

# **Report On**

Application for Grant of Equipment Authorization of the Oculus VR, LLC RE-A Remote (Simple Input Device)

FCC Part 15 Subpart C §15.247 (FHSS) IC RSS-247 Issue 1 May 2015 IC RSS-Gen Issue 4, November 2014

Report No. SD72112194-1215C

December 2015

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C



## **REPORT ON**

Radio Testing of the Oculus VR, LLC Remote (Simple Input Device)

SD72112194-1215C

Oculus VR, LLC 1 Hacker Way Menlo Park, CA 94025

CONTACT PERSON

PREPARED BY

**APPROVED BY** 

PREPARED FOR

**TEST REPORT NUMBER** 

Pelagio Payumo Consumer Product Health & Safety Manager (408) 564-9962 pelagio.payumo@oculus.com

Ferdinand S. Custodio

Name Authorized Signatory Title: EMC/Senior Wireless Test Engineer

Chip R. Fleury Name Authorized Signatory Title: West Coast EMC Manager

DATED

December 16, 2015

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C



# **Revision History**

| SD72112194-122<br>Oculus VR, LLC<br>RE-A<br>Remote (Simple |                 |              |        |                   |                |
|------------------------------------------------------------|-----------------|--------------|--------|-------------------|----------------|
| DATE                                                       | OLD REVISION    | NEW REVISION | REASON | PAGES<br>AFFECTED | APPROVED BY    |
| 12/16/2015                                                 | Initial Release |              |        |                   | Chip R. Fleury |
|                                                            |                 |              |        |                   |                |
|                                                            |                 |              |        |                   |                |
|                                                            |                 |              |        |                   |                |
|                                                            |                 |              |        |                   |                |



# CONTENTS

| Section |                                                | Page No |
|---------|------------------------------------------------|---------|
| 1       | REPORT SUMMARY                                 | 5       |
| 1.1     | Introduction                                   | 6       |
| 1.2     | Brief Summary Of Results                       | 7       |
| 1.3     | Product Information                            |         |
| 1.4     | EUT Test Configuration                         |         |
| 1.5     | Deviations From The Standard                   |         |
| 1.6     | Modification Record                            |         |
| 1.7     | Test Methodology                               |         |
| 1.8     | Test Facility Location                         |         |
| 1.9     | Test Facility Registration                     |         |
| 2       | TEST DETAILS                                   | 14      |
| 2.1     | Carrier Frequency Separation                   |         |
| 2.2     | Number Of Hopping Frequencies                  |         |
| 2.3     | Time Of Occupancy (Dwell Time)                 |         |
| 2.4     | 20 dB Bandwidth                                |         |
| 2.5     | 99% Emission Bandwidth                         | 25      |
| 2.6     | Peak Output Power                              |         |
| 2.7     | Band-Edge Compliance Of RF Conducted Emissions |         |
| 2.8     | Spurious RF Conducted Emissions                |         |
| 2.9     | Spurious Radiated Emissions                    |         |
| 2.10    | Radiated Immediate Restricted Bands            | 45      |
| 3       | TEST EQUIPMENT USED                            | 51      |
| 3.1     | Test Equipment Used                            |         |
| 3.2     | Measurement Uncertainty                        | 53      |
| 4       | DIAGRAM OF TEST SETUP                          | 54      |
| 4.1     | Test Setup Diagram                             |         |
| 5       | ACCREDITATION, DISCLAIMERS AND COPYRIGHT       |         |
| 5.1     | Accreditation, Disclaimers and Copyright       |         |



**SECTION 1** 

# **REPORT SUMMARY**

Radio Testing of the Oculus VR, LLC Remote (Simple Input Device)

Page **5** of **58** 



# 1.1 INTRODUCTION

The information contained in this report is intended to show verification of the Oculus VR, LLC RE-A Remote (Simple Input Device) to the requirements of FCC Part 15 Subpart C §15.247 and IC RSS-247 Issue 1 May 2015.

| Objective                     | To perform Radio Testing to determine the Equipment Under<br>Test's (EUT's) compliance with the Test Specification, for the<br>series of tests carried out.                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer                  | Oculus VR, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Model Number(s)               | RE-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FCC ID Number                 | 2AGOZRE-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IC Number                     | 20849-REA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Serial Number(s)              | N/A (Engineering Sample)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Samples Tested      | 4 (Radiated samples only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Specification/Issue/Date | <ul> <li>FCC Part 15 Subpart C §15.247 (October 1, 2014).</li> <li>IC RSS-247 Issue 1 May 2015 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices.</li> <li>IC RSS-Gen Issue 4, November 2014 - General Requirements for Compliance of Radio Apparatus (Issue 4, November 2014).</li> <li>Public Notice (DA 00-705 Released March 30, 2000) Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.</li> </ul> |
| Start of Test                 | October 08, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Finish of Test                | October 12, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Name of Engineer(s)           | Ferdinand Custodio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Related Document(s)           | <ul> <li>setup and connection.txt</li> <li>SD72112194-1215A Facebook Oculus HM-A FCC IC Part 15.247 RSS247 Test Report.docx</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            |

• Supporting documents for EUT certification are separate exhibits.



# 1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC Part 15 Subpart C §15.247 with cross-reference to the corresponding IC RSS standard is shown below.

| Section | §15.247 Spec<br>Clause | RSS                     | Test Description                               | Result     | Comments<br>/Base<br>Standard |
|---------|------------------------|-------------------------|------------------------------------------------|------------|-------------------------------|
| -       | §15.207 (a)            | RSS-Gen 8.8             | Conducted Emissions                            | N/A        |                               |
| 2.1     | §15.247(a)(1)          | RSS-247 5.1 (2)         | Carrier Frequency Separation                   | Compliant* |                               |
| 2.2     | §15.247(a)(1)<br>(iii) | RSS-247 5.1 (4)         | Number of Hopping Frequencies                  | Compliant* |                               |
| 2.3     | §15.247(a)(1)<br>(iii) | RSS-247 5.1 (4)         | Time of Occupancy (Dwell Time)                 | Compliant* |                               |
| 2.4     | §15.215(c)             | RSS-247 5.1 (1)         | 20 dB Bandwidth                                | Compliant* |                               |
| 2.5     |                        | RSS-Gen 6.6             | 99% Emission Bandwidth                         | Compliant* |                               |
| 2.6     | §15.247(b)(1)          | RSS-247 5.4 (2)         | Peak Output Power                              | Compliant* |                               |
| 2.7     | §15.247(d)             | RSS-247 5.5             | Band-edge Compliance of RF Conducted Emissions | Compliant* |                               |
| 2.8     | §15.247(d)             | RSS-247 5.5             | Spurious RF Conducted Emissions                | Compliant  |                               |
| 2.9     | §15.247(d)             | RSS-Gen 8.9 and 8.10    | Spurious Radiated Emissions                    | Compliant  |                               |
| 2.10    | §15.247(d)             | RSS-Gen 8.9 and<br>8.10 | Radiated Immediate Restricted Bands            | Compliant  |                               |

N/A

- Not applicable. EUT is a battery operated device.

Compliant\*

- Test results from SD72112194-1215A Facebook Oculus HM-A FCC IC Part 15.247 RSS247 Test Report.docx applies. All antenna conducted port verifications were performed on the Headset Master (HMD) that has the same RF chip; identical modulation scheme and identical radio transmit power as the EUT



# 1.3 **PRODUCT INFORMATION**

## 1.3.1 **Technical Description**

The Equipment Under Test (EUT) was an Oculus VR, LLC RE-A Remote (Simple Input Device) as shown in the photograph below. The EUT is part of a Virtual Reality Headset System comprising of the EUT, an Oculus Constellation Sensor and the Oculus Virtual Reality Headset.





**Equipment Under Test** 



# 1.3.2 **EUT General Description**

| EUT Description      | Remote (Simple Input Device)            |  |  |
|----------------------|-----------------------------------------|--|--|
| Model Name           | RE-A                                    |  |  |
| Model Number(s)      | RE-A                                    |  |  |
| Rated Voltage        | Coin Cell Battery (Lithium 3V CR2032)   |  |  |
| Mode Verified        | Proprietary 2.4GHz FHSS in the ISM Band |  |  |
| Capability           | Proprietary 2.4GHz FHSS in the ISM Band |  |  |
| Modulation           | GFSK                                    |  |  |
| Primary Unit (EUT)   | Production                              |  |  |
|                      | Pre-Production                          |  |  |
|                      | Engineering                             |  |  |
| Antenna Type         | Multilayer Ceramic Antenna              |  |  |
| Antenna Manufacturer | PSA Walsin Technology Corporation       |  |  |
| Antenna Model Number | RFANT3216120A5T Series                  |  |  |
| Antenna Dimensions   | 3.2mm x 1.6mm x 1.2mm                   |  |  |
| Antenna Gain         | 2.12dBi                                 |  |  |

# 1.3.3 Maximum Conducted Output Power

| Mode | Frequency Range<br>(MHz) | AverageOutput<br>Power<br>(dBm)) | Peak Output<br>Power<br>(dBm) | Peak Output<br>Power<br>(mW) |
|------|--------------------------|----------------------------------|-------------------------------|------------------------------|
| FHSS | 2404-2478                | 0.22                             | 2.57                          | 1.81                         |



# 1.4 EUT TEST CONFIGURATION

## 1.4.1 **Test Configuration Description**

| Test<br>Configuration | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                     | Antenna Conducted Port Single Carrier Test Mode. Actual verifications were performed<br>on the Headset Master (HMD) that has the same RF chip; identical modulation scheme<br>and identical radio transmit power as the EUT (Headset Master has a temporary<br>antenna connector for conducted RF testing). The term "EUT" referred in this test<br>report therefore applies to both the Headset Master (Conducted) and the Tracker<br>(Radiated).<br>Manufacturer provided a Command Prompt window wherein a command could be<br>issued forcing the EUT to single carrier test mode. |
| В                     | Radiated Test Mode. Manufacturer provided separate single carrier transmitting samples for Low, Mid and High channels. For hopping requirement, a normal sample was also provided which defaults to hopping mode when powered up.                                                                                                                                                                                                                                                                                                                                                     |

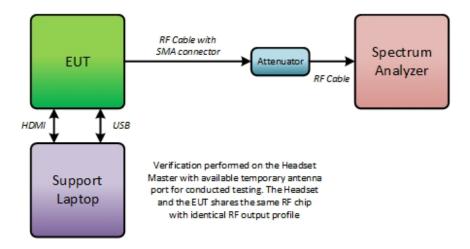
# 1.4.2 EUT Exercise Software

Command Prompt window on the host PC (support laptop) to program as per Test Configuration (Section 1.4.1).

# 1.4.3 Support Equipment and I/O cables

| Manufacturer | Equipment/Cable | Description                             |
|--------------|-----------------|-----------------------------------------|
| Apple Inc.   | Support laptop  | Model MacBookPro 11.3 S/N: C02LX29CFR1M |

# 1.4.4 Worst Case Configuration


## 1.4.5 Worst Case Configuration

The EUT has only one modulation scheme. Being a mobile device, the EUT was verified on all axes. Only the worst axis ("X") presented in this test report for radiated measurements. Worst case Channel based from power measurements is Low channel.





# 1.4.6 Simplified Test Configuration Diagram (Antenna conducted port otherwise stand-alone for Radiated)



Page **11** of **58** 



# 1.5 **DEVIATIONS FROM THE STANDARD**

No deviations from the applicable test standards or test plan were made during testing.

## 1.6 **MODIFICATION RECORD**

| Description of Modification | Modification<br>Fitted By | Date<br>Modification<br>Fitted |
|-----------------------------|---------------------------|--------------------------------|
| Serial Number N/A           |                           |                                |
| N/A                         |                           |                                |

The table above details modifications made to the EUT during the test programme. The modifications incorporated during each test (if relevant) are recorded on the appropriate test pages.

## 1.7 **TEST METHODOLOGY**

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

For conducted and radiated emissions the equipment under test (EUT) was configured to measure its highest possible emission level. This level was based on the maximized cable configuration from exploratory testing per ANSI C63.4-2014. The test modes were adapted according to the Operating Instructions provided by the manufacturer/client.

#### 1.8 **TEST FACILITY LOCATION**

## 1.8.1 **TÜV SÜD America Inc. (Mira Mesa)**

10040 Mesa Rim Road, San Diego, CA 92121-2912 (32.901268,-117.177681). Phone: 858 678 1400 FAX: 858-546 0364

#### 1.8.2 **TÜV SÜD America Inc. (Rancho Bernardo)**

Sony Electronics Inc., Building #8 16530 Via Esprillo, San Diego, CA 92127-1708 (33.018644,-117.092409). Phone: 858 942 5542 FAX: 858-546 0364

#### 1.9 **TEST FACILITY REGISTRATION**

#### 1.9.1 FCC – Registration No.: US1146

TUV SUD America Inc. (San Diego), is an accredited test facility with the site description report on file and has met all the requirements specified in §2.948 of the FCC rules. The acceptance letter from the FCC is maintained in our files and the Registration is US1146.



# 1.9.2 Industry Canada (IC) Registration No.: 3067A

The 10m Semi-anechoic chamber of TUV SUD America Inc. (San Diego) has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No. 3067A.



**SECTION 2** 

# **TEST DETAILS**

Radio Testing of the Oculus VR, LLC Remote (Simple Input Device)



## 2.1 CARRIER FREQUENCY SEPARATION

## 2.1.1 Specification Reference

Part 15 Subpart C §15.247(a)(1) and RSS-247 5.1 (2)

## 2.1.2 Standard Applicable

(1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

# 2.1.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.1.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

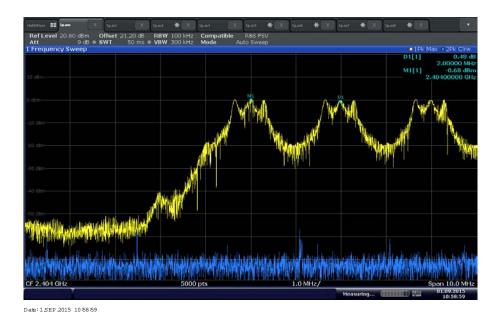
## 2.1.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.1.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |


#### 2.1.7 Additional Observations

- Hopping function enabled.
- Span is wide enough to capture the peaks of two adjacent channels.
- RBW is 1% of the span.
- VBW is 3x RBW
- Sweep is auto



- Detector is peak.
- Trace is max hold.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Marker-delta function is used between the peaks of the adjacent channels.
- Limit used is >490 kHz (2/3 of worst case 20dB BW).

# 2.1.8 Test Results



Observed carrier frequency separation between Channel 4 and Channel 6 = 2 MHz (**Complies**. Greater than 490 kHz, this is 2/3 of 0.7352 MHz 20 dB BW)



## 2.2 **NUMBER OF HOPPING FREQUENCIES**

## 2.2.1 Specification Reference

Part 15 Subpart C §15.247(a)(1)(iii) and RSS-247 5.1 (4)

## 2.2.2 Standard Applicable

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

## 2.2.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.2.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.2.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.2.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

## 2.2.7 Additional Observations

- Hopping function enabled.
- Span was set to the entire Frequency Band.
- RBW is >1% of the span.
- VBW is 3x RBW
- Sweep is auto
- Trace was set to Max Hold.
- Marker Peak List function of the spectrum analyzer was used for this test.

#### 2.2.8 Test Results

Observed Number of Hopping Frequencies is = 37 (Complies)

Page 17 of 58



|                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                    | M1[1] -0.94 d                                                |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                    | 2.4456169                                                    |
|                                                                                                                 | 1 -1,000 dam 7 0 0 0 10 1                | 12 12 14 15 16 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 10 20 20 20 20                                     | V V V V V V V V                                    | 2 31 32 33 2+ 25 36 37                                       |
| har                                                                                                             |                                          | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                    |                                                              |
|                                                                                                                 |                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                    |                                                              |
|                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                    | \                                                            |
| and the stratic beau                                                                                            | معالية وملاقت المتحالية المتحالية المعاد | ويتناقص والمتحد والمتحد والمتحد والمحد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | بالقدر وبالترهيق وأوت أنتا                            | And it is a stand of the stand of the stand of the | والمطلقين والمترجين ومناع متشار بالمتحد والمحتوي المنابع ويع |
| (1993) and a post of the second se | the standard last off the shalles have   | and and the state of the state | Route a standal telen.                                | della ante trainel se le de l                      | terminal and all the second standards                        |
| 4 GHz                                                                                                           |                                          | 5000 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | 8.35 MHz/                                          | 2.4835 G                                                     |
| Aarker Peak L                                                                                                   |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 C. W                                                | 147113-832                                         | N 2019-201                                                   |
| No                                                                                                              | X-Value                                  | Y-Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No                                                    | X-Value                                            | Y-Value                                                      |
|                                                                                                                 | 2.403632 GHz                             | 0.134 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>21<br>22<br>23                                  | 2.443662 GHz                                       | -0.903 dBm                                                   |
|                                                                                                                 | 2.405653 GHz                             | 0.051 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21                                                    | 2.446317 GHz                                       | -0.920 dBm                                                   |
| 34                                                                                                              | 2.407657 GHz                             | -0.022 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                    | 2.447653 GHz<br>2.450292 GHz                       | -0.928 dBm                                                   |
|                                                                                                                 | 2.409661 GHz<br>2.411665 GHz             | -0.096 dBm<br>-0.173 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                    | 2.450292 GHz<br>2.452296 GHz                       | -0.940 dBm<br>-0.937 dBm                                     |
|                                                                                                                 | 2.413669 GHz                             | -0.242 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24                                                    | 2.452296 GHz                                       | -0.937 dBm                                                   |
|                                                                                                                 | 2.415640 GHz                             | -0.308 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                    | 2.455653 GHz                                       | -0.923 dBm                                                   |
|                                                                                                                 | 2.417644 GHz                             | -0.368 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                    | 2.458275 GHz                                       | -0.912 dBm                                                   |
| 9                                                                                                               | 2.419648 GHz                             | -0.430 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                                                    | 2.460312 GHz                                       | -0.897 dBm                                                   |
| 10                                                                                                              | 2.421635 GHz                             | -0.491 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                    | 2.461631 GHz                                       | -0.875 dBm                                                   |
| 11                                                                                                              | 2.423656 GHz                             | -0.558 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30                                                    | 2.464303 GHz                                       | -0.873 dBm                                                   |
| 12                                                                                                              | 2.427647 GHz                             | -0.669 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31                                                    | 2.466291 GHz                                       | -0.853 dBm                                                   |
| 13                                                                                                              | 2.429668 GHz                             | -0.699 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32                                                    | 2.468278 GHz                                       | -0.823 dBm                                                   |
| 14                                                                                                              | 2.431672 GHz                             | -0.746 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33                                                    | 2.470265 GHz                                       | -0.807 dBm                                                   |
| 15                                                                                                              | 2,433659 GHz                             | -0.771 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34                                                    | 2.472286 GHz                                       | -0.783 dBm                                                   |
| 16                                                                                                              | 2.435663 GHz                             | -0.786 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                    | 2.474290 GHz                                       | -0.740 dBm                                                   |
| 17                                                                                                              | 2.437667 GHz                             | -0.835 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24<br>226<br>278<br>29<br>31<br>223<br>34<br>35<br>36 | 2.476294 GHz                                       | -0.721 dBm                                                   |
| 18                                                                                                              | 2.439637 GHz                             | -0.860 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                    | 2.478265 GHz                                       | -0.690 dBm                                                   |
| 19                                                                                                              | 2.441692 GHz                             | -0.880 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                    |                                                              |
|                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                    |                                                              |

2.4 GHz Frequency Band showing 37 channels where the EUT hops



# 2.3 TIME OF OCCUPANCY (DWELL TIME)

## 2.3.1 Specification Reference

Part 15 Subpart C §15.247(a)(1)(iii) and RSS-247 5.1 (4)

## 2.3.2 Standard Applicable

(iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

## 2.3.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.3.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.3.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.3.6 **Environmental Conditions**

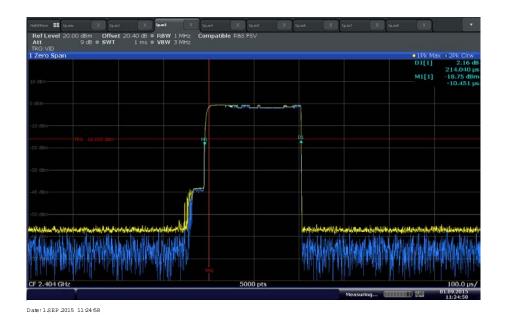
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

#### 2.3.7 Additional Observations

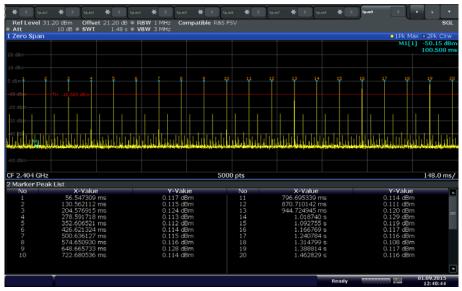
- Hopping function enabled.
- Span = zero span, centered on a hopping channel.
- RBW is 1MHz.
- VBW is 3x RBW
- Detector is peak.
- A single pulse is first measured. This measurement is then used to compute the average time of occupancy in the required period (no. of channels x 0.4 second).
- Marker Peak List function of the spectrum analyzer was used to determine the number of pulses within 3.16 seconds.
- Threshold set to -10 dBm in order to capture actual transmission within the channel being investigated (adjacent channel transmissions are rejected).




# 2.3.8 **Test Results**

| Modulation | Measured time of<br>occupancy | Requirement |
|------------|-------------------------------|-------------|
| GFSK       | 4.28 ms                       | <400 ms     |

# 2.3.9 Sample Computation


| Width of single pulse<br>Observed occurrence<br>Required period | = 0.000214 second<br>= 20 pulses/1.48 seconds<br>= 37 channels x 0.4 second<br>= 14.8 seconds  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Average time of occupancy                                       | = Pulse width x #pulses in 1.48 seconds x 10<br>= 0.000214 second x 20 x 10<br>= 0.0428 second |
| Compliance                                                      | = <b>Complies</b> . 0.0428 second < 0.4 second                                                 |

# 2.3.10 Test Results Plots



# GFSK width of single pulse (0.214 ms)





Date:1.SEP 2015 12:40:44

20 pulses/1.48 seconds

Page **21** of **58** 

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C



## 2.4 **20 dB BANDWIDTH**

## 2.4.1 Specification Reference

Part 15 Subpart C §15.215(c) and RSS-247 5.1 (1)

## 2.4.2 **Standard Applicable**

(c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

## 2.4.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

# 2.4.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.4.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.4.6 Environmental Conditions

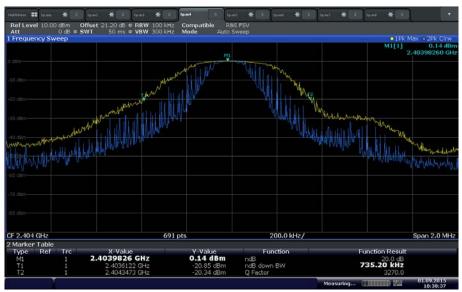
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

#### 2.4.7 Additional Observations

- This is a conducted test.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Span is approximately 2 to 3 times the expected 20dB bandwidth.
- RBW is ≥ 1% of the expected 20dB bandwidth while VBW is ≥ RBW.
- Sweep is auto.
- Detector is peak.
- Max hold function activated.
- "n dB down" marker function (20dB) of the spectrum analyzer was used for this test.

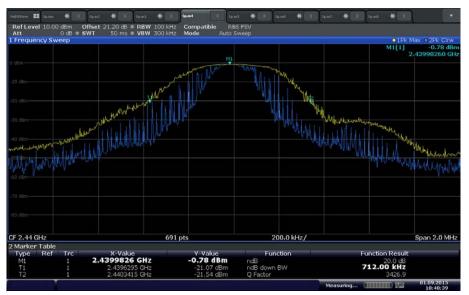



## 2.4.8 **Test Results**

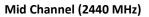
| Modulation | Channel | Frequency<br>(MHz) | Measured 20dB<br>Bandwidth<br>(MHz) |
|------------|---------|--------------------|-------------------------------------|
|            | 4       | 2404               | 0.7352                              |
| GFSK       | 40      | 2440               | 0.7120                              |
|            | 78      | 2478               | 0.7265                              |

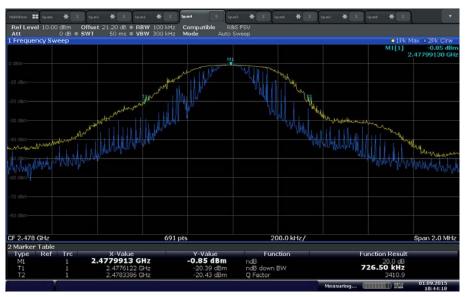
#### Using worst case 20 dB BW:

2404 MHz – (0.7352/2) = 2403.6324 MHz (within the frequency band - **Compliant**) 2478 MHz + (0.7352/2) = 2478.3675 MHz (within the frequency band - **Compliant**)


# 2.4.9 **Test Results Plots**




Date:1.SEP 2015 10:38:37


Low Channel (2404 MHz)





Date:1.SEP 2015 10:40:39





Date:1.SEP 2015 10:44:19

High Channel (2478 MHz)



## 2.5 99% EMISSION BANDWIDTH

## 2.5.1 **Specification Reference**

RSS-Gen Clause 6.6

## 2.5.2 Standard Applicable

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least 3x the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

Note: Video averaging is not permitted.

A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.

The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

The difference between the two recorded frequencies is the 99% occupied bandwidth.

#### 2.5.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.5.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.5.5 **Test Equipment Used**

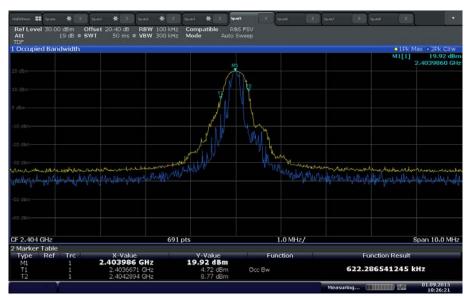
The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.5.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.



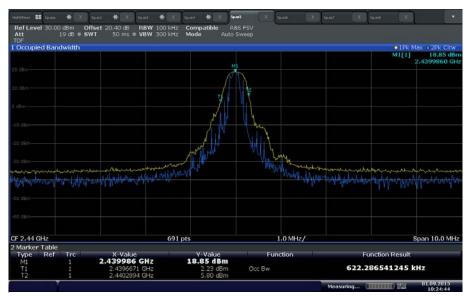
| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |


## 2.5.7 Additional Observations

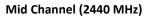
- This is a conducted test.
- A TDF factor was used to compensate for the external attenuator and cable used within the frequency band.
- Span is wide enough to capture the channel transmission.
- RBW is 1% of the span.
- VBW is 3X RBW.
- Sweep is auto.
- Detector is peak.
- The % Power Bandwidth setting in the spectrum analyzer was set to 99% (default).
- The OBW power measurement function of the spectrum analyzer was used for this test.

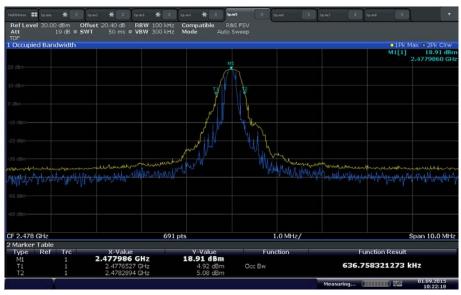
## 2.5.8 Test Results (For reporting purposes only)

| Modulation | Channel | Frequency<br>(MHz) | Measured 20dB<br>Bandwidth<br>(MHz) |
|------------|---------|--------------------|-------------------------------------|
|            | 4       | 2404               | 0.622                               |
| GFSK       | 40      | 2440               | 0.622                               |
|            | 78      | 2478               | 0.637                               |


# 2.5.9 **Test Results Plots**




Date:1SEP 2015 10:26:22


#### Low Channel (2404 MHz)





Date:1.SEP 2015 10:24:44





Date:1.SEP 2015 10:22:18

High Channel (2478 MHz)



# 2.6 **PEAK OUTPUT POWER**

## 2.6.1 Specification Reference

Part 15 Subpart C §15.247(b)(1) and RSS-247 5.4 (2)

#### 2.6.2 Standard Applicable

(1) For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels (see Section 5.4(5) for exceptions).

#### 2.6.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.6.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.6.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

#### 2.6.6 **Environmental Conditions**

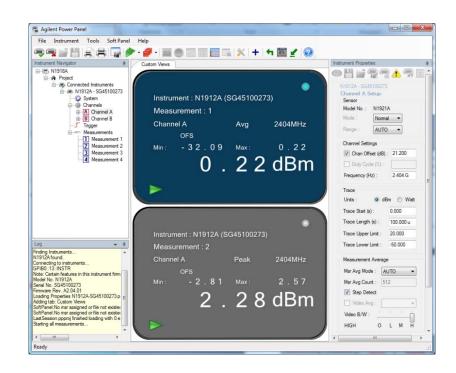
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

#### 2.6.7 Additional Observations

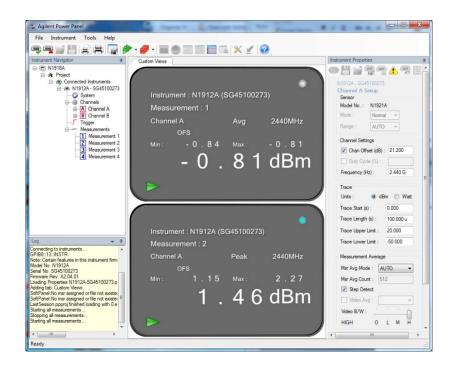
- This is a conducted test using a Peak Power Meter.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- EUT was verified while in single carrier test mode.



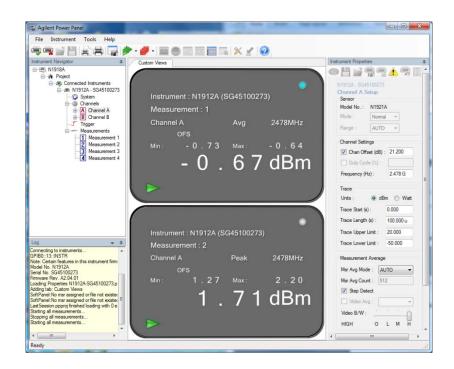

## 2.6.8 Test Results (Conducted)

| Modulation | Channel | Frequency<br>(MHz) | Measured<br>Average<br>Output<br>Power<br>(dBm) | Measured<br>Peak Output<br>Power<br>(dBm) | Measured<br>Peak Output<br>Power<br>(mW) | Limit<br>(mW) |
|------------|---------|--------------------|-------------------------------------------------|-------------------------------------------|------------------------------------------|---------------|
|            | 4       | 2404               | 0.22                                            | 2.57                                      | 1.81                                     | 125.0         |
| GFSK       | 40      | 2440               | -0.81                                           | 2.27                                      | 1.69                                     | 125.0         |
|            | 78      | 2478               | -0.64                                           | 2.20                                      | 1.66                                     | 125.0         |

## 2.6.9 Test Results (*De Facto* EIRP Limit)


| Modulation | Channel | Frequency<br>(MHz) | Measured<br>Peak Output<br>Power<br>(dBm)) | Antenna<br>Gain<br>(dBi) | Calculated<br>Peak Output<br>Power EIRP<br>(dBm)) | Limit<br>(dBm)) |
|------------|---------|--------------------|--------------------------------------------|--------------------------|---------------------------------------------------|-----------------|
| GFSK       | 4       | 2404               | 2.57                                       | 2.12                     | 4.69                                              | 27              |

## 2.6.10 Test Display




Low channel (Channel 4 2404 MHz)





Mid channel (Channel 40 2440 MHz)



High channel (Channel 78 2478 MHz)



# 2.7 BAND-EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS

## 2.7.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-247 5.5

## 2.7.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

## 2.7.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

# 2.7.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

## 2.7.5 **Test Equipment Used**

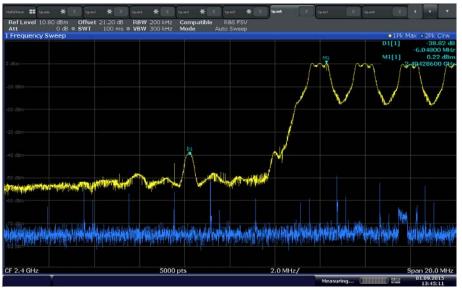
The major items of test equipment used for the above tests are identified in Section 3.1.

## 2.7.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

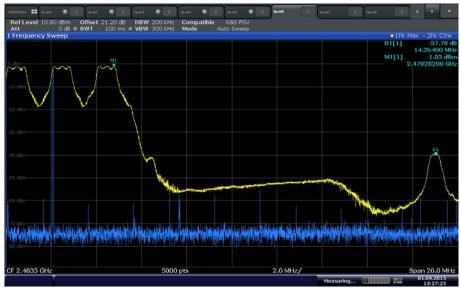
| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

#### 2.7.7 Additional Observations


- This is a conducted test.
- An offset of 21.2dB was added to compensate for the external attenuator and cable used.
- Span is wide enough to capture the peak level of the emission operating on the channel closest to the band edge.
- RBW is  $\geq$  1% of the span, VBW is  $\geq$  RBW.
- Sweep is auto, detector is peak, trace is max hold.
- Trace allowed to stabilize. Marker-delta function used to verify compliance.

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C




- Limit is 20dBc.
- Both Hopping and Non-Hopping mode verified.

# 2.7.8 Test Results

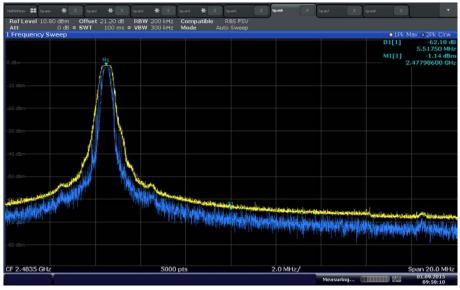


Date:1.SEP 2015 13:45:11

## Hopping lower band edge



Date:1.SEP 2015 13:27:25


Hopping upper band edge



| itt 0<br>Frequency Swee                                       |                                                                                                                 | VBW 300 kHz M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lode Auto                             |                              |                       |       | • 1P/c 1               | Max   2Pk Cirv         |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-----------------------|-------|------------------------|------------------------|
| -requency awee                                                | P                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       | D1[1]                  | -56.81                 |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        | -3.98800 M             |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       | MI    | M1[1]                  | 0.42 d<br>2.40398600 ( |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       | / W   |                        | .40398600 (            |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       | / N.  |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | /                     | - M   |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | A                     |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | 1                     |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | /                     |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | <u>(</u> )            | 1.11  |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | 11                    | N A   |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | 1                     |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | 11                    | - N N |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              | and the second second |       | Balan                  |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the days                              | المحاجم ومعادة الشريعات والم |                       | 10.00 | and in the last        |                        |
|                                                               |                                                                                                                 | المحاورية فحيلاتي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A A A A A A A A A A A A A A A A A A A |                              | inf.                  |       | THE REAL PROPERTY OF   | Million in with        |
|                                                               | الموالي المراجل المراجل المراجل ومادر                                                                           | Messel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | ALL MINAN AND ALL A          |                       |       | The state of the state | CONTRACTOR OF          |
| معين المعالي من الم الم الم الم الم الم الم الم الما الما الم | and the subditional dates                                                                                       | A LANGER AND LAND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AND PROVIDENT                         | with Burn R.                 |                       |       | 1.1.1.1.4.44           | THANHAL                |
| CITY OF COLUMN PARTY                                          | ALL THE REAL PROPERTY OF                                                                                        | at a state to be a state of the | Leading of the                        |                              |                       |       |                        | And Distantial         |
|                                                               | al The School and Andreas a | Marile day 1 and 1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
|                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                              |                       |       |                        |                        |
| 2.4 GHz                                                       |                                                                                                                 | 5000 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$                                    | 2.                           | 0 MHz/                |       |                        | Span 20.0 M            |

Date:1.SEP.2015 10:02:24

## Non-hopping lower band edge



Date:1.SEP 2015 09:58:10

# Non-hopping upper band edge



## 2.8 SPURIOUS RF CONDUCTED EMISSIONS

## 2.8.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-247 5.5

## 2.8.2 **Standard Applicable**

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

## 2.8.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration A

## 2.8.4 Date of Test/Initial of test personnel who performed the test

October 08, 2015/FSC

#### 2.8.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

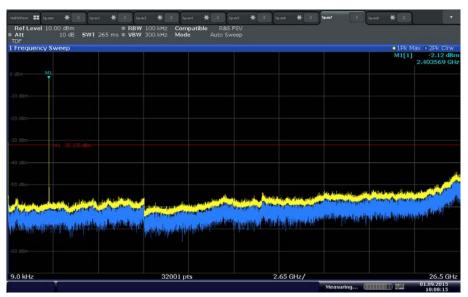
#### 2.8.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility.

| Ambient Temperature | 24.8 °C  |
|---------------------|----------|
| Relative Humidity   | 57.1 %   |
| ATM Pressure        | 99.1 kPa |

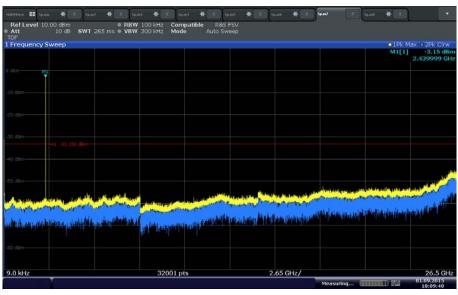
#### 2.8.7 Additional Observations

- This is a conducted test.
- A TDF factor was used to compensate for the external attenuator and cable used within the frequency band.
- Span is from 9 kHz up to 26.5GHz (to cover 10<sup>th</sup> harmonic of the High Channel).
- Sweep point setting of the spectrum analyzer is set to maximum (32001).
- RBW is 100 kHz, VBW is  $\geq$  RBW.
- Sweep is auto, detector is peak.


Page 34 of 58

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C




- Trace is max hold.
- Trace allowed to stabilize. Maximum spurious emission compared to limit.
- Limit is 20dBc (30dBc presented, worst case).

# 2.8.8 Test Results Plots



Date:1SEP 2015 10:08:16

## Low Channel (2404 MHz)



Date:1.SEP 2015 10:09:48

Mid Channel (2440 MHz)



| RefLevel 10.00 dBm<br>Att 10 dB SWT | = RBW<br>265 ms = VBW |                       | patible R&S<br>e Auto Sw |                      |                            |                   |                                         |
|-------------------------------------|-----------------------|-----------------------|--------------------------|----------------------|----------------------------|-------------------|-----------------------------------------|
| Frequency Sweep                     |                       |                       |                          |                      |                            |                   | ax • 2Pk Cln                            |
| Bm M                                |                       |                       |                          |                      |                            | M1[1]             | -3.04 d<br>2.478099 (                   |
| em Mi                               |                       |                       |                          |                      |                            |                   |                                         |
|                                     |                       |                       |                          |                      |                            |                   |                                         |
|                                     |                       |                       |                          |                      |                            |                   |                                         |
| dim-                                |                       |                       |                          |                      |                            |                   |                                         |
|                                     |                       |                       |                          |                      |                            |                   |                                         |
| والمنافعين بالمتناقض والدام         |                       | web kestster with the |                          |                      | Provine departments of the |                   | And |
| the stratight of the state          | under address star    | الطبابي والمتعادير    | والمتحرف والمراج         | in the second second | the billing of             | All hand hand had | and a loss of                           |
|                                     |                       |                       |                          |                      |                            |                   |                                         |
|                                     |                       |                       |                          |                      |                            |                   |                                         |

Date:1.SEP.2015 10:11:16

High Channel (2478 MHz)

Page **36** of **58** 



### 2.9 SPURIOUS RADIATED EMISSIONS

### 2.9.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-Gen 8.9 / 8.10

### 2.9.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### 2.9.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration B

### 2.9.4 Date of Test/Initial of test personnel who performed the test

October 12, 2015/FSC

### 2.9.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

### 2.9.6 Environmental Conditions

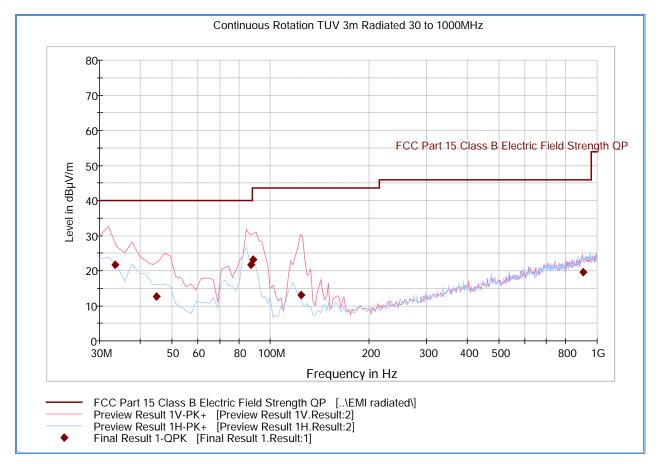
Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

| Ambient Temperature | 24.6 °C  |
|---------------------|----------|
| Relative Humidity   | 48.2 %   |
| ATM Pressure        | 98.7 kPa |

#### 2.9.7 Additional Observations

- This is a radiated test. The spectrum was searched from 30MHz to the 10<sup>th</sup> harmonic.
- There are no emissions found that do not comply to the restricted bands defined in FCC Part 15 Subpart C, 15.205 or Part 15.247(d).
- Only noise floor measurements observed above 18GHz.
- Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.9.8 for sample computation.




## 2.9.8 Sample Computation (Radiated Emission)

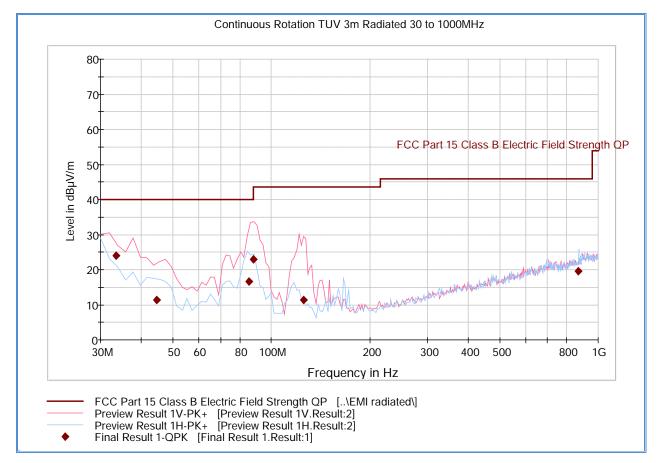
| Measuring equipment raw measure | ement (dbµV) @ 30 MHz      |       | 24.4  |
|---------------------------------|----------------------------|-------|-------|
|                                 | Asset# 1066 (cable)        | 0.3   |       |
|                                 | Asset# 1172 (cable)        | 0.3   |       |
| Correction Factor (dB)          | Asset# 1016 (preamplifier) | -30.7 | -12.6 |
|                                 | Asset# 1175(cable)         | 0.3   |       |
|                                 | 17.2                       |       |       |
| Reported QuasiPeak Final Measur |                            | 11.8  |       |

### 2.9.9 Test Results

See attached plots.






### 2.9.10 Test Results Below 1GHz (Worst Case Channel – Non-hopping)

### Quasi Peak Data

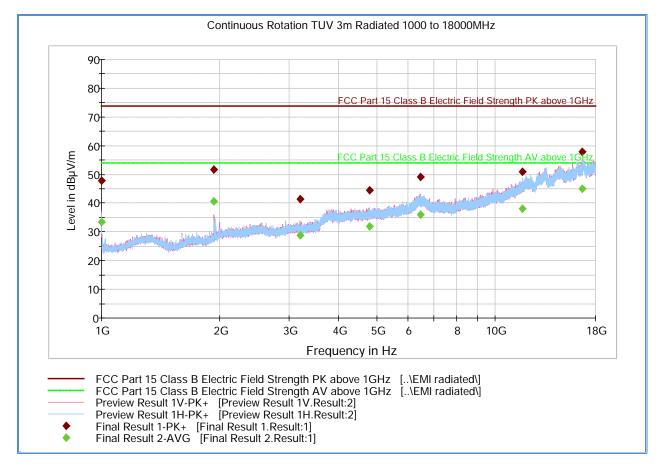
| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 33.400000          | 21.6                  | 1000.0                | 120.000            | 141.0          | V            | 338.0            | -13.3         | 18.4           | 40.0              |
| 44.734990          | 12.6                  | 1000.0                | 120.000            | 100.0          | V            | 251.0            | -18.5         | 27.4           | 40.0              |
| 87.348858          | 21.8                  | 1000.0                | 120.000            | 100.0          | V            | 10.0             | -21.3         | 18.2           | 40.0              |
| 88.732745          | 23.2                  | 1000.0                | 120.000            | 100.0          | V            | -15.0            | -21.0         | 20.3           | 43.5              |
| 123.906613         | 13.0                  | 1000.0                | 120.000            | 200.0          | V            | 349.0            | -20.8         | 30.5           | 43.5              |
| 904.125611         | 19.6                  | 1000.0                | 120.000            | 139.0          | V            | 100.0            | 1.2           | 26.4           | 46.0              |

Test Notes: Only worst case channel presented for spurious emissions below 1GHz.





## 2.9.11 Test Results Below 1GHz (Hopping)


### Quasi Peak Data

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 33.480000          | 24.0                  | 1000.0                | 120.000            | 106.0          | V            | 318.0            | -13.3         | 16.0           | 40.0              |
| 44.574990          | 11.3                  | 1000.0                | 120.000            | 100.0          | V            | 258.0            | -18.4         | 28.7           | 40.0              |
| 85.388858          | 16.7                  | 1000.0                | 120.000            | 200.0          | V            | 11.0             | -21.5         | 23.3           | 40.0              |
| 88.052745          | 23.0                  | 1000.0                | 120.000            | 100.0          | V            | 7.0              | -21.2         | 20.5           | 43.5              |
| 125.290501         | 11.4                  | 1000.0                | 120.000            | 200.0          | V            | 344.0            | -20.9         | 32.1           | 43.5              |
| 870.783407         | 19.6                  | 1000.0                | 120.000            | 200.0          | Н            | 309.0            | -0.3          | 26.4           | 46.0              |

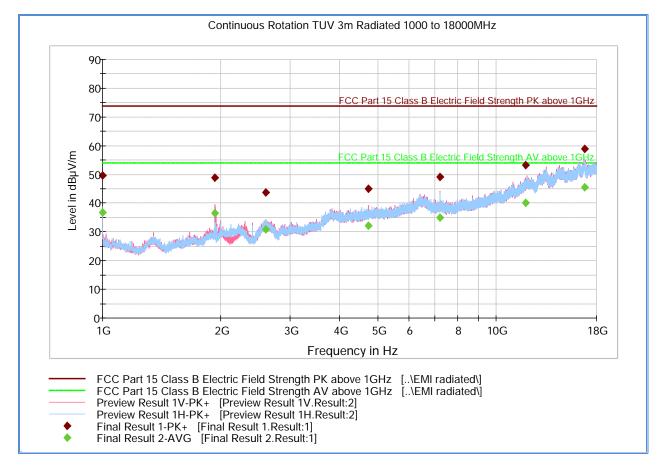
#### **Test Notes:**



### 2.9.12 **Test Results Above 1GHz (Hopping)**



#### Peak Data


| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.400000        | 47.9                | 1000.0                | 1000.000           | 200.5          | V            | 20.0             | -7.2          | 26.0           | 73.9              |
| 1932.400000        | 51.7                | 1000.0                | 1000.000           | 274.3          | V            | 143.0            | -2.3          | 22.2           | 73.9              |
| 3191.666667        | 41.5                | 1000.0                | 1000.000           | 276.3          | V            | 257.0            | 1.4           | 32.4           | 73.9              |
| 4801.633333        | 44.5                | 1000.0                | 1000.000           | 154.7          | Н            | -9.0             | 5.7           | 29.4           | 73.9              |
| 6469.666667        | 49.0                | 1000.0                | 1000.000           | 103.7          | V            | 150.0            | 11.5          | 24.9           | 73.9              |
| 11711.533333       | 51.0                | 1000.0                | 1000.000           | 140.7          | Н            | 273.0            | 16.5          | 22.9           | 73.9              |
| 16682.866667       | 58.0                | 1000.0                | 1000.000           | 195.5          | Н            | -1.0             | 24.2          | 15.9           | 73.9              |

#### **Average Data**

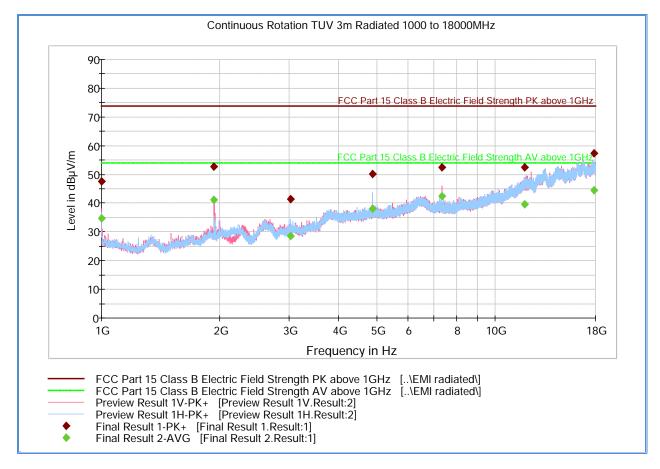
| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.400000        | 33.3                | 1000.0                | 1000.000           | 200.5          | V            | 20.0             | -7.2          | 20.6           | 53.9              |
| 1932.400000        | 40.6                | 1000.0                | 1000.000           | 274.3          | V            | 143.0            | -2.3          | 13.3           | 53.9              |
| 3191.666667        | 28.8                | 1000.0                | 1000.000           | 276.3          | V            | 257.0            | 1.4           | 25.1           | 53.9              |
| 4801.633333        | 31.9                | 1000.0                | 1000.000           | 154.7          | н            | -9.0             | 5.7           | 22.0           | 53.9              |
| 6469.666667        | 35.9                | 1000.0                | 1000.000           | 103.7          | V            | 150.0            | 11.5          | 18.0           | 53.9              |
| 11711.533333       | 38.0                | 1000.0                | 1000.000           | 140.7          | Н            | 273.0            | 16.5          | 15.9           | 53.9              |
| 16682.866667       | 45.0                | 1000.0                | 1000.000           | 195.5          | Н            | -1.0             | 24.2          | 8.9            | 53.9              |



### 2.9.13 Test Results Above 1GHz Low Channel



#### Peak Data


| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 49.7                | 1000.0                | 1000.000           | 180.6          | V            | 150.0            | -7.2          | 24.2           | 73.9              |
| 1932.366667        | 48.9                | 1000.0                | 1000.000           | 224.4          | V            | 288.0            | -2.3          | 25.0           | 73.9              |
| 2598.533333        | 43.6                | 1000.0                | 1000.000           | 174.6          | Н            | 26.0             | 0.1           | 30.3           | 73.9              |
| 4732.433333        | 45.0                | 1000.0                | 1000.000           | 148.7          | V            | 58.0             | 5.8           | 28.9           | 73.9              |
| 7213.133333        | 49.2                | 1000.0                | 1000.000           | 136.7          | V            | 163.0            | 10.0          | 24.7           | 73.9              |
| 11897.533333       | 53.3                | 1000.0                | 1000.000           | 286.2          | V            | 279.0            | 17.7          | 20.6           | 73.9              |

#### **Average Data**

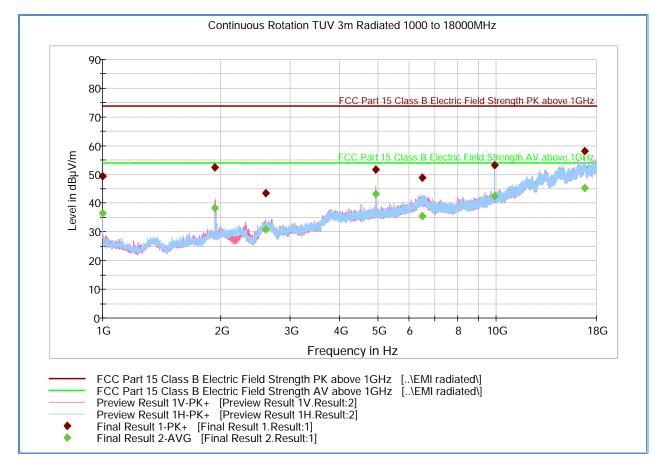
| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 36.7                | 1000.0                | 1000.000           | 180.6          | V            | 150.0            | -7.2          | 17.2           | 53.9              |
| 1932.366667        | 36.4                | 1000.0                | 1000.000           | 224.4          | V            | 288.0            | -2.3          | 17.5           | 53.9              |
| 2598.533333        | 30.7                | 1000.0                | 1000.000           | 174.6          | Н            | 26.0             | 0.1           | 23.2           | 53.9              |
| 4732.433333        | 32.1                | 1000.0                | 1000.000           | 148.7          | V            | 58.0             | 5.8           | 21.8           | 53.9              |
| 7213.133333        | 35.1                | 1000.0                | 1000.000           | 136.7          | V            | 163.0            | 10.0          | 18.8           | 53.9              |
| 11897.533333       | 40.0                | 1000.0                | 1000.000           | 286.2          | V            | 279.0            | 17.7          | 13.9           | 53.9              |



### 2.9.14 Test Results Above 1GHz Mid Channel



#### Peak Data


| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 47.7                | 1000.0                | 1000.000           | 244.4          | V            | -3.0             | -7.2          | 26.2           | 73.9              |
| 1932.566667        | 52.6                | 1000.0                | 1000.000           | 232.4          | V            | 183.0            | -2.3          | 21.3           | 73.9              |
| 3025.666667        | 41.4                | 1000.0                | 1000.000           | 169.6          | Н            | 151.0            | 1.2           | 32.5           | 73.9              |
| 4879.366667        | 50.2                | 1000.0                | 1000.000           | 123.7          | Н            | 33.0             | 6.1           | 23.7           | 73.9              |
| 7319.433333        | 52.4                | 1000.0                | 1000.000           | 198.5          | V            | 122.0            | 9.8           | 21.5           | 73.9              |
| 11907.433333       | 52.4                | 1000.0                | 1000.000           | 168.6          | V            | 48.0             | 17.8          | 21.5           | 73.9              |
| 17833.366667       | 57.2                | 1000.0                | 1000.000           | 179.5          | Н            | 58.0             | 24.1          | 16.7           | 73.9              |

#### **Average Data**

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 34.8                | 1000.0                | 1000.000           | 244.4          | V            | -3.0             | -7.2          | 19.1           | 53.9              |
| 1932.566667        | 41.1                | 1000.0                | 1000.000           | 232.4          | V            | 183.0            | -2.3          | 12.8           | 53.9              |
| 3025.666667        | 28.4                | 1000.0                | 1000.000           | 169.6          | н            | 151.0            | 1.2           | 25.5           | 53.9              |
| 4879.366667        | 38.0                | 1000.0                | 1000.000           | 123.7          | н            | 33.0             | 6.1           | 15.9           | 53.9              |
| 7319.433333        | 42.3                | 1000.0                | 1000.000           | 198.5          | V            | 122.0            | 9.8           | 11.6           | 53.9              |
| 11907.433333       | 39.7                | 1000.0                | 1000.000           | 168.6          | V            | 48.0             | 17.8          | 14.2           | 53.9              |
| 17833.366667       | 44.5                | 1000.0                | 1000.000           | 179.5          | Н            | 58.0             | 24.1          | 9.4            | 53.9              |



### 2.9.15 Test Results Above 1GHz High Channel



#### Peak Data

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 49.3                | 1000.0                | 1000.000           | 186.5          | V            | 164.0            | -7.2          | 24.6           | 73.9              |
| 1932.533333        | 52.5                | 1000.0                | 1000.000           | 151.6          | V            | 120.0            | -2.3          | 21.4           | 73.9              |
| 2598.533333        | 43.5                | 1000.0                | 1000.000           | 234.4          | Н            | 23.0             | 0.1           | 30.4           | 73.9              |
| 4955.700000        | 51.7                | 1000.0                | 1000.000           | 120.7          | Н            | 299.0            | 6.5           | 22.2           | 73.9              |
| 6482.700000        | 48.8                | 1000.0                | 1000.000           | 300.6          | н            | 3.0              | 11.5          | 25.1           | 73.9              |
| 9912.366667        | 53.3                | 1000.0                | 1000.000           | 197.5          | Н            | -20.0            | 12.9          | 20.6           | 73.9              |
| 16813.433333       | 58.1                | 1000.0                | 1000.000           | 124.7          | V            | 279.0            | 24.6          | 15.8           | 73.9              |

#### **Average Data**

| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 1000.000000        | 36.4                | 1000.0                | 1000.000           | 186.5          | V            | 164.0            | -7.2          | 17.5           | 53.9              |
| 1932.533333        | 38.4                | 1000.0                | 1000.000           | 151.6          | V            | 120.0            | -2.3          | 15.5           | 53.9              |
| 2598.533333        | 30.7                | 1000.0                | 1000.000           | 234.4          | н            | 23.0             | 0.1           | 23.2           | 53.9              |
| 4955.700000        | 43.3                | 1000.0                | 1000.000           | 120.7          | Н            | 299.0            | 6.5           | 10.6           | 53.9              |
| 6482.700000        | 35.6                | 1000.0                | 1000.000           | 300.6          | Н            | 3.0              | 11.5          | 18.3           | 53.9              |
| 9912.366667        | 42.5                | 1000.0                | 1000.000           | 197.5          | Н            | -20.0            | 12.9          | 11.4           | 53.9              |
| 16813.433333       | 45.2                | 1000.0                | 1000.000           | 124.7          | V            | 279.0            | 24.6          | 8.7            | 53.9              |



### 2.10 RADIATED IMMEDIATE RESTRICTED BANDS

### 2.10.1 Specification Reference

Part 15 Subpart C §15.247(d) and RSS-Gen 8.9 / 8.10

### 2.10.2 Standard Applicable

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

### 2.10.3 Equipment Under Test and Modification State

Serial No: N/A /Test Configuration B

## 2.10.4 Date of Test/Initial of test personnel who performed the test

October 12, 2015/FSC

#### 2.10.5 **Test Equipment Used**

The major items of test equipment used for the above tests are identified in Section 3.1.

### 2.10.6 Environmental Conditions

Test performed at TÜV SÜD America Inc. Rancho Bernardo facility

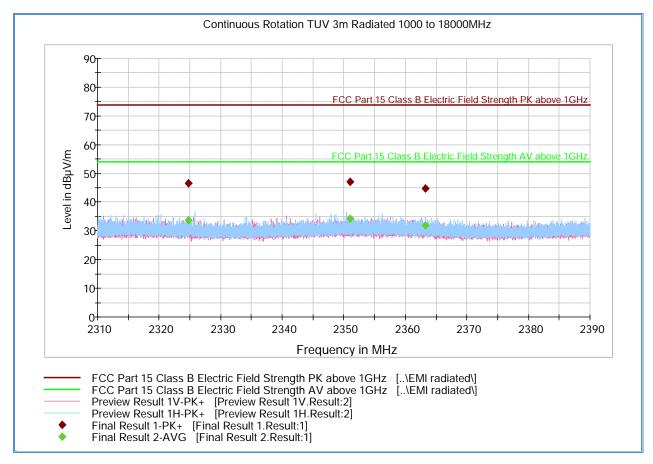
| Ambient Temperature | 24.6 °C  |
|---------------------|----------|
| Relative Humidity   | 48.2 %   |
| ATM Pressure        | 98.7 kPa |

#### 2.10.7 Additional Observations

- This is a radiated test. The spectrum was searched from 2310MHz to 2390MHz for lower immediate restricted band and 2483.5MHz to 2500MHz for the upper immediate restricted band.
- There are no emissions found that do not comply with the restricted bands defined in FCC Part 15 Subpart C, 15.205.
- Both Non-hopping and Hopping modes presented.



• Measurement was done using EMC32 automated software. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only. See Section 2.10.8 for sample computation.


## 2.10.8 Sample Computation (Radiated Emission)

| Measuring equipment raw measur  | ement (dbµV) @ 2400 MHz   |       | 53.9 |
|---------------------------------|---------------------------|-------|------|
|                                 | Asset# 1153 (cable)       | 3.4   |      |
| Correction Factor (dB)          | Asset# 8628(preamplifier) | -36.5 | -0.4 |
|                                 | Asset#7575 (antenna)      | 32.7  |      |
| Reported Max Peak Final Measure | ement (dbµV/m) @ 2400 MHz |       | 53.5 |

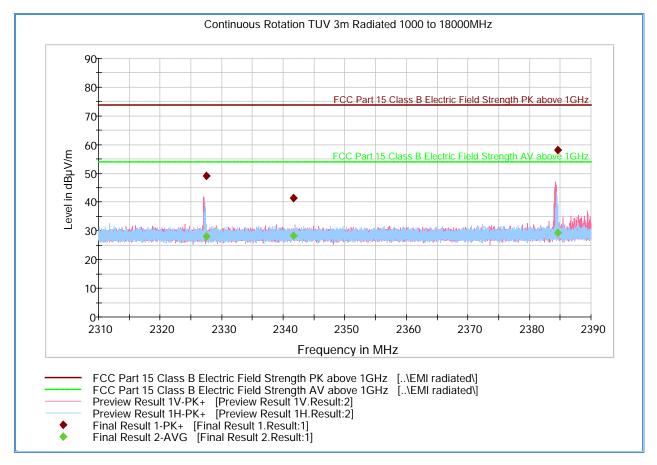
## 2.10.9 Test Results

See attached plots.





## 2.10.10 $\,$ Test Results Restricted Band 2310MHz to 2390MHz (Hopping) $\,$


#### Peak Data

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2324.808000        | 46.6                | 1000.0                | 1000.000           | 102.8          | Н            | 134.0            | -0.6          | 27.3           | 73.9              |
| 2351.074667        | 47.0                | 1000.0                | 1000.000           | 103.7          | Н            | 141.0            | -0.7          | 26.9           | 73.9              |
| 2363.296000        | 44.7                | 1000.0                | 1000.000           | 101.7          | Н            | 43.0             | -0.7          | 29.2           | 73.9              |

#### **Average Data**

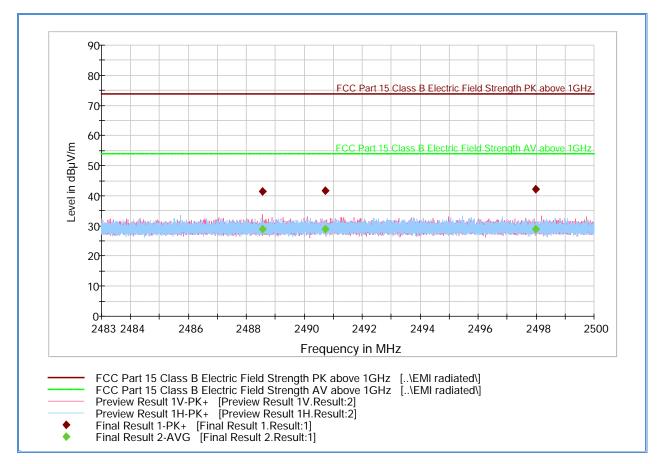
| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2324.808000        | 33.6                | 1000.0                | 1000.000           | 102.8          | Н            | 134.0            | -0.6          | 20.3           | 53.9              |
| 2351.074667        | 34.1                | 1000.0                | 1000.000           | 103.7          | Н            | 141.0            | -0.7          | 19.8           | 53.9              |
| 2363.296000        | 31.8                | 1000.0                | 1000.000           | 101.7          | Н            | 43.0             | -0.7          | 22.1           | 53.9              |





### 2.10.11 $\,$ Test Results Restricted Band 2310MHz to 2390MHz (Low Channel) $\,$

#### Peak Data


| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2327.469333        | 49.2                | 1000.0                | 1000.000           | 116.7          | V            | 223.0            | -0.6          | 24.7           | 73.9              |
| 2341.690667        | 41.4                | 1000.0                | 1000.000           | 123.7          | V            | 105.0            | -0.7          | 32.5           | 73.9              |
| 2384.602667        | 58.1                | 1000.0                | 1000.000           | 114.7          | V            | 78.0             | -0.6          | 15.8           | 73.9              |

#### **Average Data**

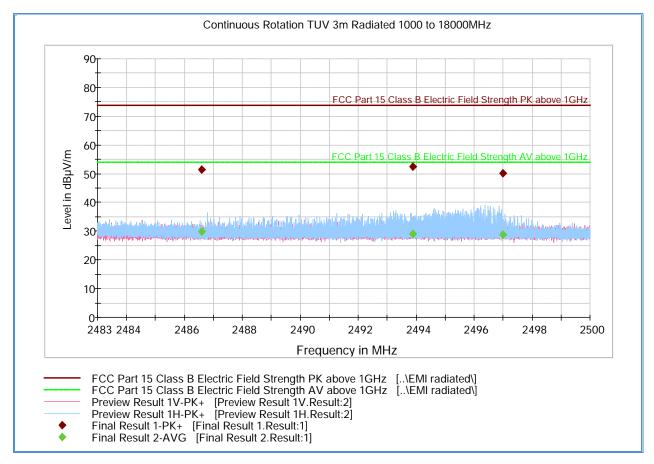
| Frequency<br>(MHz) | Average<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2327.469333        | 28.0                | 1000.0                | 1000.000           | 116.7          | V            | 223.0            | -0.6          | 25.9           | 53.9              |
| 2341.690667        | 28.3                | 1000.0                | 1000.000           | 123.7          | V            | 105.0            | -0.7          | 25.6           | 53.9              |
| 2384.602667        | 29.3                | 1000.0                | 1000.000           | 114.7          | V            | 78.0             | -0.6          | 24.6           | 53.9              |

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C





## 2.10.12 Test Results Restricted Band 2483.5MHz to 2500MHz (Hopping)


#### Peak Data

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2488.564100        | 41.4                | 1000.0                | 1000.000           | 137.7          | V            | 219.0            | 0.0           | 32.5           | 73.9              |
| 2490.713367        | 41.6                | 1000.0                | 1000.000           | 300.6          | V            | 89.0             | 0.0           | 32.3           | 73.9              |
| 2497.995733        | 42.3                | 1000.0                | 1000.000           | 102.8          | V            | 1.0              | 0.0           | 31.6           | 73.9              |

#### **Average Data**

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2488.564100        | 28.8                | 1000.0                | 1000.000           | 137.7          | V            | 219.0            | 0.0           | 25.1           | 53.9              |
| 2490.713367        | 28.8                | 1000.0                | 1000.000           | 300.6          | V            | 89.0             | 0.0           | 25.1           | 53.9              |
| 2497.995733        | 28.9                | 1000.0                | 1000.000           | 102.8          | V            | 1.0              | 0.0           | 25.0           | 53.9              |





## $2.10.13 \quad \text{Test Results Restricted Band 2483.5MHz to 2500MHz (High Channel)}$

#### Peak Data

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
| 2486.587033        | 51.4                | 1000.0                | 1000.000           | 170.6          | Н            | 5.0              | 0.0           | 22.5           | 73.9              |
| 2493.888400        | 52.6                | 1000.0                | 1000.000           | 171.6          | Н            | 4.0              | 0.0           | 21.3           | 73.9              |
| 2496.986367        | 50.1                | 1000.0                | 1000.000           | 115.8          | Н            | 0.0              | 0.0           | 23.8           | 73.9              |

#### **Average Data**

|   | Frequency<br>(MHz) | Average<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth<br>(deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|---|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|------------------|---------------|----------------|-------------------|
|   | 2486.587033        | 29.9                | 1000.0                | 1000.000           | 170.6          | Н            | 5.0              | 0.0           | 24.0           | 53.9              |
|   | 2493.888400        | 29.1                | 1000.0                | 1000.000           | 171.6          | Н            | 4.0              | 0.0           | 24.8           | 53.9              |
| [ | 2496.986367        | 28.8                | 1000.0                | 1000.000           | 115.8          | Н            | 0.0              | 0.0           | 25.1           | 53.9              |



**SECTION 3** 

**TEST EQUIPMENT USED** 

Page **51** of **58** 



## 3.1 **TEST EQUIPMENT USED**

List of absolute measuring and other principal items of test equipment.

| ID Number<br>(SDGE/SDRB) | Test Equipment                          | Туре                | Serial Number       | Manufacturer               | Cal Date       | Cal Due<br>Date |
|--------------------------|-----------------------------------------|---------------------|---------------------|----------------------------|----------------|-----------------|
| Antenna Conduc           | ted Port Setup                          |                     |                     |                            |                |                 |
| 7604                     | P-Series Power Meter                    | N1912A              | SG45100273          | Agilent                    | 05/27/15       | 05/27/16        |
| 7605                     | 50MHz-18GHz Wideband<br>Power Sensor    | N1921A              | MY51100054          | Agilent                    | 04/10/15       | 04/10/16        |
| 7611                     | Signal/Spectrum Analyzer                | FSW26               | 102017              | Rhode & Schwarz            | 03/25/15       | 03/25/16        |
| 1003                     | Signal Generator                        | SMR-40              | 1104.0002.40        | Rhode & Schwarz            | 04/29/15       | 04/29/16        |
| 8825                     | 20dB Attenuator                         | 46-20-34            | BK5773              | Weinschel Corp.            | Verified by 10 | 03 and 7611     |
| Radiated Test Se         | tup                                     | •                   |                     |                            |                |                 |
| 1002                     | Bilog Antenna                           | 3142C               | 00058717            | ETS-Lindgren               | 01/30/14       | 01/30/16        |
| 1040                     | EMI Test Receiver                       | ESIB40              | 100292              | Rhode & Schwarz            | 09/29/15       | 09/29/16        |
| 1016                     | Pre-amplifier                           | PAM-0202            | 187                 | PAM                        | 12/16/15       | 12/16/16        |
| 1051                     | Double-ridged waveguide<br>horn antenna | 3115                | 9408-4329           | ЕМСО                       | 02/28/14       | 02/28/16        |
| 1049                     | EMI Test Receiver                       | ESU                 | 100133              | Rhode & Schwarz            | 03/11/15       | 03/11/16        |
| 8628                     | Pre-amplifier                           | QLJ 01182835-JO     | 8986002             | QuinStar Technologies Inc. | 03/20/15       | 03/20/16        |
| 1150                     | Horn antenna                            | 3160-09             | 012054-004          | ETS                        | 07/16/15       | 07/16/17        |
| 1151                     | Pre-amplifier                           | TS-PR26             | 100026              | Rhode & Schwarz            | 05/08/15       | 05/08/16        |
| 1153                     | High-frequency cable                    | SucoFlex 100 SX     | N/A                 | Suhner                     | 04/03/15       | 04/03/16        |
| 8543                     | High-frequency cable                    | Micropore 19057793  | N/A                 | United Microwave Products  | Verified by 10 | 03 and 7611     |
| 6815                     | 2.4GHz Band Notch Filter                | BRM50702            | 008                 | Micro-Tronics              | Verified by 10 | 03 and 7611     |
| Conducted Emiss          | sions                                   |                     |                     |                            |                |                 |
| 1024                     | EMI Test Receiver                       | ESCS 30             | 847793/001          | Rhode & Schwarz            | 04/10/15       | 04/10/16        |
| 7567                     | LISN                                    | FCC-LISN-50-25-2-10 | 120304              | Fischer Custom Comm.       | 07/14/15       | 07/14/16        |
| 8822                     | 20dB Attenuator                         | 34-20-34            | N/A                 | MCE / Weinschel            | 02/20/15       | 02/20/16        |
| 8824                     | 20dB Attenuator                         | 34-20-34            | N/A                 | MCE / Weinschel            | 02/20/15       | 02/20/16        |
| Miscellaneous            |                                         |                     |                     | ·                          |                |                 |
| 6792                     | Multimeter                              | 3478A               | 2911A70964          | Hewlett Packard            | 08/14/15       | 08/14/16        |
| 11312                    | Mini Environmental Quality<br>Meter     | 850027              | CF099-56010-<br>340 | Sper Scientific            | 04/09/15 04    |                 |
|                          | Test Software                           | EMC32               | V8.53               | Rhode & Schwarz            | N//            | A               |

FCC ID 2AGOZRE-A IC: 20849-REA Report No. SD72112194-1215C



### 3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:

### 3.2.1 Radiated Emission Measurements (Below 1GHz)

|   | Contribution               | Probability<br>Distribution<br>Type | Probability<br>Distribution x <sub>i</sub> | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )] <sup>2</sup> |
|---|----------------------------|-------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                         | 0.45                                       | 0.26                                          | 0.07                              |
| 2 | Cables                     | Rectangular                         | 0.50                                       | 0.29                                          | 0.08                              |
| 3 | Preamp                     | Rectangular                         | 0.50                                       | 0.29                                          | 0.08                              |
| 4 | Antenna                    | Rectangular                         | 0.75                                       | 0.43                                          | 0.19                              |
| 5 | Site                       | Rectangular                         | 3.89                                       | 2.25                                          | 5.04                              |
| 6 | EUT Setup                  | Rectangular                         | 1.00                                       | 0.58                                          | 0.33                              |
|   |                            |                                     | Combined                                   | Uncertainty (u <sub>c</sub> ):                | 2.41                              |
|   |                            |                                     | Со                                         | verage Factor (k):                            | 2                                 |
|   |                            |                                     |                                            |                                               |                                   |

Expanded Uncertainty: 4.82

## 3.2.2 Radiated Emission Measurements (Above 1GHz)

|   | Contribution               | Probability<br>Distribution<br>Type     | Probability<br>Distribution x <sub>i</sub> | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )] <sup>2</sup> |
|---|----------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                             | 0.57                                       | 0.33                                          | 0.11                              |
| 2 | Cables                     | Rectangular                             | 0.70                                       | 0.40                                          | 0.16                              |
| 3 | Preamp                     | Rectangular                             | 0.50                                       | 0.29                                          | 0.08                              |
| 4 | Antenna                    | Rectangular                             | 0.37                                       | 0.21                                          | 0.05                              |
| 5 | Site                       | Rectangular                             | 3.89                                       | 2.25                                          | 5.04                              |
| 6 | EUT Setup                  | Rectangular                             | 1.00                                       | 0.58                                          | 0.33                              |
|   |                            | Combined Uncertainty (u <sub>c</sub> ): |                                            | 2.40                                          |                                   |
|   |                            |                                         | Coverage Factor (k):                       |                                               | 2                                 |
|   |                            |                                         |                                            |                                               |                                   |

### 3.2.3 Conducted Antenna Port Measurement

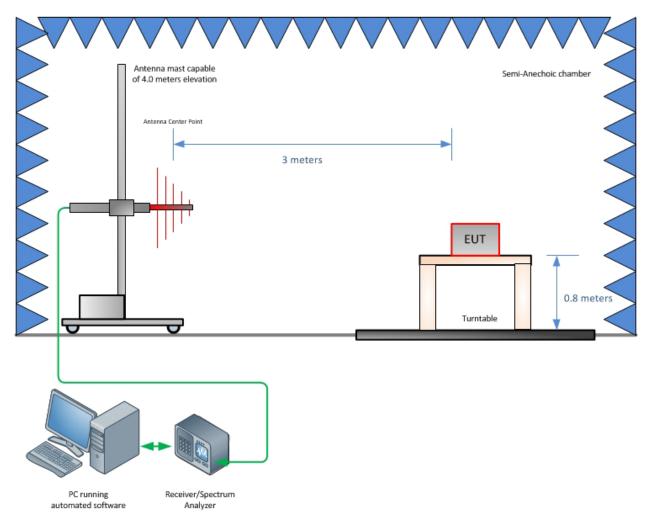
|   | Contribution               | Probability<br>Distribution<br>Type     | Probability<br>Distribution x <sub>i</sub> | Standard<br>Uncertainty<br>u(x <sub>i</sub> ) | [u(x <sub>i</sub> )] <sup>2</sup> |
|---|----------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------|
| 1 | Receiver/Spectrum Analyzer | Rectangular                             | 0.57                                       | 0.33                                          | 0.11                              |
| 2 | Cables                     | Rectangular                             | 0.50                                       | 0.29                                          | 0.08                              |
| 3 | EUT Setup                  | Rectangular                             | 1.00                                       | 0.58                                          | 0.33                              |
|   |                            | Combined Uncertainty (u <sub>c</sub> ): |                                            | 0.72                                          |                                   |
|   |                            | Coverage Factor (k):                    |                                            | 2                                             |                                   |
|   |                            |                                         |                                            |                                               |                                   |

Expanded Uncertainty: 1.45

Expanded Uncertainty:

4.81

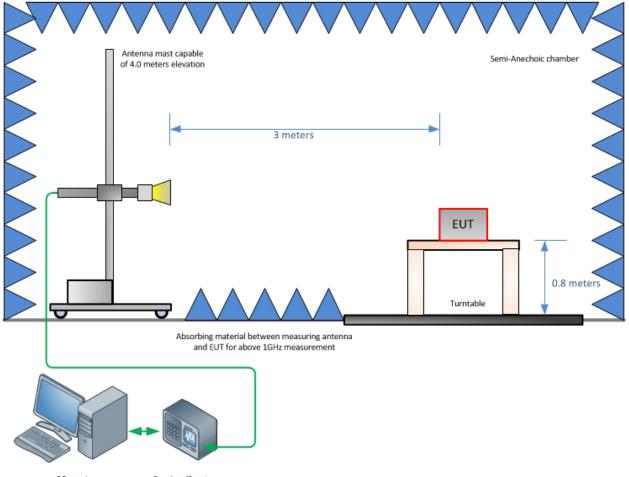



**SECTION 4** 

**DIAGRAM OF TEST SETUP** 

Page **54** of **58** 




## 4.1 **TEST SETUP DIAGRAM**



Radiated Emission Test Setup (Below 1GHz)

Page 55 of 58





PC running automated software Receiver/Spectrum Analyzer



Page 56 of 58



**SECTION 5** 

# ACCREDITATION, DISCLAIMERS AND COPYRIGHT

Page **57** of **58** 



### 5.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and its professional staff hold government and professional organization certifications for AAMI, ACIL, AEA, ANSI, IEEE, A2LA, NIST and VCCI.

