10.87	10.87	0.00	1.00	± 13.3 %
220	49.0	0.81	11.06	11.06	11.06	0.00	1.00	± 13.3 %
450	43.5	0.87	10.63	10.63	10.63	0.16	1.20	± 13.3 %
750	41.9	0.89	9.42	9.42	9.42	0.23	1.33	± 12.0 %
835	41.5	0.90	9.00	9.00	9.00	0.34	0.93	± 12.0 %
900	41.5	0.97	8.79	8.79	8.79	0.21	1.31	± 12.0 %
1750	40.1	1.37	7.76	7.76	7.76	0.19	1.18	± 12.0 %
1900	40.0	1.40	7.48	7.48	7.48	0.34	0.85	± 12.0 %
2450	39.2	1.80	6.95	6.95	6.95	0.37	0.80	± 12.0 %
2600	39.0	1.96	6.84	6.84	6.84	0.42	0.80	± 12.0 %
5200	36.0	4.66	5.05	5.05	5.05	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.81	4.81	4.81	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.81	4.81	4.81	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.73	4.73	4.73	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.68	4.68	4.68	0.40	1.80	± 13.1 %

 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

validity can be extended to \pm 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the CopyE uncertainty for indicated tarret tissue parameters

the ConvF uncertainty for indicated target tissue parameters.

Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3662 April 27, 2015

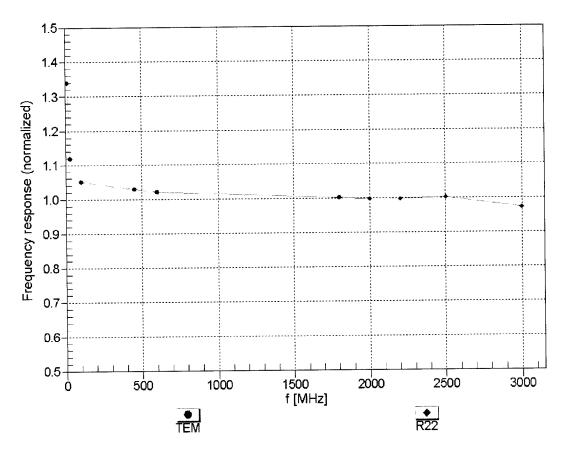
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
150	61.9	0.80	10.83	10.83	10.83	0.00	1.00	± 13.3 %
220	60.2	0.86	10.42	10.42	10.42	0.00	1.00	± 13.3 %
450	56.7	0.94	10.37	10.37	10.37	0.08	1.20	± 13.3 %
750	55.5	0.96	8.92	8.92	8.92	0.25	1.26	± 12.0 %
835	55.2	0.97	8.86	8.86	8.86	0.41	0.88	± 12.0 %
900	55.0	1.05	8.59	8.59	8.59	0.35	1.07	± 12.0 %
1750	53.4	1.49	7.49	7.49	7.49	0.25	1.07	± 12.0 %
1900	53.3	1.52	7.31	7.31	7.31	0.37	0.89	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.34	0.90	± 12.0 %
2600	52.5	2.16	6.84	6.84	6.84	0.34	0.90	± 12.0 %
5200	49.0	5.30	4.45	4.45	4.45	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.30	4.30	4.30	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.89	3.89	3.89	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.80	3.80	3.80	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.99	3.99	3.99	0.50	1.90	± 13.1 %

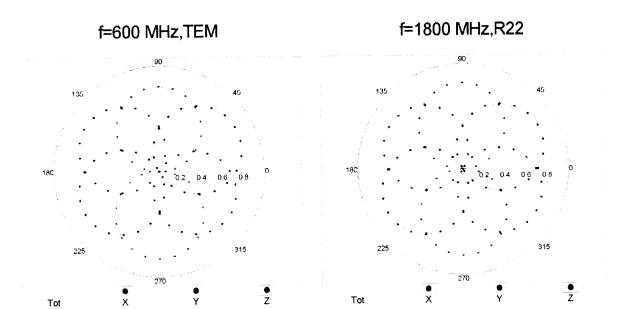
 $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

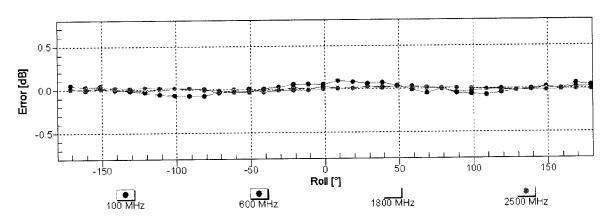
validity can be extended to \pm 110 MHz.


F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

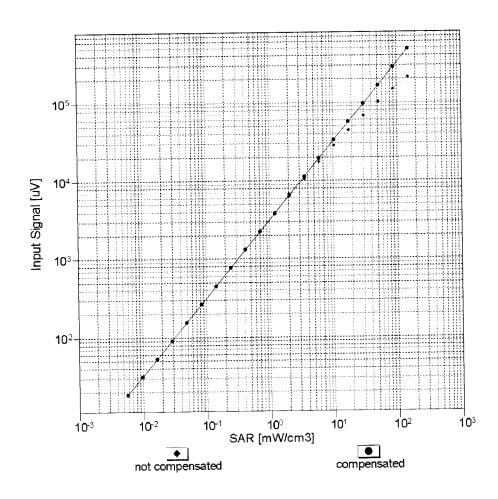
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

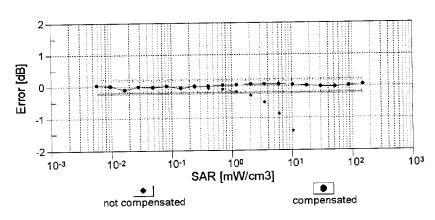
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX3-3662_Apr15 Page 6 of 11

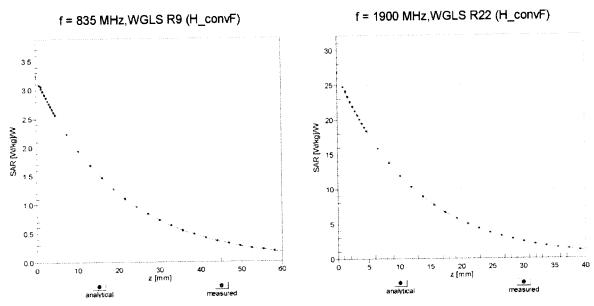

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

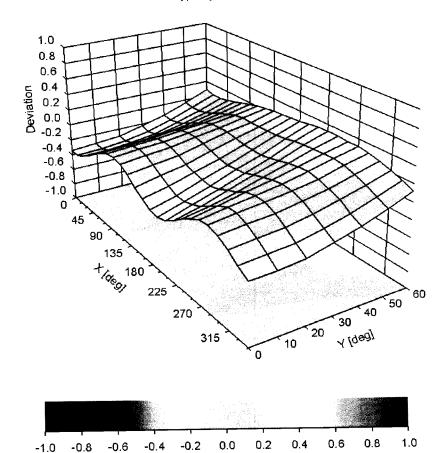
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

EX3DV4- SN:3662 April 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Other Probe Parameters

Sensor Arrangement	Triangular		
Connector Angle (°)	-31.2		
Mechanical Surface Detection Mode	enabled		
Optical Surface Detection Mode	disabled		
Probe Overall Length	337 mm		
Probe Body Diameter	10 mm		
Tip Length	9 mm		
Tip Diameter	2.5 mm		
Probe Tip to Sensor X Calibration Point	1 mm		
Probe Tip to Sensor Y Calibration Point	1 mm		
Probe Tip to Sensor Z Calibration Point	1 mm		
Recommended Measurement Distance from Surface	1.4 mm		

Report Number: SAR.20150807

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Accreditation No.: SCS 108

Certificate No: D2450V2-829_Dec12

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 829

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

December 04, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

D. L Ohandarda	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power meter EPM-442A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A		27-Mar-12 (No. 217-01530)	Apr-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01533)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327		Dec-12
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Jun-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Juli-10
O L Obsession	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
Power sensor HP 8481A	1	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-0ct-01 (III House cheek det 12)	
	Name	Function	Signature

Calibrated by:

Leif Klysner

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: December 4, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-829_Dec12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-829_Dec12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as not DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)
SAR for nominal Body 13L parameters		

Page 3 of 8 Certificate No: D2450V2-829_Dec12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 4.2 j Ω
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 5.1 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 11, 2008
Walturactured on	

Certificate No: D2450V2-829_Dec12 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 04.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 38.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

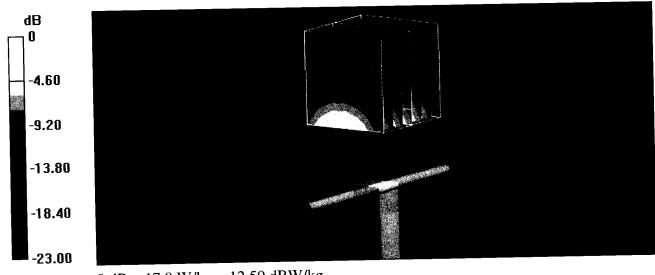
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

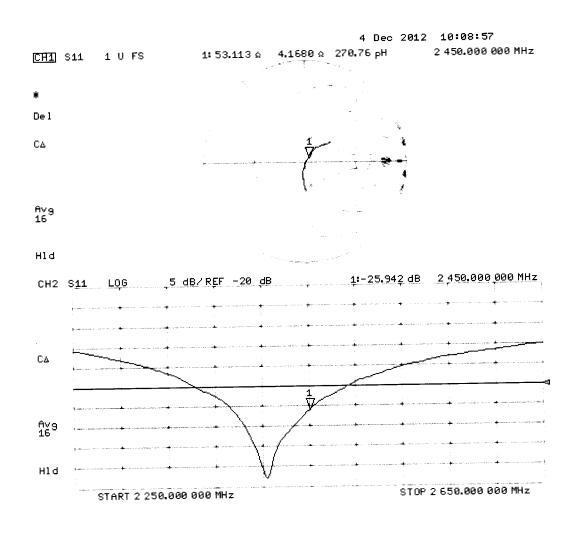
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.05 dB


Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 04.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 50.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

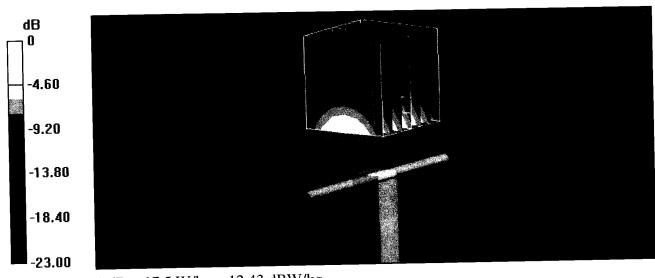
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

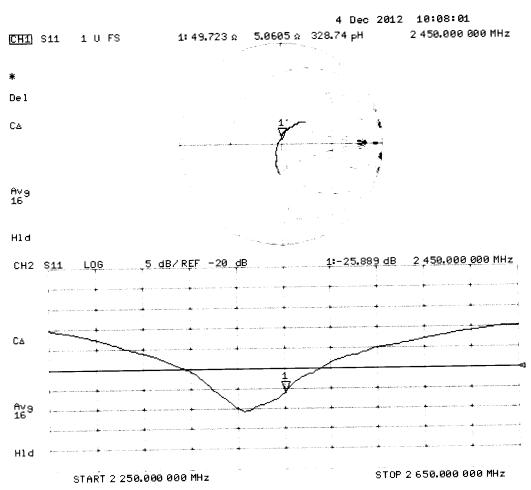
• DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Impedance Measurement Plot for Body TSL

Extended Calibration

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03.

D2450V2 SN: 829 - Head						
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
12/4/2012	-25.9		53.1		4.2	
12/5/2013	-26.5	2.3	52.6	-0.5	3.8	-0.4
12/5/2014	-24.6	-5.0	51.6	-1.5	4.9	0.7

D2450V2 SN: 829 - Body						
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ
12/4/2012	-25.9		49.7		5.1	
12/5/2013	-26.2	1.2	48.5	-1.2	4.6	-0.5
12/4/2014	-24.6	-5.0	47.6	-2.1	5.9	0.8

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1085_Dec12

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1085

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

December 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

	liD#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
1	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Reference 20 dB Attenuator	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Type-N mismatch combination	SN: 3503	30-Dec-11 (No. EX3-3503_Dec11)	Dec-12
Reference Probe EX3DV4		27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
DAE4	SN: 601	27-5dil-12 (No. 5/12 / 55 / 25/12)	
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
Power sensor HP 8481A		04-Aug-99 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (III house dileak out 12)	

Calibrated by:

Name Israe El-Naouq Function Laboratory Technician Signature

Approved by:

Katja Pokovic

Technical Manager

Issued: December 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1085_Dec12

Page 1 of 14

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as no		V52.8.3
DASY Version	DASY5	V52.6.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
	5200 MHz ± 1 MHz	
	5300 MHz ± 1 MHz	
Frequency	5600 MHz ± 1 MHz	
	5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

Condition	
100 mW input power	8.20 W/kg
normalized to 1W	81.4 W/kg ± 19.9 % (k=2)
	100 mW input power

condition	
100 mW input power	2.35 W/kg
normalized to 1W	23.3 W/kg ± 19.5 % (k=2)
	100 mW input power

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

Condition	
100 mW input power	8.35 W/kg
normalized to 1W	82.9 W / kg ± 19.9 % (k=2)
	100 mW input power

condition	
100 mW input power	2.39 W/kg
normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Page 3 of 14 Certificate No: D5GHzV2-1085_Dec12

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	8.69 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	86.1 W/kg ± 19.9 % (k=2)	

condition	
100 mW input power	2.48 W/kg
normalized to 1W	24.5 W/kg ± 19.5 % (k=2)
	100 mW input power

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

condition	
100 mW input power	2.33 W/kg
normalized to 1W	23.1 W/kg ± 19.5 % (k=2)
֡	100 mW input power

Page 4 of 14 Certificate No: D5GHzV2-1085_Dec12

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

Condition	
100 mW input power	7.43 W/kg
normalized to 1W	73.6 W/kg ± 19.9 % (k=2)
	100 mW input power

condition	
100 mW input power	2.09 W/kg
normalized to 1W	20.7 W/kg ± 19.5 % (k=2)
	100 mW input power

Page 5 of 14 Certificate No: D5GHzV2-1085_Dec12

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

he following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

Condition	
100 mW input power	7.36 W/kg
normalized to 1W	72.9 W/kg ± 19.9 % (k=2)
	100 mW input power

condition	
100 mW input power	2.04 W/kg
normalized to 1W	20.2 W/kg ± 19.5 % (k=2)
	100 mW input power

Certificate No: D5GHzV2-1085_Dec12

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.9 Ω - 9.9 jΩ
Return Loss	- 20.2 dB
Ticidiii Eoo	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 5.6 jΩ
Return Loss	- 24.7 dB
Tiotain 2000	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.1 Ω - 4.4 jΩ
Impodance, value	- 23.0 dB
Return Loss	- 23.0 db

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω - 4.6 jΩ
	- 26.2 dB
Return Loss	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.0 Ω - 9.5 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.7 Ω - 5.0 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 3.4 jΩ
	- 23.2 dB
Return Loss	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω - 4.7 jΩ
Return Loss	- 25.0 dB

Certificate No: D5GHzV2-1085_Dec12 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	December 21, 2009
Manufactured on	

Extended Calibration

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 865664 D01 v01r03.

D5GHzV2 SN: 1085 - Head											
Date of Measurement	Frequency	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	Impedance Imaginary (jΩ)	ΔΩ				
12/11/2012		-20.2		50.9	·	-9.9					
12/11/2013	5200 MHz	-21.3	5.4	51.2	0.3	-8.7	1.2				
12/11/2014	1	-20.8	3.0	50.1	-0.8	-9.4	0.5				
12/11/2012	5300 MHz	-24.7	, i	48.7		-5.6					
12/11/2013		-24.3	-1.6	47.9	-0.8	-4.8	0.8				
12/11/2014		-23.9	-3.2	47.2	-1.5	-4.2	1.4				
12/11/2012		-23.0		56.1		-4.4					
12/11/2013	5600 MHz	-23.9	3.9	55.0	-1.1	-4.9	-0.5				
12/11/2014		-23.5	2.2	55.8	-0.3	-3.8	1.1				
12/11/2012	-	-26.2		51.9		-4.6					
12/11/2013	5800 MHz	-25.6	-2.3	53.1	1.2	-4.1	0.5				
12/11/2014	1	-25.2	-3.8	52.6	0.7	-5.2	-0.6				

D5GHzV2 SN: 1085 - Body										
Date of Frequency		Return Loss Δ% Impedance (dB) Real (Ω)		ΔΩ	Impedance Imaginary (jΩ)	ΔΩ				
12/11/2012		-20.5		50.0		-9.5				
12/11/2013	5200 MHz	-21.3	3.9	51.2	1.2	-8.7	0.8			
12/11/2014	1	-21.6	5.4	49.8	-0.2	-10.2	-0.7			
12/11/2012	5300 MHz	-26.0		49.7		-5.0				
12/11/2013		-25.3	-2.7	51.3	1.6	-4.6	0.4			
12/11/2014		-27.1	4.2	50.3	0.6	-5.8	-0.8			
12/11/2012	<u> </u>	-23.2		56.5		-3.4				
12/11/2013	5600 MHz	-22.6	-2.6	55.9	-0.6	-3.9	-0.5			
12/11/2014	1	-24.3	4.7	57.1	0.6	-2.8	0.6			
12/11/2012		-25.0		53.5		-4.7				
12/11/2012	5800 MHz	-23.9	-4.4	52.6	-0.9	-5.7	-1.0			
12/11/2014	1	-25.6	2.4	53.9	0.4	-4.5	0.2			

Certificate No: D5GHzV2-1085_Dec12 Page 8 of 14

DASY5 Validation Report for Head TSL

Date: 11.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz,

Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.53$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.63$ mho/m; $\epsilon_r = 34.7$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5600 MHz; σ = 4.93 mho/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.15 mho/m; ϵ_r = 34; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(5.1, 5.1, 5.1); Calibrated: 30.12.2011, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.782 V/m; Power Drift = $0.\overline{07} \text{ dB}$

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.947 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.857 V/m; Power Drift = 0.05 dB

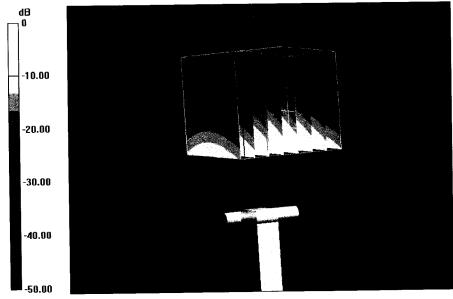
Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.48 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

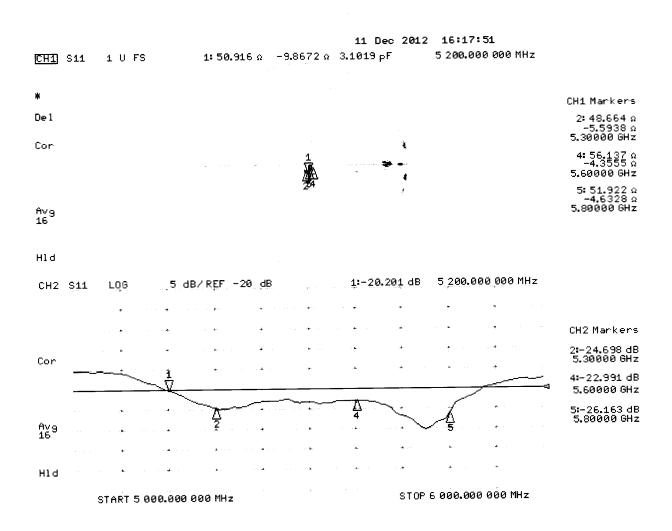
Certificate No: D5GHzV2-1085_Dec12

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.816 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 33.5 W/kg


SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 10.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz,

Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 5.35 mho/m; ϵ_r = 46.8; ρ = 1000 kg/m 3 , Medium parameters used: f = 5300 MHz; σ = 5.47 mho/m; ϵ_r = 46.7; ρ = 1000 kg/m 3 , Medium parameters used: f = 5600 MHz; σ = 5.86 mho/m; ϵ_r = 46.2; ρ = 1000 kg/m 3 , Medium parameters used: f = 5800 MHz; σ = 6.13 mho/m; ϵ_r = 45.9; ρ = 1000 kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.67, 4.67, 4.67); Calibrated: 30.12.2011, ConvF(4.22, 4.22, 4.22); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.435 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.938 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.467 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.4 W/kg

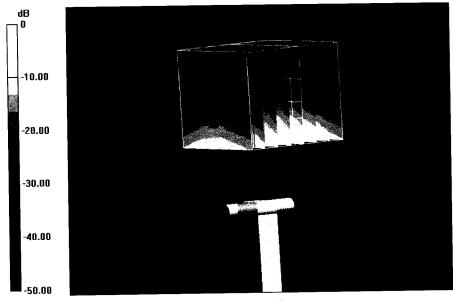
SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Certificate No: D5GHzV2-1085_Dec12

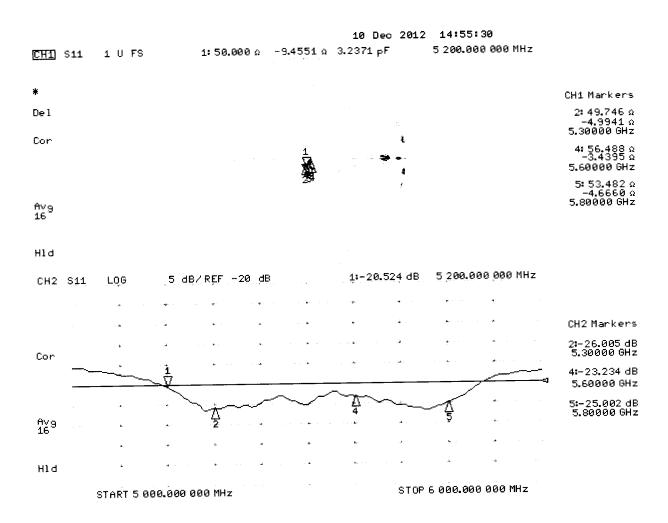
Page 12 of 14

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.901 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.6 W/kg


SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Body TSL

Report Number: SAR.20150807

Appendix F – Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0
Type No	QD OVA 001 B
Series No	1003 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8
	CH-8268 Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material	Compliant with the standard	Bottom plate:	all
thickness	requirements	2.0mm +/- 0.2mm	
Material	Dielectric parameters for required	< 6 GHz: Rel. permittivity = 4	Material
parameters	frequencies	+/-1, Loss tangent ≤ 0.05	sample
Material	The material has been tested to be	DGBE based simulating	Equivalent
resistivity	compatible with the liquids defined in	liquids.	phantoms,
	the standards if handled and cleaned	Observe Technical Note for	Material
	according to the instructions.	material compatibility.	sample
Shape	Thickness of bottom material,	Bottom elliptical 600 x 400 mm	Prototypes,
	Internal dimensions,	Depth 190 mm,	Sample
	Sagging	Shape is within tolerance for	testing
	compatible with standards from	filling height up to 155 mm,	
	minimum frequency	Eventual sagging is reduced or	
		eliminated by support via DUT	

Standards

- [1] CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT.

Date

28.4.2008

Signature / Stamp

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9709, Fax+41,44 245 9779 info@speag.com; http://www.speag.com

Report Number: SAR.20150807

Appendix G – Validation Summary

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue equivalent media for system validation according to the procedures outlined in FCC KDB 865664 D01 v01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point using the system that normally operates with the probe for routine SAR measurements and according to the required tissue equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table G-1
SAR System Validation Summary

SAR From	F	Duala	Duelee	Dunka Cal	Carad	Dawe	CW Validation			Modulation Validation				
System #	Freq. (MHz)	Date	Probe S/N	Probe Type	Probe Cal. Point		Cond. (σ)	Perm. (ε _r)	Sens- itivity	Probe Linearity	Probe Isotropy	Modulation Type	Duty Factor	PAR
1	2450	5/04/2015	3662	EX3DV4	2450	Body	2.00	52.31	Pass	Pass	Pass	OFDM/TDD	Pass	Pass
1	5200	5/05/2015	3662	EX3DV4	5200	Body	5.39	48.76	Pass	Pass	Pass	OFDM	N/A	Pass
1	5300	5/05/2015	3662	EX3DV4	5300	Body	5.42	48.49	Pass	Pass	Pass	OFDM	N/A	Pass
1	5500	5/05/2015	3662	EX3DV4	5500	Body	5.83	48.08	Pass	Pass	Pass	OFDM	N/A	Pass
1	5600	5/06/2015	3662	EX3DV4	5600	Body	5.79	47.87	Pass	Pass	Pass	OFDM	N/A	Pass
1	5800	5/06/2015	3662	EX3DV4	5800	Body	6.01	47.72	Pass	Pass	Pass	OFDM	N/A	Pass