

FCC Test Report

Report No.: RF160629E05

FCC ID: MCLT77H747

Test Model: T77H747

Received Date: June 29, 2016

Test Date: July 04 to Aug. 12, 2016

Issued Date: Aug. 26, 2016

Applicant: HON HAI PRECISION IND. CO., LTD.

Address: 5F-1,5 Hsin-An Road Hsinchu, Science-Based Industrial Park Taiwan,

R.O.C.

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin

Chu Hsien 307, Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	Release Control Record3			
1		Certificate of Conformity	. 4	
2		Summary of Test Results	5	
	2.1 2.2	Measurement Uncertainty		
3		General Information	. 6	
	3.1 3.2 3.2. 3.3 3.3. 3.4	General Description of EUT Description of Test Modes 1 Test Mode Applicability and Tested Channel Detail	6 7 8 10	
4		Test Types and Results	12	
	4.1.3 4.1.4 4.1.4 4.1.4 4.1.2 4.2.3 4.2.3 4.2.4 4.2.3 4.3.3 4.3.3 4.3.3 4.3.4 4.3.4 4.4 4.4 4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	Test Instruments Test Procedures Deviation from Test Standard TEST SETUP. EUT Operating Conditions. Test Results Frequency Stability. Limits of Frequency Stability Measurement Test Setup. Test Instruments Test Procedure Deviation fromTest Standard EUT Operating Conditions. Test Result.	12 13 14 14 15 15 16 20 24 24 22 25 25 26 28 28 29 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	
5		Pictures of Test Arrangements	33	
ΑĮ	ppendix – Information on the Testing Laboratories			

Release Control Record

Issue No.	Description	Date Issued
RF160629E05	Original release.	Aug. 26, 2016

1 Certificate of Conformity

Product: NFC module

Brand: FOXCONN

Test Model: T77H747

Sample Status: ENGINEERING SAMPLE

Applicant: HON HAI PRECISION IND. CO., LTD.

Test Date: July 04 to Aug. 12, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.225)

47 CFR FCC Part 15, Subpart C (Section 15.215)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : _______, Date: _______, Aug. 26, 2016

Midoli Peng / Specialist

Approved by : , **Date:** Aug. 26, 2016

May Chen / Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (SECTION 15.225, 15.215)				
FCC Clause	Test Item	Result	Remarks		
15.207	Conducted emission test	PASS	Meet the requirement of limit. Minimum passing margin is -1.05dB at 13.55859MHz.		
15.225 (a)	The field strength of any emissions within the band 13.553-13.567 MHz	PASS	Meet the requirement of limit. Minimum passing margin is -63.4dB at 13.56MHz.		
15.225 (b)	The field strength of any emissions within the bands 13.410-13.553 MHz and 13.567-13.710 MHz	PASS	Meet the requirement of limit.		
15.225 (c)	The field strength of any emissions within the bands 13.110-13.410 MHz and 13.710-14.010 MHz	PASS	Meet the requirement of limit.		
15.225 (d)	The field strength of any emissions appearing outside of the 13.110-14.010 MHz band	PASS	Meet the requirement of limit. Minimum passing margin is -1.0dB at 135.60MHz.		
15.225 (e)	The frequency tolerance	PASS	Meet the requirement of limit.		
15.215 (c)	20dB Bandwidth	PASS	Meet the requirement of limit.		
15.203	Antenna Requirement	PASS	Antenna connector is ACH connector (with 1.2mm pitch) not a standard connector.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty $(k=2)$ (\pm)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.83 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.43 dB
	1GHz ~ 6GHz	3.72 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.00 dB
	18GHz ~ 40GHz	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	NFC module
Brand	FOXCONN
Test Model	T77H747
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 5V from host equipment
Modulation Type	ASK
Operating Frequency	13.56MHz
Number of Channel	1
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The antennas provided to the EUT, please refer to the following table:

Antenna No.	Brand	Model	Antenna Gain(dBi)	Frequency range (MHz)	Antenna Type	Connecter Type
1	SAA	LX8416-12-000-C	NA	13.56	РСВ	ACH connector (with 1.2mm pitch)
2	Dexerials	ANT-M041A	NA	13.56	PCB	ACH connector (with 1.2mm pitch)
3	Dexerials	ANT-M043A	NA	13.56	PCB	ACH connector (with 1.2mm pitch)
4	Dexerials	ANT-M047A	NA	13.56	PCB	ACH connector (with 1.2mm pitch)
5	SAA	LX7828-12-000-C	NA	13.56	PCB	ACH connector (with 1.2mm pitch)

Note: 1: Antenna 3, the worse case one (for max field strength), was chosen for final test. 2: Antenna 5, the worse case one (for min field strength), was chosen for final test.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

One channel was provided to this EUT:

Channel	FREQ. (MHz)
1	13.56

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure Mode		Description			
	RE	PLC	FS	ЕВ	
1	√	√	√	\checkmark	With antenna 3
2	V	-	-	-	With antenna 5

Where **RE≥1G:** Radiated Emission above 1GHz

PLC: Power Line Conducted Emission

FS: Frequency Stability

EB: 20dB Bandwidth measurement

2. Antenna placement had been investigated on the positioned of each 3 axis. Following worst case were found as listed below.

Antenna	Worst position
Antenna 3	Z-plane (Below 30MHz) &. X-plane(Above 30MHz)
Antenna 5	Y-plane

Radiated Emission Test:

NOTE: 1."-"means no effect.

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

Frequency Stability:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

20dB Bandwidth:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Available Channel	Tested Channel	Modulation Type
1	1	ASK

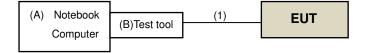
Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE	25deg. C, 65%RH	120Vac, 60Hz	Andy Ho
PLC	25deg. C, 68%RH	120Vac, 60Hz	Andy Ho
FS	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen
EB	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

Report No.: RF160629E05 Page No. 9 / 34 Report Format Version: 6.1.1

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	NOTEBOOK COMPUTER	DELL	E6440	F9LYQ32	FCC DoC	Provided by Lab
B.	Test tool	FOXCONN	NA	NA	NA	Supplied by Client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	Data cable	1	0.1	N	0	Supplied by Client

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards	
The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:	
FCC Part 15, Subpart C (15.225)	
FCC Part 15, Subpart C (15.215) ANSI C63.10-2013	
All test items have been performed and recorded as per the above standards.	

Report No.: RF160629E05 Page No. 11 / 34 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission Measurement

4.1.1 Limits of Radiated Emission Measurement

The field strength of any emission shall not exceed the following limits:

- (a) 15.848 millivolts/m (84 dB μ V/m) at 30 m, within the band 13.553-13.567 MHz.
- (b) 334 microvolts/m (50.5 dB μ V/m) at 30 m, within the bands 13.410-13.553 MHz and 13.567-13.710 MHz.
- (c) 106 microvolts/m (40.5 dBµ V/m) at 30 m, within the bands 13.110-13.410 MHz and 13.710-14.010 MHz.

The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO. SERIAL NO.		CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY51210202	Dec. 16, 2015	Dec. 15, 2016
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna(*) Electro-Metrics	EM-6879	EM-6879 264 Dec. 16, 20		Dec. 15, 2016
RF Cable NA		LOOPCAB-001 LOOPCAB-002	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Mini-Circuits	ZFL-1000VH2 B	AMP-ZFL-04	Nov. 11, 2015	Nov. 10, 2016
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Jan. 07, 2016	Jan. 06, 2017
RF Cable	8D-FB	CHHCAB-001- 1 CHHCAB-001- 2	Oct. 04, 2015	Oct. 03, 2016
	RF-141	CHHCAB-004	Oct. 04, 2015	Oct. 03, 2016
Software	ADT_Radiated _V8.7.07	NA	NA	NA
Antenna Tower & Turn Table CT	CM100	NA	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-WD02	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3 Loop antenna was used for all emissions below 30 MHz.
- 4. The test was performed in 966 Chamber No. H.
- 5. The FCC Site Registration No. is 797305.
- 6. The CANADA Site Registration No. is IC 7450H-3.
- 7. Tested Date: July 04 to 29, 2016

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

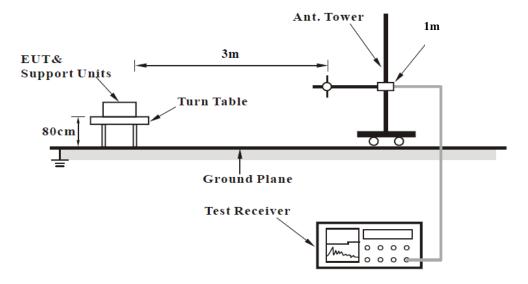
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission 30~1000MHz

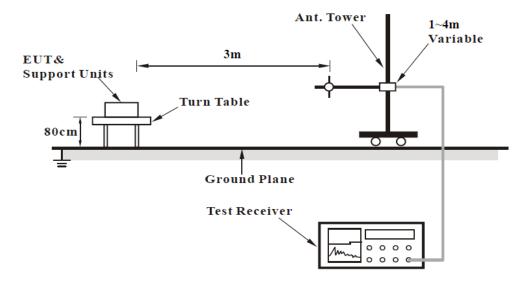
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency 30MHz ~ 1GHz.


4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission 30~1000MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- 1. Turn on the power of all equipment.
- 2. The support unit A (Notebook Computer) runs a test program "NPC300_Example for Foxconn v21.exe" to link EUT under transmission condition continuously.

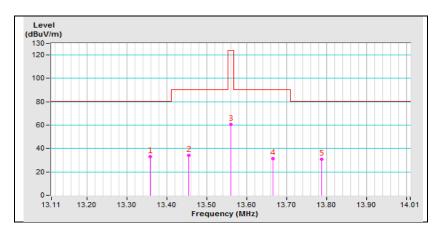
4.1.7 Test Results (Mode 1)

Frequency Range 13.110 ~ 14.010MHz Detector Function Quasi-Peak

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m							
	Freg.	Emission	Limit	Margin	Antenna	Table	Raw	Correction
No.	(MHz)	Level	(dBuV/m)	•	Height	Angle	Value	Factor
	(IVIIIZ)	(dBuV/m)	(ubu v/III)	(dBuV/m) (dB)	(m)	(Degree)	(dBuV)	(dB/m)
1	13.36	33.2 QP	80.5	-47.3	1.00 H	262	36.5	-3.3
2	13.45	34.2 QP	90.5	-56.3	1.00 H	211	37.5	-3.3
3	*13.56	60.6 QP	124.0	-63.4	1.00 H	172	63.9	-3.3
4	13.67	31.6 QP	90.5	-58.9	1.00 H	229	34.9	-3.3
5	13.79	30.6 QP	80.5	-49.9	1.00 H	29	33.9	-3.3

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.


The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

Example:

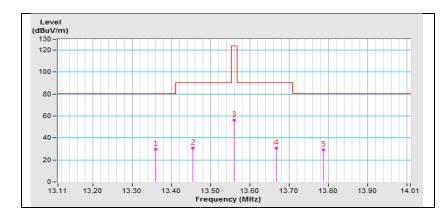
13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

Frequency Range 13.110 ~ 14.010MHz	Detector Function	Quasi-Peak
------------------------------------	-------------------	------------

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	13.36	29.8 QP	80.5	-50.7	1.00 V	1	33.1	-3.3
2	13.45	30.7 QP	90.5	-59.8	1.00 V	2	34.0	-3.3
3	*13.56	56.3 QP	124.0	-67.7	1.00 V	54	59.6	-3.3
4	13.67	30.8 QP	90.5	-59.7	1.00 V	325	34.1	-3.3
5	13.79	28.9 QP	80.5	-51.6	1.00 V	193	32.2	-3.3


- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

Frequency Range Below 30MHz	Detector Function	Quasi-Peak
-----------------------------	-------------------	------------

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	0.87	46.9 QP	68.8	-21.9	1.00 H	360	45.1	1.8		
2	1.74	40.4 QP	69.5	-29.1	1.00 H	41	40.9	-0.5		
3	15.56	35.3 QP	69.5	-34.2	1.00 H	120	38.9	-3.6		
4	19.71	37.7 QP	69.5	-31.8	1.00 H	345	42.2	-4.5		
5	23.96	43.7 QP	69.5	-25.8	1.00 H	351	47.3	-3.6		
6	24.90	43.6 QP	69.5	-25.9	1.00 H	359	47.0	-3.4		
7	27.00	43.4 QP	69.5	-26.1	1.00 H	231	46.2	-2.8		
		Antenna	Polarity & T	est Distance	: Loop Anter	na Close At	3m			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1										
	0.87	44.4 QP	68.8	-24.4	1.00 V	90	42.6	1.8		
2	0.87 1.74	44.4 QP 37.3 QP	68.8 69.5	-24.4 -32.2	1.00 V 1.00 V	90 83	42.6 37.8	1.8 -0.5		
								1		
2	1.74	37.3 QP	69.5	-32.2	1.00 V	83	37.8	-0.5		
2	1.74 2.61	37.3 QP 30.8 QP	69.5 69.5	-32.2 -38.7	1.00 V 1.00 V	83 113	37.8 32.8	-0.5 -2.0		
3 4	1.74 2.61 15.44	37.3 QP 30.8 QP 29.8 QP	69.5 69.5 69.5	-32.2 -38.7 -39.7	1.00 V 1.00 V 1.00 V	83 113 176	37.8 32.8 33.4	-0.5 -2.0 -3.6		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Frequency Range 30MHz ~ 1000MHz Detector Function Quasi-Peak
--

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	122.05	36.7 QP	43.5	-6.8	1.50 H	201	46.4	-9.7		
2	135.60	42.5 QP	43.5	-1.0	2.52 H	189	51.3	-8.8		
3	149.16	40.3 QP	43.5	-3.2	2.00 H	222	48.0	-7.7		
4	176.28	41.5 QP	43.5	-2.0	2.00 H	168	50.6	-9.1		
5	203.41	39.5 QP	43.5	-4.0	1.50 H	1	50.3	-10.8		
6	745.81	35.8 QP	46.0	-10.2	1.00 H	251	32.2	3.6		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	122.05	30.0 QP	43.5	-13.5	3.00 V	254	39.7	-9.7		
2	135.61	34.7 QP	43.5	-8.8	3.00 V	268	43.5	-8.8		
3	149.16	32.5 QP	43.5	-11.0	3.00 V	280	40.2	-7.7		
4	176.28	33.4 QP	43.5	-10.1	2.00 V	282	42.5	-9.1		
5	203.41	29.0 QP	43.5	-14.5	1.50 V	275	39.8	-10.8		
6	745.81	32.4 QP	46.0	-13.6	2.00 V	298	28.8	3.6		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- $2. \ Correction \ Factor(dB/m) = Antenna \ Factor(dB/m) + Cable \ Factor(dB) Pre-Amplifier \ Factor(dB)$
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

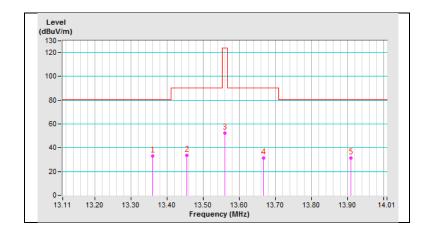
4.1.8 Test Results (Mode 2)

Frequency Range	13.110 ~ 14.010MHz	Detector Function	Quasi-Peak
-----------------	--------------------	-------------------	------------

	Antenna Polarity & Test Distance: Loop Antenna Open At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	13.36	32.8 QP	80.5	-47.7	1.00 H	324	36.1	-3.3			
2	13.45	33.4 QP	90.5	-57.1	1.00 H	356	36.7	-3.3			
3	*13.56	52.1 QP	124.0	-71.9	1.00 H	360	55.4	-3.3			
4	13.67	31.6 QP	90.5	-58.9	1.00 H	263	34.9	-3.3			
5	13.91	31.3 QP	80.5	-49.2	1.00 H	55	34.7	-3.4			

REMARKS:

- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.


The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance)

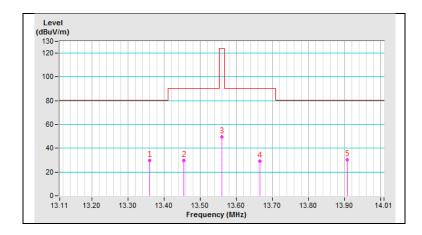
Example:

13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

	Antenna Polarity & Test Distance: Loop Antenna Close At 3m										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	13.36	29.9 QP	80.5	-50.6	1.00 V	271	33.2	-3.3			
2	13.45	29.9 QP	90.5	-60.6	1.00 V	229	33.2	-3.3			
3	*13.56	49.8 QP	124.0	-74.2	1.00 V	258	53.1	-3.3			
4	13.67	29.2 QP	90.5	-61.3	1.00 V	58	32.5	-3.3			
5	13.91	30.3 QP	80.5	-50.2	1.00 V	246	33.7	-3.4			


- 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. Above limits have been translated by the formula
- 6. " * ": Fundamental frequency.

The measured field strength was extrapolated to distance 30 meters, using the formula that the limit of field strength varies as the inverse distance square (40dB per decade of distance) Example:

13.56MHz = 15848uV/m 30m

= 84dBuV/m 30m = $84+20log(30/3)^2$ 3m

= 124dBuV/m

Frequency Range Below 30MHz Detector Function Quasi-Peak

		4 N.I.T.E.N.I.A. I	DOL ADITY	TEOT DIO	TANOE 110	DIZONIZAL	AT 0 14				
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	1.74	40.4 QP	69.5	-29.1	1.00 H	41	40.9	-0.5			
2	15.56	35.3 QP	69.5	-34.2	1.00 H	120	38.9	-3.6			
3	19.71	37.7 QP	69.5	-31.8	1.00 H	345	42.2	-4.5			
4	23.96	43.7 QP	69.5	-25.8	1.00 H	351	47.3	-3.6			
5	24.90	43.6 QP	69.5	-25.9	1.00 H	359	47.0	-3.4			
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO		EMICCION			ANTENNA	TABLE	RAW	CORRECTION			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)			
NO.		LEVEL			HEIGHT	ANGLE	VALUE	FACTOR			
	(MHz)	LEVEL (dBuV/m)	(dBuV/m)	(dB)	HEIGHT (m)	ANGLE (Degree)	VALUE (dBuV)	FACTOR (dB/m)			
1	(MHz) 0.87	LEVEL (dBuV/m) 43.8 QP	(dBuV/m) 68.8	(dB) -25.0	HEIGHT (m) 1.00 V	ANGLE (Degree)	VALUE (dBuV) 42.0	FACTOR (dB/m) 1.8			
1 2	(MHz) 0.87 1.74	LEVEL (dBuV/m) 43.8 QP 37.1 QP	(dBuV/m) 68.8 69.5	(dB) -25.0 -32.4	HEIGHT (m) 1.00 V 1.00 V	ANGLE (Degree) 89 96	VALUE (dBuV) 42.0 37.6	FACTOR (dB/m) 1.8 -0.5			
1 2 3	0.87 1.74 18.25	LEVEL (dBuV/m) 43.8 QP 37.1 QP 31.0 QP	(dBuV/m) 68.8 69.5 69.5	-25.0 -32.4 -38.5	HEIGHT (m) 1.00 V 1.00 V 1.00 V	ANGLE (Degree) 89 96 221	VALUE (dBuV) 42.0 37.6 35.1	FACTOR (dB/m) 1.8 -0.5 -4.1			

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

Frequency Range 30MHz ~ 1000MHz	Detector Function	Quasi-Peak	
---------------------------------	-------------------	------------	--

	Antenna Polarity & Test Distance: Horizontal At 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	108.47	38.8 QP	43.5	-4.7	2.00 H	360	49.8	-11.0		
2	122.05	36.2 QP	43.5	-7.3	2.00 H	360	45.9	-9.7		
3	149.16	37.6 QP	43.5	-5.9	2.00 H	28	45.3	-7.7		
4	189.86	33.6 QP	43.5	-9.9	1.50 H	360	44.0	-10.4		
5	216.97	36.8 QP	46.0	-9.2	1.50 H	182	47.3	-10.5		
6	729.27	36.3 QP	46.0	-9.7	2.00 H	223	33.5	2.8		
		An	tenna Polari	ty & Test Dis	stance: Verti	cal At 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	108.50	30.4 QP	43.5	-13.1	2.00 V	85	41.4	-11.0		
2	122.05	29.2 QP	43.5	-14.3	2.00 V	96	38.9	-9.7		
3	149.16	29.9 QP	43.5	-13.6	2.00 V	99	37.6	-7.7		
4	691.56	32.2 QP	46.0	-13.8	1.00 V	118	30.1	2.1		
5	730.15	39.5 QP	46.0	-6.5	1.00 V	274	36.7	2.8		
6	746.71	41.4 QP	46.0	-4.6	1.00 V	278	37.8	3.6		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- $2. \ Correction \ Factor(dB/m) = Antenna \ Factor(dB/m) + Cable \ Factor(dB) Pre-Amplifier \ Factor(dB)$
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguepov (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

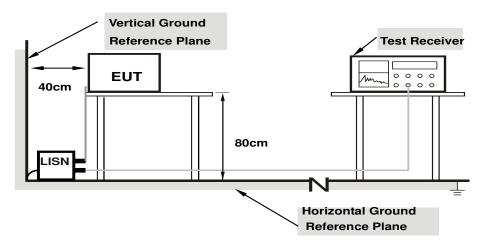
4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	100375	May 09, 2016	May 08, 2017
Line-Impedance Stabilization Network (for EUT) SCHWARZBECK	NSLK-8127	8127-522	Sep. 01, 2015	Aug. 31, 2016
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 13, 2016	June 12, 2017
RF Cable	5D-FB	COCCAB-001	Mar. 08, 2016	Mar. 07, 2017
10 dB PAD Mini-Circuits	HAT-10+	CONATT-003	Sep. 14, 2015	Sep. 13, 2016
50 ohms Terminator	N/A	EMC-03	Sep. 23, 2015	Sep. 22, 2016
50 ohms Terminator	N/A	EMC-02	Oct. 01, 2015	Sep. 30, 2016
Software BVADT	BVADT_Cond_ V7.3.7.3	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. C.
- 3 The VCCI Con C Registration No. is C-3611.
- 4 Tested Date: Aug. 02, 2016

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

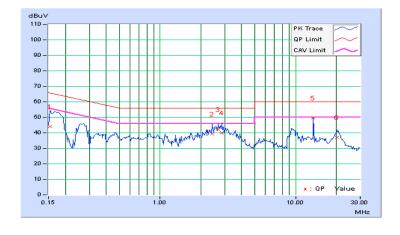
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

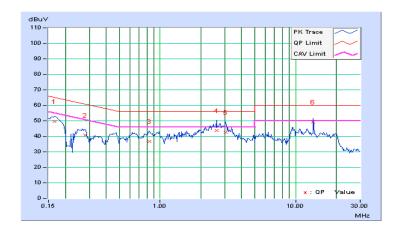

4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector i unction	Average (AV)

	Phase Of Power : Line (L)									
No	No Frequency Correction Reading Value Factor (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.32	33.65	7.98	43.97	18.30	65.79	55.79	-21.82	-37.49
2	2.41406	10.30	28.89	23.29	39.19	33.59	56.00	46.00	-16.81	-12.41
3	2.67188	10.32	31.78	24.42	42.10	34.74	56.00	46.00	-13.90	-11.26
4	2.87500	10.33	29.75	23.85	40.08	34.18	56.00	46.00	-15.92	-11.82
5	13.55859	10.72	38.91	38.23	49.63	48.95	60.00	50.00	-10.37	-1.05
6	20.19922	10.96	26.09	21.05	37.05	32.01	60.00	50.00	-22.95	-17.99

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

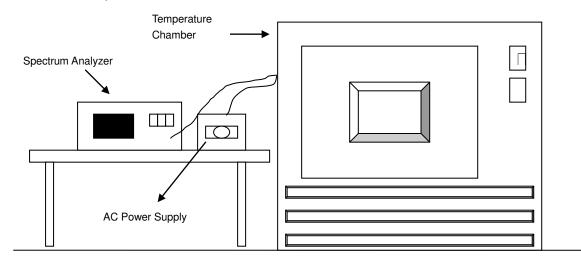


Phase	Neutral (N)	Detector Function Q	Quasi-Peak (QP) /
Phase	ivediai (iv)	Dotootor i driotion	Average (AV)

	Phase Of Power : Neutral (N)										
No	Frequency	Correction Factor		Reading Value (dBuV)		•		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16562	10.29	39.49	27.45	49.78	37.74	65.18	55.18	-15.40	-17.44	
2	0.27891	10.27	30.54	19.31	40.81	29.58	60.85	50.85	-20.04	-21.27	
3	0.83359	10.24	26.58	19.76	36.82	30.00	56.00	46.00	-19.18	-16.00	
4	2.60938	10.31	33.43	27.76	43.74	38.07	56.00	46.00	-12.26	-7.93	
5	3.04688	10.35	32.19	26.08	42.54	36.43	56.00	46.00	-13.46	-9.57	
6	13.55859	10.74	38.34	37.84	49.08	48.58	60.00	50.00	-10.92	-1.42	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Frequency Stability

4.3.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within \pm 0.01% of the operating frequency over a temperature variation of \pm 20 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.3.2 Test Setup

4.3.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP40	100036	Jan. 27, 2016	Jan. 26, 2017
AC Power Source Extech Electronics	6502	1140503	NA	NA
Temperature & Humidity Chamber TERCHY	MHU-225AU	911033	Dec. 03, 2015	Dec. 02, 2016
Digital Multimeter FLUKE	87111	73680266	Nov. 10, 2015	Nov. 09, 2016

NOTE:

- 1. The test was performed in Oven room 2.
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Aug. 12, 2016

4.3.4 Test Procedure

- a. The EUT was placed inside the environmental test chamber and powered by nominal AC voltage.
- b. Turned the EUT on and coupled its output to a spectrum analyzer.
- c. Turned the EUT off and set the chamber to the highest temperature specified.
- d. Allowed sufficient time (approximately 30 min) for the temperature of the chamber to stabilize then turned the EUT on and measured the operating frequency after 2, 5, and 10 minutes.
- e. Repeated step 2 and 3 with the temperature chamber set to the lowest temperature.
- f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 EUT Operating Conditions

Same as Item 4.1.6.

4.3.7 Test Result

	Frequemcy Stability Versus Temp.								
		0 Mi	nute	2 Minute		5 Minute		10 Minute	
TEMP. (°C)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
50	120	13.55993	-0.00052	13.55994	-0.00044	13.55994	-0.00044	13.55993	-0.00052
40	120	13.55999	-0.00007	13.55998	-0.00015	13.55999	-0.00007	13.55999	-0.00007
30	120	13.56006	0.00044	13.56006	0.00044	13.56006	0.00044	13.56005	0.00037
20	120	13.56004	0.00029	13.56003	0.00022	13.56004	0.00029	13.56005	0.00037
10	120	13.55995	-0.00037	13.55995	-0.00037	13.55996	-0.00029	13.55995	-0.00037
0	120	13.55998	-0.00015	13.55997	-0.00022	13.55998	-0.00015	13.55999	-0.00007
-10	120	13.56006	0.00044	13.56006	0.00044	13.56007	0.00052	13.56007	0.00052
-20	120	13.56003	0.00022	13.56004	0.00029	13.56004	0.00029	13.56004	0.00029

	Frequemcy Stability Versus Voltage								
		0 Minute		2 Minute		5 Minute		10 Minute	
TEMP. (°C)	Power Supply (Vac)	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift	Measured Frequency	Frequency Drift
		(MHz)	%	(MHz)	%	(MHz)	%	(MHz)	%
	138	13.55998	-0.00015	13.55997	-0.00022	13.55998	-0.00015	13.55999	-0.00007
20	120	13.55998	-0.00015	13.55997	-0.00022	13.55998	-0.00015	13.55999	-0.00007
	102	13.55998	-0.00015	13.55997	-0.00022	13.55998	-0.00015	13.55999	-0.00007

4.4 20dB bandwidth

4.4.1 Limits of 20dB BANDWIDTH Measurement

The 20dB bandwidth shall be specified in operating frequency band.

4.4.2 Test Setup

4.4.3 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP40	100036	Jan. 27, 2016	Jan. 26, 2017

NOTE: 1. The test was performed in Oven room 2.

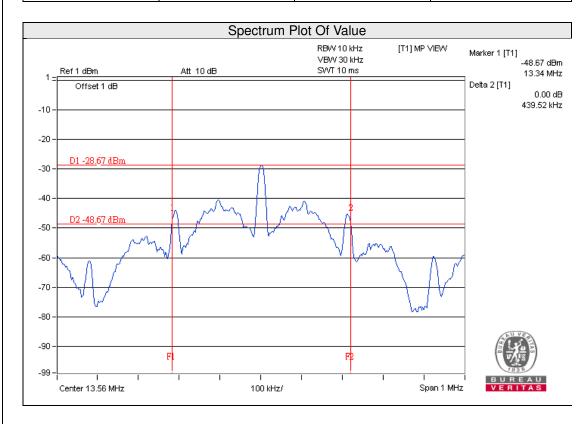
- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. Tested Date: Aug. 12, 2016

4.4.4 Test Procedures

The bandwidth of the fundamental frequency was measured by spectrum analyzer with 10kHz RBW and 30kHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

4.4.5 Deviation from Test Standard

No deviation.


4.4.6 EUT Operating Conditions

Same as Item 4.1.6.

4.4.7 Test Results

20dBc point (Low)	20dBc point (High)	Operating frequency band (MHz)	Pass/Fail	
13.34	13.77952	13.11-14.01	Pass	

5 Pictures of Test Arrangements	
Please refer to the attached file (Test Setup Photo).	

Report No.: RF160629E05 Page No. 33 / 34 Report Format Version: 6.1.1

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---