FCC SAR Test Report Client Name : Emdoor Information Co.,Ltd. 3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, Address : No.83 Dabao Rd, Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China Product Name : Rugged Tablet Date : Jul. 21, 2022 ## **Contents** | 1. | State | ement of Compliance | 6 | |----|--------|---|----| | 2. | Gen | eral Information | 7 | | | 2.1 | Client Information | | | | 2.2 | Description of Equipment Under Test (EUT) | | | | 2.3 | Device Category and SAR Limits | 9 | | | 2.4 | Applied Standard | | | | 2.5 | Environment of Test Site | | | | 2.6 | Test Configuration | | | | 2.7 | Description of Test Facility | | | 3. | Spe | cific Absorption Rate (SAR) | 11 | | | 3. 1 | Introduction | 11 | | | 3. 2 | SAR Definition | | | 4. | SAR | Measurement System | 12 | | | 4. 1 | E-Field Probe | 13 | | | 4.2 | Data Acquisition Electronics (DAE) | | | | 4. 3 | Robot | | | | 4.4 | Measurement Server | | | | 4. 5 | Phantom | | | | 4.6 | Device Holder | | | | 4. 7 | Data Storage and Evaluation | 18 | | 5. | Test | Equipment List | 20 | | 6. | Tiss | ue Simulating Liquids | 21 | | 7. | | em Verification Procedures | | | 8. | EUT | Testing Position | | | | 8. 1 | Body Worn Position | | | 9. | Mea | surement Procedures | 26 | | | 9. 1 | Spatial Peak SAR Evaluation | 26 | | | 9.2 | Power Reference Measurement | | | | 9.3 | Area Scan Procedures | 27 | | | 9.4 | Zoom Scan Procedures | 28 | | | 9.5 | Volume Scan Procedures | 29 | | | 9.6 | Power Drift Monitoring | 29 | | 10 | .Con | ducted Power | 30 | | 11 | .Ante | enna Location | 37 | | 12 | .SAR | Test Results Summary | 38 | | 13 | . Simı | Test Results Summaryultaneous Transmission Analysis | 41 | | Report No.: 1 | 8220WC20143505 FCC ID: 2A37Q-EM-I17J | Page 3 of 97 | |---------------|--------------------------------------|--------------| | Simultaneou | s TX SAR Considerations | 41 | | Evaluation of | f Simultaneous SAR | 42 | | 14. Measure | ment Uncertainty | 45 | | Appendix A. | EUT Photos and Test Setup Photos | 47 | | Appendix B. | Plots of SAR System Check | 48 | | Appendix C. | Plots of SAR Test Data | 51 | | Appendix D. | DASY System Calibration Certificate | 57 | ## TEST REPORT Applicant : Emdoor Information Co.,Ltd. Manufacturer : Emdoor Information Co.,Ltd. Product Name : Rugged Tablet EM-I17J, EM-I17JM, EM-I17U, EM-I17G, EM-I17H, EM-F17, EM-T17, EM- Model No. : Q17, EM-T17P, EM-Q17M, EM-T175, EM-Q175, EM-Q175M, EM-R17, W17J, **I17A** Trade Mark : Emdoor Rating(s) Input: 19V=3.42A(via adapter input: 100-240V~ 50/60Hz 1.5A; with DC 7.6V, 5000mAh battery inside) Test Standard(s) : IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093; ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227; **KDB 616217** The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEC 62209-2:2010, IEEE 1528:2013, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 and Reference KDB 447498, KDB 248227, KDB 616217 requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited. | Date of Receipt | Jul. 06, 2022 | |---------------------------------|--| | Date of Test | Jul. 08~11, 2022 | | | Anbotek Anbotek Anbotek | | Prepared By | Ella Liang | | A Antorok Amborok Andre Antorok | (Ella Liang) | | Annual of Anthonia d Oissa | (ingkong)in | | Approved & Authorized Signer | A STATE OF THE STA | | upor by andless british | (Kingkong lin) | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 5 of 97 ## Version | | Version No | | Date | | Descrip | tion | | | |--------|------------|----------|----------------|----------|----------------|----------|---------|-------| | 34- | 01 | Aribot | Jun. 21, 2022 | Anbotak. | Origin | al | Anboten | P2 | | Note | anbatak | pri | bole Annibotek | Amborea | Vupo, makak | Aribotek | Anhora | -oX- | | abaral | r Anbol | | Anton Antor | e Pupore | rok bugalak | Anbote | N. BOD | words | | sub | otak bul | an self- | Andreak An | oter bun | worldk anbotek | Anto | Oto P | upol | | P | nbotok | Antron | anbotok | Nupota P | nbotok Anbr | 10, 1 | rusey. | 55 | | 6 | Anbores | 9000 | sotok Anbotek | Antio | Pupotak Vi | , borne | nov. | | ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing are as follows. ### <Highest SAR Summary> | Francis Band | Highest Reported 1g-SAR(W/Kg) | SAR Test Limit | |------------------|-------------------------------|----------------| | Frequency Band | Body-worn(0mm) | (W/Kg) | | WIFI 2.4G ANT1 | 0.453 | 1.6 | | WIFI 2.4G ANT2 | 0.461 | 1.6 | | WIFI 5.2G ANT1 | 0.507 Annual Annual | 1.6 | | WIFI 5.2G ANT2 | 0.475 | 1.6 | | WIFI 5.8G ANT1 | 0.457 | 1.6 | | WIFI 5.8G ANT2 | 0.497 | 1.6 | | Simultaneous SAR | 1.004 | 1.6 | | Test Result | PASS | anbotek Anbo | Note: According to KDB 447498 D01 clause 4.3.2, sum 1-g SAR less than the SAR limit. That simultaneous transmission configuration test is exclusion. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in KDB 447498 D01 v06, 2015 and ANSI/IEEE C95.1:2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013. ## 2. General Information ## 2.1 Client Information | Applicant | : Emdoor Information Co.,Ltd. | | |--------------|--|-----| | Address | 3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao : Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China | Rd, | | Manufacturer | : Emdoor Information Co.,Ltd. | | | Address | 3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao : Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China | Rd, | | Factory | : Emdoor Information Co.,Ltd. | rak | | Address | 3/F, Bldg 5th, Wonderful Life Wisdom Valley TechnoPark, No.83 Dabao : Xin'an Sub-district, Bao'an District, Shenzhen, Guangdong Province, 518101, China | Rd, | ## 2.2 Description of Equipment Under Test (EUT) | Product Name | : | Rugged Tablet | tok stockek Anbotek Amu Amustak Ambotek | | | |---------------------|---|---|--|--|--| | Model No. | : | EM-I17J, EM-I17JM, EM-I17U, EM-I17G, EM-I17H, EM-F17, EM-T17, EM-Q17, EM-T17P, EM-Q17M, EM-T175, EM-Q175, EM-Q175M, EM-R17, W17J, I17A (Note: All samples are the same except the model number, so we prepare "EM-I17J" for test only.) | | | | | Trade Mark | : | Emdoor | orek Anborek Anborek Anborek Anborek | | | | Test Power Supply | : | DC 7.6V Battery inside | | | | | Test Sample No. | | 1-2-1(Engineering Sa | mple) | | | | Product Description | : | Operation
Frequency: | BDR+EDR/ BLE: 2402~2480MHz
WiFi 2.4G: 2412~2462MHz for 802.11b/g/n(HT20)
2422~2452MHz for 802.11n(HT40)
WiFi 5.2G: 5180~5240MHz
WiFi 5.8G:
5745~5825MHz
GPS: 1575.42MHz | | | | · | | Number of Channel: | BDR+EDR: 79 Channels BLE: 40 Channels WiFi 2.4G: 11 Channels for 802.11b/g/n(HT20) | | | | Ttoport Tto:: To220 | 11020110000 | 7.01 L. C. 000 44 (UT40) | |---------------------|------------------|--| | | Anborok Anboro | 7 Channels for 802.11n(HT40) | | | All More And | WiFi 5.2G: 4 Channels for 802.11a/n(HT20)/ac(HT20) | | | Autor | 2 Channels for 802.11n(HT40)/ac(HT40) | | | Anbolo | 1 Channels for 802.11ac(HT80) | | | tok subotok | WiFi 5.8G: 5 Channels for 802.11a/n(HT20)/ac(HT20) | | | Lak Hotok | 2 Channels for 802.11n(HT40)/ac(HT40) | | | nboro Ann otal | 1 Channels for 802.11ac(HT80) | | | Pupote, Von | BDR+EDR: GFSK, π/4-DQPSK, 8DPSK | | | abotek Anbi | BLE: GFSK | | | Ar Mortell A | WiFi 2.4G: CCK, DQPSK, DBPSK for DSSS; | | | Modulation Type: | 64QAM, 16QAM, QPSK, BPSK for OFDM | | | tok Anbo | WiFi 5G: | | | botok Anboto | OFDM with BPSK, QPSK, 16QAM, 64QAM, 256QAM | | | Lotel Antiotol | GPS: BPSK | | | Herr Note Supp | BDR+EDR&BLE&WIFI 2.4G&WIFI 5G ANT1: FPC | | | proposition and | Antenna | | | Antenna Type: | WIFI 2.4G&WIFI 5G ANT2: FPC Antenna | | | ak Anbotan | GPS: FPC Antenna | | | melk smboles | BDR+EDR/ BLE: 4.47dBi(Provided by customer) | | | or ok shalak | WiFi 2.4G ANT1: 4.47dBi(Provided by customer) | | | Amboro Aliman | WiFi 5.2G/5.8G ANT1: 5.53dBi(Provided by | | | Antenna | customer) | | | Gain(Peak): | WiFi 2.4G ANT2: 2.83dBi(Provided by customer) | | | har and | WiFi 5.2G/5.8G ANT2: 4.32dBi(Provided by | | | Anido Anido | No. | | , | Lordy ambarr | customer) | **Remark:** 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. ### 2.3 Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. ### 2.4 Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - · IEC 62209-2:2010; - · IEEE 1528:2013; - ANSI/IEEE C95.1:2005 - FCC 47 CFR Part 2.1093 - Reference FCC KDB 447498; KDB 248227; KDB 616217 ### 2.5 Environment of Test Site | Items | Required | Actual | |------------------|----------|--------| | Temperature (°C) | 18-25 | 22~23 | | Humidity (%RH) | 30-70 | 55~65 | ### 2.6 Test Configuration For WIFI and Bluetooth SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal. ### 2.7 Description of Test Facility The test facility is recognized, certified, or accredited by the following organizations: ### FCC-Registration No.: 184111 Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111, September 30, 2020. ### ISED-Registration No.: 8058A Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A, September 30, 2020. #### **Test Location** Shenzhen Anbotek Compliance Laboratory Limited. 1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 11 of 97 ## 3. Specific Absorption Rate (SAR) ### 3. 1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 3. 2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. ## 4. SAR Measurement System **DASY System Configurations** The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - The electro-optical converter (EOC) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - The SAM twin phantom - A device holder - Tissue simulating liquid - Dipole for evaluating the proper functioning of the system Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 13 of 97 components are described in details in the following sub-sections. ### 4.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. ## E-Field Probe Specification <EX3DV4 Probe> | Construction | Symmetrical design with triangular core | 7/2 | |---------------|--|-----------------| | | Built-in shielding against static charges | | | | PEEK enclosure material (resistant to | | | | organic solvents, e.g., DGBE) | | | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | poted El | | Directivity | ± 0.3 dB in HSL (rotation around probe axis) | Earthur . | | | ± 0.5 dB in tissue material (rotation normal to probe axis) | 8 | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g) | ord. | | Dimensions | Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) | Photo of EX3DV4 | | | Typical distance from probe tip to dipole centers: 1 mm | Anborok Anborok | ### E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. ### 4. 2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. **Photo of DAE** ### **4.3 Robot** The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - > High precision (repeatability ±0.035 mm) - High reliability (industrial design) - Jerk-free straight movements - > Low ELF interference (the closed metallic construction shields against motor control fields) **Photo of DASY5** Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 15 of 97 ### 4. 4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chip disk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Photo of Server
for DASY5 ### 4.5 Phantom ### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm; | - 2000 | |-----------------|---|--| | | Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | The state of s | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | E Park | | Measurement | Left Hand, Right Hand, Flat | | | Areas | Phantom | The state of s | | | Anthores Anthores Anthores | Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 16 of 97 <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | 10 - 10 - 10 - 17 | |-----------------|--|-----------------------| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm Minor axis:400 mm | | | | ok anbotek Ambotek Ambotek | Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. ### 4. 6 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. **Device Holder** Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 18 of 97 ### 4. 7 Data Storage and Evaluation ### Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### Data Evaluation The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: **Probe parameters:** - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2} Conversion factor ConvF_i Diode compression point dcp_i **Device parameters:** - Frequency f - Crest factor cf **Media parameters:** - Conductivity σ - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: E-field Probes: $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H-field Probes: $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ with V_i = compensated signal of channel i,(i = x, y, z) Norm_i= sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ii}= sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i= electric field strength of channel i in V/m H_i= magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude). $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot}= total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 20 of 97 ## 5. Test Equipment List | Manufacturer | Name of Equipment | Type/Medel | Carial Number | Calib | ration | |--------------|----------------------------------|----------------|---------------|---|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. Oct. 02, 202 Jun. 15,202 Sept.06,202 May 06,202 Oct.26, 202 NCR NCR NCR NCR Oct.26, 202 | Due Date | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1160 | Oct. 02, 2021 | Oct. 01, 2024 | | SPEAG | 2450MHz System Validation
Kit | D2450V2 | 910 | Jun. 15,2021 | Jun. 14,2024 | | SPEAG | Data Acquisition Electronics | DAE4 | 387 | Sept.06,2021 | Sept.05,2022 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 7396 | May 06,2022 | May 05,2023 | | Agilent | ENA Series Network Analyzer | E5071C | MY46317418 | Oct.26, 2021 | Oct.25, 2022 | | SPEAG | DAK | DAK-3.5 | 1226 | NCR | NCR | | SPEAG | ELI Phantom |
QDOVA004AA | 2058 | NCR | NCR | | AR | Amplifier | ZHL-42W | QA1118004 | NCR | NCR | | Agilent | Power Meter | N1914A | MY50001102 | Oct.26, 2021 | Oct.25, 2022 | | Agilent | Power Sensor | N8481H | MY51240001 | Oct.26, 2021 | Oct.25, 2022 | | R&S | Spectrum Analyzer | N9020A | MY51170037 | Oct.26, 2021 | Oct.25, 2022 | | Agilent | Signal Generation | N5182A | MY48180656 | Oct.26, 2021 | Oct.25, 2022 | | Worken | Directional Coupler | 0110A05601O-10 | COM5BNW1A2 | Oct.26, 2021 | Oct.25, 2022 | ### Note: - 1. The calibration certificate of DASY can be referred to appendix C of this report. - 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent. - In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it ## 6. Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed: **Photo of Liquid Height for Body SAR** The following table gives the recipes for tissue simulating liquid. | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Prevento I (%) | DGBE
(%) | Conductivity (σ) | Permittivity (εr) | |--------------------|--------------|--------------|------------------|-------------|----------------|-------------|------------------|-------------------| | | | | | For Boo | dy | | | | | 2450 | 68.6 | 0 | 0 | 0 | 31.4 | 0 | 1.95 | 52.7 | | 5200 | 78.6 | 0 | 10.7 | 0 | 10.7 | 0 | 5.27 | 49.0 | | 5800 | 78.5 | 0 | 10.8 | 0 | 10.7 | 0 | 6.00 | 48.2 | The following table shows the measuring results for simulating liquid. | | Measured | Target | Tissue | | Measure | ed Tissue |) | | | |----------------|------------------------|--------|--------|-------|-------------|-----------|-------------|---------------------|------------| | Tissue
Type | Frequenc
y
(MHz) | ٤r | σ | ٤r | Dev.
(%) | σ | Dev.
(%) | Liquid
Temp.(°C) | Test Date | | 2450MSL | 2450 | 52.7 | 1.95 | 52.28 | -0.80 | 1.88 | -3.59 | 22.7 | 07/08/2022 | | 5200MSL | 5200 | 49.0 | 5.27 | 48.73 | -0.55 | 5.37 | 1.90 | 22.6 | 07/08/2022 | | 5800MSL | 5800 | 48.2 | 6.0 | 49.12 | 1.91 | 5.86 | -2.33 | 22.7 | 07/11/2022 | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 23 of 97 ## 7. System Verification Procedures Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ### Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ### System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 24 of 97 ### **System Setup for System Evaluation** **Photo of Dipole Setup** ### **Validation Results** Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Frequenc
y
(MHz) | Liquid
Type | Power fed
onto
reference
dipole
(mW) | Targeted
SAR
(W/kg) | Measured
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviatio
n
(%) | Test Date | |------------------------|----------------|--|---------------------------|---------------------------|-----------------------------|----------------------|------------| | 2450 | Body | 250 | 51.8 | 12.87 | 51.48 | -0.62 | 07/08/2022 | | 5200 | Body | 100 | 77.8 | 7.62 | 76.2 | -2.06 | 07/08/2022 | | 5800 | Body | 100 | 78.3 | 7.85 | 78.5 | 0.26 | 07/11/2022 | **Target and Measurement SAR after Normalized** ## 8. EUT Testing Position ### 8. 1 Body Worn Position Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per KDB 648474 D04, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01 v06, 2015 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. **Body Worn Position** Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 26 of 97 ### 9. Measurement Procedures The measurement procedures are as follows: - (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel. - (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable) - (c) Measure output power through RF cable and power meter. - (d) Place the EUT in the positions as setup photos demonstrates. - (e) Set scan area, grid size and other setting on the DASY software. - (f) Measure SAR transmitting at the middle channel for all applicable exposure positions. - (g) Identify the exposure position and device configuration resulting the highest SAR - (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 9. 1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum
values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 27 of 97 sensor to surface (f) Calculation of the averaged SAR within masses of 1g and 10g ### 9. 2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 9. 3 Area Scan Procedures The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | 790, W. YUN | -ak -100 | by a who | |--|---|---| | | ≤ 3 GHz | > 3 GHz | | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | | on, is smaller than the above,
must be ≤ the corresponding
device with at least one | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 28 of 97 ### 9. 4 Zoom Scan Procedures Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|-------------|---|--|--| | molo, Mil | . 7 . | -10/4 - 100) | br. 7/7 1/0/10. | Pun | | Maximum zoom scan s | patial reso | olution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤1.5·Δ | Z _{Zoom} (n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 29 of 97 ### 9. 5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 9. 6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 30 of 97 ## 10. Conducted Power ### <WIFI 2.4GHz Conducted Power> ## Antenna 1: | Mode | Channel | Frequen
cy
(MHz) | Peak Power
(dBm) | Average
Power(dBm) | Tune-Up
Limit(dBm) | Test Rate | |-------------------|-----------|------------------------|---------------------|-----------------------|-----------------------|-----------| | | pinth 1 | 2412 | 16.13 | 15.42 | 16.50 | 1 Mbps | | 802.11 b | 6 | 2437 | 16.53 | 15.73 | 16.50 | 1 Mbps | | | 11,000 to | 2462 | 17.37 | 16.25 | 16.50 | 1 Mbps | | | M 1 30 | 2412 | 18.85 | 15.32 | 18.00 | 6 Mbps | | 802.11 g | 6 | 2437 | 21.40 | 17.84 | 18.00 | 6 Mbps | | | 11 N | 2462 | 18.88 | 15.45 | 18.00 | 6 Mbps | | | tool1 | 2412 | 18.68 | 15.16 | 18.00 | MCS0 | | 802.11
n(HT20) | 6 | 2437 | 21.67 | 17.53 | 18.00 | MCS0 | | 11(11120) | 11 | 2462 | 18.14 | 14.79 | 18.00 | MCS0 | | | 3 | 2422 | 16.16 | 12.35 | 16.00 | MCS0 | | 802.11
n(HT40) | 6 Antag | 2437 | 19.58 | 15.77 | 16.00 | MCS0 | | 11(11170) | 9 | 2452 | 16.18 | 12.37 | 16.00 | MCS0 | ### Antenna 2: | millia 2. | - N. | 200 | 0.33 | 70,0 | 34 | 200 | |-------------------|-----------|------------------------|---------------------|-----------------------|-----------------------|-------------------| | Mode | Channel | Frequen
cy
(MHz) | Peak Power
(dBm) | Average
Power(dBm) | Tune-Up
Limit(dBm) | Test Rate
Data | | | 1 km | 2412 | 16.86 | 15.67 | 16.50 | 1 Mbps | | 802.11 b | 6 | 2437 | 16.19 | 15.34 | 16.50 | 1 Mbps | | | 11 | 2462 | 17.71 | 16.45 | 16.50 | 1 Mbps | | | perilit 1 | 2412 | 19.03 | 15.42 | 18.00 | 6 Mbps | | 802.11 g | 6 | 2437 | 20.50 | 17.63 | 18.00 | 6 Mbps | | | 11 | 2462 | 17.71 | 14.35 | 18.00 | 6 Mbps | | | 1 | 2412 | 19.36 | 15.24 | 17.00 | MCS0 | | 802.11
n(HT20) | 6 | 2437 | 20.49 | 16.56 | 17.00 | MCS0 | | 11(11120) | 11 | 2462 | 18.05 | 14.62 | 17.00 | MCS0 | | | 3 | 2422 | 15.97 | 11.85 | 15.50 | MCS0 | | 802.11
n(HT40) | 6 | 2437 | 18.84 | 15.14 | 15.50 | MCS0 | | 11(11140) | 9 | 2452 | 14.42 | 10.87 | 15.50 | MCS0 | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 31 of 97 ### MIMO: | Mode | Mode Channe F | | | ted Average O
Power(dBm) | utput | Maximum
Tune- | Test Rate Data | | |-------------------|---------------|-------|-----------|-----------------------------|-------|------------------|----------------|--| | | ' | (MHz) | Antenna 1 | Antenna 2 | Toal | Up(dBm) | | | | 000.44 | 1 | 2412 | 15.16 | 15.24 | 18.21 | 20.50 | MCS0 | | | 802.11 | 6 | 2437 | 17.53 | 16.56 | 20.08 | 20.50 | MCS0 | | | n(HT20) | 11 | 2462 | 14.79 | 14.62 | 17.72 | 20.50 | MCS0 | | | | 3 | 2422 | 12.35 | 11.85 | 15.12 | 18.00 | MCS0 | | | 802.11
n(HT40) | 6 | 2437 | 15.77 | 15.14 | 18.48 | 18.00 | MCS0 | | | 11(11140) | 9 | 2452 | 12.37 | 10.87 | 14.69 | 18.00 | MCS0 | | ### Note: - 1. Per KDB 447498 D01 v06, the test distance less than 5mm - 2. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion. - 3. Per KDB 248227 D01, In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. SAR is not required for the following 2.4 GHz OFDM conditions: - 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS
specified maximum output power and the adjusted SAR is for ANT 1(0.599W/Kg*16.14/14.35)≤ 1.2 W/kg. Antenna 1: - 4 . According to chapter 12 of this report, the max report SAR of 802.11b antenna1 mode is 0.599 W/Kg, 802.11b antenna2 mode is 0.602 W/Kg, and 0.599 W/Kg*(41.115/27.227) = 0.905W/Kg, 0.602 W/Kg*(54.075/36.224) = 0.899W/Kg which is smaller than 1.2W/Kg, so SAR evaluation of 802.11g mode is not required. And the same for 802.11n. <WIFI 5GHz Conducted Power> ## Band 1 Antenna 1: | TestMode | Channel | Average
Power[dBm] | Tune-Up
Limit(dBm) | Test Rate
Data | |----------------|---------|-----------------------|-----------------------|-------------------| | day vapalak | 5180 | 13.64 | 15.00 | 6M | | 11A | 5200 | 14.75 | 15.00 | 6M | | Anbore Andrew | 5240 | 14.29 | 15.00 | 6M | | tupore bus | 5180 | 13.52 | 15.00 | MCS0 | | 11N20 | 5200 | 14.57 | 15.00 | MCS0 | | ek -abotek anb | 5240 | 14.14 | 15.00 | MCS0 | | -X 44NAStok | 5190 | 11.55 | 13.00 | MCS0 | | 11N40 | 5230 | 12.91 | 13.00 | MCS0 | | supores and | 5180 | 13.70 | 14.50 | MCS0 | | 11AC20 | 5200 | 14.44 | 14.50 | MCS0 | | abotek Anbote | 5240 | 13.99 | 14.50 | MCS0 | | sale supe | 5190 | 10.83 | 13.00 | MCS0 | | 11AC40 | 5230 | 12.72 | 13.00 | MCS0 | | 11AC80 | 5210 | 13.43 | 13.50 | MCS0 | ### Antenna 2: | TestMode | Channel | Average
Power[dBm] | Tune-Up
Limit(dBm) | Test Rate
Data | |--------------|---------|-----------------------|-----------------------|-------------------| | Anbou | 5180 | 13.51 | 15.00 | 6M | | 11A | 5200 | 14.54 | 15.00 | 6M | | | 5240 | 14.13 | 15.00 | 6M | | atok anbotok | 5180 | 13.41 | 15.00 | MCS0 | | 11N20 | 5200 | 14.03 | 15.00 | MCS0 | | | 5240 | 13.59 | 15.00 | MCS0 | | Anbarra An | 5190 | 12.55 | 13.00 | MCS0 | | 11N40 | 5230 | 12.69 | 13.00 | MCS0 | | rek -opolek | 5180 | 13.29 | 14.50 | MCS0 | | 11AC20 | 5200 | 14.31 | 14.50 | MCS0 | | | 5240 | 13.90 | 14.50 | MCS0 | | 11AC40 | 5190 | 12.31 | 13.00 | MCS0 | | | 5230 | 12.62 | 13.00 | MCS0 | | 11AC80 | 5210 | 13.38 | 13.50 | MCS0 | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 33 of 97 ### MIMO: | | | Aver | age Powe <mark>r</mark> [dBr | n] | Maximum | Toot Boto | |-----------|---------|-----------|------------------------------|-------|------------------|---| | TestMode | Channel | Antenna 1 | Antenna 2 | Total | Tune-
Up(dBm) | MCS0 MCS0 MCS0 MCS0 MCS0 MCS0 MCS0 MCS0 | | ak alloho | 5180 | 13.52 | 13.41 | 16.48 | 17.50 | MCS0 | | 11N20 | 5200 | 14.57 | 14.03 | 17.32 | 17.50 | MCS0 | | notak pup | 5240 | 14.14 | 13.59 | 16.88 | 17.50 | MCS0 | | 445140 | 5190 | 11.55 | 12.55 | 15.09 | 17.00 | MCS0 | | 11N40 | 5230 | 12.91 | 12.69 | 15.81 | 17.00 | MCS0 | | work! | 5180 | 13.70 | 13.29 | 16.51 | 17.00 | MCS0 | | 11AC20 | 5200 | 14.44 | 14.31 | 17.39 | 17.50 | MCS0 | | anboro | 5240 | 13.99 | 13.90 | 16.96 | 17.50 | MCS0 | | 444040 | 5190 | 10.83 | 12.31 | 14.64 | 16.00 | MCS0 | | 11AC40 | 5230 | 12.72 | 12.62 | 15.68 | 16.00 | MCS0 | | 11AC80 | 5210 | 13.43 | 13.38 | 16.42 | 16.50 | MCS0 | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 34 of 97 ## Band 4 Antenna 1: | TestMode | Channel | Average
Power[dBm] | Tune-Up
Limit(dBm) | Test Rate
Data | |----------------|---------|-----------------------|-----------------------|-------------------| | anbote. An | 5745 | 13.45 | 13.50 | 6M | | 11A | 5785 | 12.31 | 13.50 | 6M | | Aprilate April | 5825 | 12.41 | 13.50 | 6M | | upo uk matak | 5745 | 13.33 | 13.50 | MCS0 | | 11N20 | 5785 | 12.22 | 13.50 | MCS0 | | | 5825 | 12.28 | 13.50 | MCS0 | | 441140 | 5755 | 13.57 | 14.00 | MCS0 | | 11N40 | 5795 | 12.93 | 14.00 | MCS0 | | r bu worldy | 5745 | 13.25 | 13.50 | MCS0 | | 11AC20 | 5785 | 12.53 | 13.50 | MCS0 | | anhotok Anbo | 5825 | 12.27 | 13.50 | MCS0 | | 44.4.0.40 | 5755 | 13.45 | 13.50 | MCS0 | | 11AC40 | 5795 | 12.89 | 13.50 | MCS0 | | 11AC80 | 5775 | 13.55 | 14.00 | MCS0 | ### Antenna 2: | TestMode | Channel | Average
Power[dBm] | Tune-Up
Limit(dBm) | Test Rate
Data | |--------------|---------|-----------------------|-----------------------|-------------------| | by motor and | 5745 | 13.03 | 13.50 | 6M | | 11A | 5785 | 12.91 | 13.50 | 6M | | | 5825 | 13.11 | 13.50 | 6M | | Polek Pupo, | 5745 | 12.94 | 13.50 | MCS0 | | 11N20 | 5785 | 12.88 | 13.50 | MCS0 | | | 5825 | 13.02 | 13.50 | MCS0 | | 441140 1000 | 5755 | 13.88 | 14.00 | MCS0 | | 11N40 | 5795 | 13.82 | 14.00 | MCS0 | | ok blupan by | 5745 | 12.95 | 14.00 | MCS0 | | 11AC20 | 5785 | 12.81 | 13.50 | MCS0 | | | 5825 | 13.03 | 13.50 | MCS0 | | 44.4.0.40 | 5755 | 13.80 | 14.00 | MCS0 | | 11AC40 | 5795 | 13.84 | 14.00 | MCS0 | | 11AC80 | 5775 | 14.08 | 14.50 | MCS0 | MIMO: | 700 - he. | - 10 | Man VON | - day | 180 | Pr. L. M. | V. A. V. | |-----------|---------|--------------------|-----------|-------|------------------|-----------| | | | Average Power[dBm] | | | Maximum | Test Rate | | TestMode | Channel | Antenna 1 | Antenna 2 | Total | Tune-
Up(dBm) | Data | | Mupolin | 5745 | 13.33 | 12.94 | 16.15 | 16.50 | MCS0 | | 11N20 | 5785 | 12.22 | 12.88 | 15.57 | 16.50 | MCS0 | | day You | 5825 | 12.28 | 13.02 | 15.68 | 16.50 | MCS0 | | 440140 | 5755 | 13.57 | 13.88 | 16.74 | 17.00 | MCS0 | | 11N40 | 5795 | 12.93 | 13.82 | 16.41 | 17.00 | MCS0 | | Anbore | 5745 | 13.25 | 12.95 | 16.11 | 16.50 | MCS0 | | 11AC20 | 5785 | 12.53 | 12.81 | 15.68 | 16.50 | MCS0 | | - abotel | 5825 | 12.27 | 13.03 | 15.68 | 16.50 | MCS0 | | 44.40.40 | 5755 | 13.45 | 13.80 | 16.64 | 17.00 | MCS0 | | 11AC40 | 5795 | 12.89 | 13.84 | 16.40 | 17.00 | MCS0 | | 11AC80 | 5775 | 13.55 | 14.08 | 16.83 | 17.00 | MCS0 | #### Note: - 1. Per KDB 447498 D02 v02r01, the test distance less than 5mm - Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion. - 3. Per KDB 248227 D01, In the 5 GHz band, the initial test position(s) is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the reported SAR for the initial test position is: - ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. - 2) > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions are tested. - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested. - b. When it is unclear, all equivalent conditions must be tested. - 3) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required test channels are considered. - a. The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 36 of 97 ### <Bluetooth Conducted Power> | TestMode | Channel | Result[dBm] | Maximum Tune-
Up(dBm) | |---------------------------|---------|-------------|--------------------------| | CECK/DT | 2402 | 3.80 | 4.50 | | GFSK(BT | 2441 | 4.35 | 4.50 | | BDR) | 2480 | 3.89 | 4.50 | | π/4-DQPSK -
(BT EDR) - | 2402 | 0.12 | 1.50 | | | 2441 | 0.80 | 1.50 | | | 2480 | 0.47 | 1.50 | | ODDOK | 2402 | 0.42 | 1.50 | | 8DPSK
(BT EDR) | 2441 | 1.05 | 1.50 | | | 2480 | 0.69 | 1.50 | | GFSK(BT -
BLE) - | 2402 | 2.17 | 3.00 | | | 2440 | 2.79 | 3.00 | | | 2480 | 2.32 | 3.00 | #### Note: Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR f(GHz) is the RF channel transmit frequency in GHz Power and distance are rounded to the nearest mW and mm before calculation The result is rounded to one decimal place for comparison | Bluetooth Max Turn-up Power (dBm) | | Separation Distance (mm) | Frequency (GHz) | exclusion thresholds | | |-----------------------------------|------|--------------------------|-----------------|----------------------|--| | | 4.50 | 5 bores Anton | 2.480 | 0.888 | | Per KDB 447498 D01, when the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.888 which is <= 3, SAR testing is not required. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 37 of 97 # 11. Antenna Location Bottom Side # **EUT BACK VIEW** | | Distance of The Antenna to the EUT surface and edge | | | | | | | | | | | | |---|---|-------|-------|-------|-------|-------|--|--|--|--|--|--| | Antennas Front Back Top Side Bottom Side Left Side Right Side | | | | | | | | | | | | | | WiFi/BT ANT 1 | <25mm | <25mm | <25mm | >25mm | >25mm | >25mm | | | | | | | | WiFi ANT 2 | | | | | | | | | | | | | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 38 of 97 # 12. SAR Test Results Summary #### General Note: Per KDB 447498 D01 v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Reported SAR(W/kg)=
Measured SAR(W/kg)* Scaling Factor 2. Per KDB 447498 D01 v06, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary #### <WIFI 2.4GHz> #### Antenna 1: | | | | | | | Freq. | Averag | Tune- | Scalin | Powe | Measure | Reporte | |-------|-------------|---------|----------|------|---|-------|--------|-------|--------|-------|-------------------|-------------------| | Plot | Band | Mode | Test | Gap | | (MHz | е | Up | g | r | d | d | | No. | Build | mode | Position | (cm) | |) | Power | Limit | Factor | Drift | SAR _{1g} | SAR _{1g} | | | | | | | | , | (dBm) | (dBm) | uotoi | (dB) | (W/kg) | (W/kg) | | #1 | WIFI 2.4GHz | 802.11g | Back | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | 0.06 | 0.437 | 0.453 | | | WIFI 2.4GHz | 802.11g | Front | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | 0.11 | 0.355 | 0.368 | | upolo | WIFI 2.4GHz | 802.11g | Right | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | N/A | N/A | N/A | | anbo | WIFI 2.4GHz | 802.11g | Left | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | N/A | N/A | N/A | | 100 | WIFI 2.4GHz | 802.11g | Тор | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | 0.13 | 0.425 | 0.441 | | | WIFI 2.4GHz | 802.11g | Bottom | 0 | 6 | 2437 | 17.84 | 18.00 | 1.038 | N/A | N/A | N/A | #### Antenna 2: | | | | | | | Freq. | Averag | Tune- | Scalin | Powe | Measure | Reporte | |--------|-------------|---------|----------|------|------|----------|--------|-------|-------------|-------|-------------------|-------------------| | Plot | Band | Mode | Test | Gap | | (MHz | е | Up | | r | d | d | | No. | Dalla | WIOGE | Position | (cm) | CII. | (1411 12 | Power | Limit | g
Factor | Drift | SAR _{1g} | SAR _{1g} | | | | | | | | , | (dBm) | (dBm) | ractor | (dB) | (W/kg) | (W/kg) | | #2 | WIFI 2.4GHz | 802.11g | Back | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | -0.09 | 0.423 | 0.461 | | 10/1- | WIFI 2.4GHz | 802.11g | Front | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | 0.06 | 0.351 | 0.382 | | botek | WIFI 2.4GHz | 802.11g | Right | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | N/A | N/A | N/A | | " wo" | WIFI 2.4GHz | 802.11g | Left | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | N/A | N/A | N/A | | Proces | WIFI 2.4GHz | 802.11g | Тор | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | -0.03 | 0.412 | 0.449 | | ALT | WIFI 2.4GHz | 802.11g | Bottom | 0 | 6 | 2437 | 17.63 | 18.00 | 1.089 | N/A | N/A | N/A | Antenna 1: | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | | Freq.
(MHz | е | Up
Limit | Scalin
g
Factor | r
Drift | Measure
d
SAR _{1g}
(W/kg) | Reporte
d
SAR _{1g}
(W/kg) | |-------------|-------------|---------|------------------|-------------|----|---------------|-------|-------------|-----------------------|------------|---|---| | #3 | WIFI 5.2GHz | 802.11A | Back | 0 | 40 | 5200 | 14.75 | 15.00 | 1.059 | 0.12 | 0.479 | 0.507 | | Pilon. | WIFI 5.2GHz | 802.11A | Front | 0 | 40 | 5200 | 14.75 | 15.00 | 1.059 | 0.16 | 0.419 | 0.444 | | An | WIFI 5.2GHz | 802.11A | Right | 0 | 40 | 5200 | 14.75 | 15.00 | 1.059 | N/A | N/A | N/A | | | WIFI 5.2GHz | 802.11A | Left | 0 | 40 | 5200 | 14.75 | 15.00 | 1.059 | N/A | N/A | N/A | | 14 | WIFI 5.2GHz | 802.11A | Тор | 0 🕅 | 40 | 5200 | 14.75 | 15.00 | 1.059 | 0.12 | 0.458 | 0.485 | | Note | WIFI 5.2GHz | 802.11A | Bottom | 0 | 40 | 5200 | 14.75 | 15.00 | 1.059 | N/A | N/A | N/A | ### Antenna 2: | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz | e | Tune-
Up
Limit
(dBm) | Scalin
g
Factor | r
Drift | Measure
d
SAR _{1g}
(W/kg) | Reporte
d
SAR _{1g}
(W/kg) | |-------------|-------------|---------|------------------|-------------|-----|---------------|-------|-------------------------------|-----------------------|------------|---|---| | #4 | WIFI 5.2GHz | 802.11A | Back | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | 0.03 | 0.427 | 0.475 | | Upale | WIFI 5.2GHz | 802.11A | Front | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | 0.07 | 0.346 | 0.385 | | anbo | WIFI 5.2GHz | 802.11A | Right | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | N/A | N/A | N/A | | | WIFI 5.2GHz | 802.11A | Left | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | N/A | N/A | N/A | | | WIFI 5.2GHz | 802.11A | Тор | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | 0.08 | 0.409 | 0.455 | | 100 | WIFI 5.2GHz | 802.11A | Bottom | 0 | 40 | 5200 | 14.54 | 15.00 | 1.112 | N/A | N/A | N/A | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 40 of 97 ## Antenna 1: | Plot
No. | │ Band │ | Mode | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz | е | Tune-
Up
Limit
(dBm) | Scalin
g
Factor | r
Drift | Measure
d
SAR _{1g}
(W/kg) | Reporte
d
SAR _{1g}
(W/kg) | |-------------|-------------|-------------------|------------------|-------------|-----|---------------|-------|-------------------------------|-----------------------|------------|---|---| | #5 | WIFI 5.8GHz | 802.11
N(HT40) | Back | 0 | 151 | 5755 | 13.57 | 14.00 | 1.104 | -0.17 | 0.414 | 0.457 | | 46 | WIFI 5.8GHz | 802.11
N(HT40) | Front | 0 | 151 | 5755 | 13.57 | 14.00 | 1.104 | -0.11 | 0.307 | 0.339 | | potok. | WIFI 5.8GHz | 802.11
N(HT40) | Right | 0 | 151 | 5755 | 13.57 | 14.00 | 1.104 | N/A | N/A | N/A | | Anho. | WIFI 5.8GHz | 802.11
N(HT40) | Left | 0 ak | 151 | 5755 | 13.57 | 14.00 | 1.104 | N/A | N/A | N/A | | 1 | WIFI 5.8GHz | 802.11
N(HT40) | Тор | 0 | 151 | 5755 | 13.57 | 14.00 | 1.104 | 0.09 | 0.394 | 0.435 | | otal. | WIFI 5.8GHz | 802.11
N(HT40) | Bottom | 0 | 151 | 5755 | 13.57 | 14.00 | 1.104 | N/A | N/A | N/A | # Antenna 2: | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | | Freq.
(MHz | е | Tune-
Up
Limit
(dBm) | Scalin
g
Factor | r
Drift | Measure
d
SAR _{1g}
(W/kg) | Reporte
d
SAR _{1g}
(W/kg) | |-------------|-------------|--------------------|------------------|-------------|-----|---------------|-------|-------------------------------|-----------------------|------------|---|---| | #6 | WIFI 5.8GHz | 802.11AC
(HT80) | Back | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | -0.12 | 0.451 | 0.497 | | PLU PR | WIFI 5.8GHz | 802.11AC
(HT80) | Front | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | -0.13 | 0.372 | 0.410 | | ole. | WIFI 5.8GHz | 802.11AC
(HT80) | Right | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | N/A | N/A | N/A | | botek | WIFI 5.8GHz | 802.11AC
(HT80) | Left | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | N/A | N/A | N/A | | Anba | WIFI 5.8GHz | 802.11AC
(HT80) | Тор | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | -0.07 | 0.442 | 0.487 | | 4 | WIFI 5.8GHz | 802.11AC
(HT80) | Bottom | 0 | 155 | 5775 | 14.08 | 14.50 | 1.102 | N/A | N/A | N/A | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 41 of 97 # 13. Simultaneous Transmission Analysis #### Simultaneous TX SAR Considerations #### No. Applicable Simultaneous Transmission - WIFI 2.4G ANT1 +WIFI 2.4G ANT2 - WIFI 5.2G ANT1 +WIFI 5.2G ANT2 - WIFI 5.8G ANT1 +WIFI 5.8G ANT2 - 4. WIFI 2.4G ANT1 +WIFI 5.2G ANT2 - WIFI 2.4G ANT1 +WIFI 5.8G ANT2 - WIFI 2.4G ANT2 +WIFI 5.2G ANT1 - 7. WIFI 2.4G ANT2 +WIFI 5.8G ANT1 - 8. WIFI 5.2G ANT1 +WIFI 5.8G ANT2 - WIFI 5.2G ANT2 +WIFI 5.8G ANT1 #### Note: 1. WIFI 2.4GHz, WIFI 5GHz and Bluetooth cannot transmit simultaneously. #### **Simultaneous Transmission Procedures** This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05r02, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. ## **Evaluation of Simultaneous SAR** #### WIFI 2.4G ANT1 +WIFI 2.4G ANT2: | Test
Position | WiFi ANT 1 SAR _{1-g} (W/Kg) | WiFi ANT 2 SAR _{1-g} (W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.453 | 0.461 | 0.914 | 1.6 | N/A | | Front | 0.368 | 0.382 | 0.750 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.441 | 0.449 | 0.890 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | # WIFI 5.2G ANT1 +WIFI 5.2G ANT2: | Test
Position | WiFi ANT 1 SAR _{1-g} (W/Kg) | WiFi
ANT 2
SAR _{1-g}
(W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.507 | 0.475 | 0.982 | 1.6 | N/A | | Front | 0.444 | 0.385 | 0.829 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.485 | 0.455 | 0.940 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | #### WIFI 5.8G ANT1 +WIFI 5.8G ANT2: | Test
Position | WiFi ANT 1 SAR _{1-g} (W/Kg) | WiFi ANT 2 SAR _{1-g} (W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.457 | 0.497 | 0.954 | 1.6 | N/A | | Front | 0.339 | 0.410 | 0.749 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.435 |
0.487 | 0.922 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | N/A | N/A | #### WIFI 2.4G ANT1 +WIFI 5.2G ANT2: | Test
Position | WiFi
ANT 1
SAR _{1-g}
(W/Kg) | WiFi
ANT 2
SAR _{1-g}
(W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|---|---|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.453 | 0.475 | 0.928 | 1.6 | N/A | | Front | 0.368 | 0.385 | 0.753 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.441 | 0.455 | 0.896 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | #### WIFI 2.4G ANT1 +WIFI 5.8G ANT2: | Test
Position | WiFi
ANT 1
SAR _{1-g}
(W/Kg) | WiFi
ANT 2
SAR _{1-g}
(W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|---|---|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.453 | 0.497 | 0.950 | 1.6 | N/A | | Front | 0.368 | 0.410 | 0.778 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.441 | 0.487 | 0.928 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | #### WIFI 2.4G ANT2 +WIFI 5.2G ANT1: | Test
Position | WiFi ANT 1 SAR _{1-g} (W/Kg) | WiFi ANT 2 SAR _{1-g} (W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|--------------------------------------|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.507 | 0.461 | 0.968 | 1.6 | N/A | | Front | 0.444 | 0.382 | 0.826 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.485 | 0.449 | 0.934 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | #### WIFI 2.4G ANT2 +WIFI 5.8G ANT1: | Test
Position | WiFi
ANT 1
SAR _{1-g}
(W/Kg) | WiFi ANT 2 SAR _{1-g} (W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|---|--------------------------------------|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.457 | 0.461 | 0.918 | 1.6 | N/A | | Front | 0.339 | 0.382 | 0.721 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.435 | 0.449 | 0.884 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | #### WIFI 5.2G ANT1 +WIFI 5.8G ANT2: | Test
Position | WiFi ANT 1 SAR _{1-g} (W/Kg) | WiFi
ANT 2
SAR _{1-g}
(W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | |------------------|--------------------------------------|---|---------------------------------------|---------------------------------------|-----------------------------| | Back | 0.507 | 0.497 | 1.004 | 1.6 | N/A | | Front | 0.444 | 0.410 | 0.854 | 1.6 | N/A | | Right | N/A | N/A | N/A | 1.6 | N/A | | Left | N/A | N/A | N/A | 1.6 | N/A | | Тор | 0.485 | 0.487 | 0.972 | 1.6 | N/A | | Bottom | N/A | N/A | N/A | 1.6 | N/A | ## WIFI 5.2G ANT2 +WIFI 5.8G ANT1: | Test
Position | WiFi
ANT 1
SAR _{1-g}
(W/Kg) | WiFi
ANT 2
SAR _{1-g}
(W/Kg) | MAX.
ΣSAR _{1-g}
(W/Kg) | SAR _{1-g}
Limit
(W/Kg) | Simut.
Meas.
Required | | |------------------|---|---|---------------------------------------|---------------------------------------|-----------------------------|--| | Back | 0.457 | 0.475 | 0.932 | 1.6 | N/A | | | Front | 0.339 | 0.385 | 0.724 | 1.6 | N/A | | | Right | N/A | N/A | N/A | 1.6 | N/A | | | Left | N/A | N/A | N/A | 1.6 | N/A | | | Тор | 0.435 | 0.455 | 0.89 | 1.6 | N/A | | | Bottom | N/A | N/A | N/A | 1.6 | N/A | | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 45 of 97 # 14. Measurement Uncertainty | do | OTES AND | -dela- | anbor | . Po.) | -67 | | aboto. | Ano | | |-----------------|--|---------|----------------|-----------|------------------|-------------------|------------------------------|-------------------------------|-----------------------| | NO | Source | Uncert. | Prob.
Dist. | Div.
k | ci
(1g) | ci
(10g) | Stand.U
ncert.
ui (1g) | Stand.U
ncert. ui
(10g) | Veff | | n 1 2101 | Repeat | 0.4 | N w | Anbot | otal 1 | Ambro Abs | 0. 4 | 0. 4 | 9 | | knbr | Hay buban bulak | inbotek | Instru | ument | anbotok. | p.) | potok | Anbarak | Ant | | 2 | Probe calibration | 7 | N | 2 | pr/101 | 1 | 3.5 | 3.5 | ∞ | | , Aai | Anbotek Anbotek | Anbar | toje by | polok | 0.7 | 0.7 | Anbol | ok ko | otok
obotok | | 3 | Axial isotropy | 4.7 | R | √3 | Yan | anbo' | 1.9 | 1.9 | ∞ | | 4 | Hemispherical isotropy | 9.4 | R | √3 | 0.7 | 0.7 | 3.9 | 3.9 | ∞ | | 5 | Boundary effect | 1.0 | Rustod | √3 | Ambor
1
Am | 1 | 0.6 | 0.6 | ∞ *** | | 6 | Linearity | 4.7 | R | _
√3 | nek 1 | Anbores
Anbor | 2.7 | 2.7 | ∞ | | 7 | Detection limits | 1.0 | Role | _
√3 | obolok
1 | . 1 | 0.6 | 0.6 | ∞ | | 8 | Readout electronics | 0.3 | Nabor | 1 | Ambou | 1 | 0.3 | 0.3 | ∞ | | 9 | Response time | 0.8 | ACT R | √3 | 1 | nbotok
1 | 0.5 | 0.5 | joo ^{tolk} ∞ | | 10 | Integration time | 2.6 | R R | √3 | ok
boto 1 | 1 _{Arri} | 1.5 | 1.5 | ∞ | | 11 | Ambient noise | 3.0 | R | √3 | Ambotel | 1 | 1.7 | 1.7 | ∞ | | 12 | Ambient reflections | 3.0 | R R | √3 | 1 A | ibotek
1 | 1.7 | 1.7 | oo ^{lek} ∞ | | 13 | Probe positioner mech.
restrictions | 0.4 | obotek
R | √3 × 3 | ok
Sakel*1 | 1 Anbais | 0.2 | 0.2 | oo i | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 46 of 97 Probe positioning with $\sqrt{3}$ respect to phantom 2.9 1.7 14 R 1 1.7 shell 15 Max.SAR evaluation 1.0 R sal 1 1 0.6 0.6 √3 | ites. | atak antatak Ant | 20. | w. posek | lang. | pota. | Pur | - Mak | antiotok | Mpo. | |----------------|---------------------------------|-------------------|--------------------|------------------|----------------------------|--------------|---------|----------|-----------| | trup | words Anbores | unta production. | Test samp | le rela | ted | N P | nov | Anbolak | Amb | | 16 | Device positioning | 3.8 | N Actor | ook
book | 1 | 1 | 3.8 | 3.8 | 99 | | 17 | Device holder | 5.1 | N | 1 | 1 | 1 | 5.1 | 5.1 | 5 | | 18 | Drift of output power | 5.0 | R of the | √3 | mbatek
1 | 1 | 2.9 | 2.9 | ∞ | | p | Ambotek Anbote | Ame | Phantom | and se | t-up | -otok | Anhotek | Anbon | ielt pi | | 19 | Phantom uncertainty | 4.0 | R R | √3 | 1 | urbatek
1 | 2.3 | 2.3 | ∞ | | 20 | Liquid conductivity (target) | 5.0 | R | _
√3 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | 21 | Liquid conductivity (meas) | 2.5 | Anthor | o ^{tek} | 0.64 | 0.43 | 1.6 | 1.2 | ~ | | 22 | Liquid Permittivity
(target) | 5.0 | R | | 0.6 | 0.49 | 1.7 | 1.5 | 00 | | 23 | Liquid Permittivity (meas) | 2.5 | N ³⁵⁰¹⁶ | 1 | 0.6 | 0.49 | 1.5 | 1.2 | ∞ | | otek
inbote | Combined standard | ok Anbot | RSS | " U | $c = \sum_{i} C_{i} U_{i}$ | J_{2i} 2 | 11.4% | 11.3% | 236 | | unc | Expanded
certainty(P=95%) | amorak
Anborak | U | J = k U | ,k= | 2 | 22.8% | 22.6% | Sg. Brig. | # Appendix A. EUT Photos and Test Setup Photos Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 48 of 97 # Appendix B. Plots of SAR System Check 2450MHz Body System Check Date:07/08/2022 DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.88 S/m; ϵ_r = 52.28; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: EX3DV4 – SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Configuration/Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.6 W/kg Configuration/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.387 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 12.85 W/kg; SAR(10 g) = 5.87W/kg Maximum value of SAR (measured) = 20.1 W/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 49 of 97 **5200MHz Body System Check** Date:07/08/2022 DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160 Communication System: UID 0, CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.37 S/m; ϵ_r = 48.73; ρ = 1000 kg/m³ Phantom section: Flat Section ### **DASY5** Configuration: Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2022; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.2 W/kg Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.761 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 33.9 W/kg **SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.26 W/kg**Maximum value of SAR (measured) = 20.7 W/kg Report No.:
18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 50 of 97 Date:07/11/2022 #### 5800MHz Body System Check DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160 Communication System: UID 0, CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5800 MHz; σ = 5.86 S/m; ϵ_r = 49.12; ρ = 1000 kg/m³ Phantom section: Flat Section #### DASY5 Configuration: Probe: EX3DV4 – SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2022; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Configuration/Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.7 W/kg Configuration/Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.113 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.8 W/kg **SAR(1 g) = 7.83 W/kg; SAR(10 g) = 2.16 W/kg**Maximum value of SAR (measured) = 19.6 W/kg # Appendix C. Plots of SAR Test Data **#1** Date: 07/08/2022 ### 2.4G WIFI 802.11g CH6 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.88$ S/m; $\varepsilon_r = 52.28$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2022; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x281x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 3.435V/m; Power Drift = 0.07 dB Fast SAR: SAR(1 g) = 0.431 W/kg; SAR(10 g) = 0.203 W/kg Maximum value of SAR (interpolated) = 1.336 W/kg BODY BACK /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.445 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.342 W/kg SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.211 W/kg Maximum value of SAR (measured) = 1.339 W/kg > -2.53 -5.06 -7.59 -10.12 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 52 of 97 #2 Date: 07/08/2022 ## 2.4G WIFI_802.11g_CH6 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.88$ S/m; $\epsilon_r = 52.28$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7396; ConvF(7.53, 7.53, 7.53); Calibrated: May 06, 2022; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x281x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 2.899 V/m; Power Drift = -0.07 dB Fast SAR: SAR(1 g) = 0.417 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (interpolated) = 0.993 W/kg BODY BACK /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.942 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.024 W/kg SAR(1 g) = 0.423 W/kg; SAR(10 g) = 0.194 W/kg Maximum value of SAR (measured) = 1.017 W/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 53 of 97 #3 Date: 07/08/2022 ## WIFI 5.2G 802.11A CH40 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 5200 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5200 MHz; $\sigma = 5.37$ S/m; $\varepsilon_r = 48.73$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2022; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x201x1): Measurement grid: dx=1.000mm, dy=1.000mm Reference Value = 4.799 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 0.458 W/kg; SAR(10 g) = 0.215 W/kg Maximum value of SAR (interpolated) = 1.538 W/kg BODY BACK /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 4.842 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.582 W/kg **SAR(1 g) = 0.479W/kg; SAR(10 g) = 0.236W/kg** Maximum value of SAR (measured) = 1.543 W/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 54 of 97 #4 Date: 07/08/2022 #### WIFI 5.2G 802.11A CH40 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 5200MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5200 MHz; $\sigma = 5.37 \text{ S/m}$; $\epsilon r = 48.73$; $\rho = 1000 \text{ kg/m}$ 3 Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 – SN7396; ConvF(4.93, 4.93, 4.93); Calibrated: May 06, 2022; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x201x1): Measurement grid: dx=1.000mm, dy=1.000mm Reference Value = 3.892 V/m; Power Drift = -0.11 dB Fast SAR: SAR(1 g) = 0.413 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (interpolated) = 1.244 W/kg BODY BACK /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.947 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.582 W/kg SAR(1 g) = 0.427W/kg; SAR(10 g) = 0.206W/kg Maximum value of SAR (measured) = 1.341 W/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 55 of 97 **#5** Date: 07/11/2022 ## WIFI 5.8G_802.11N(HT40)_CH151 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 5755 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5755 MHz; $\sigma = 5.86$ S/m; $\epsilon r = 49.12$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 – SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2022; • Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x201x1): Measurement grid: dx=1.000mm, dy=1.000mm Reference Value = 3.275 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 0.405 W/kg; SAR(10 g) = 0.177 W/kg Maximum value of SAR (measured) = 1.013 W/kg BODY BACK /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.384 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 1.017 W/kg SAR(1 g) = 0.414 W/kg; SAR(10 g) = 0.183 W/kg Maximum value of SAR (measured) = 1.015 W/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 56 of 97 Date: 07/11/2022 ## WIFI 5.8G_802.11AC(HT80)_CH155 BODY BACK Communication System: UID 0, wifi (fcc) (0); Frequency: 5755 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5755 MHz; $\sigma = 5.86$ S/m; $\epsilon r = 49.12$; $\rho = 1000$ kg/m³ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7396; ConvF(4.52, 4.52, 4.52); Calibrated: May 06, 2022; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn387; Calibrated: Sep. 06, 2021 Phantom: SAM; Type: QD000P40CD; Serial: TP:1670 Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) BODY BACK /Area Scan (101x201x1): Measurement grid: dx=1.000mm, dy=1.000mm Reference Value = 3.763V/m; Power Drift = 0.05 dB Fast SAR: SAR(1 g) = 0.445 W/kg; SAR(10 g) = 0.214 W/kg Maximum value of SAR (measured) =1.178 W/kg BODY BACK /Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.777 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.198 W/kg SAR(1 g) = 0.451 W/kg; SAR(10 g) = 0.227 W/kg Maximum value of SAR (measured) = 1.178 W/kg # Appendix D. DASY System Calibration Certificate Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Anbotek (Auden) Certificate No: Z21-98671 ## CALIBRATION CERTIFICATE Object EX3DV4 - SN:7396 Calibration Procedure(s) FF-Z12-006-08 Calibration Procedures for Dosimetric E-field Probes Calibration date: May 06, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 20-Jun-21 (CTTL, No.J21X07447) | Jun-21 | | Power sensor NRP-Z91 | 101547 | 20-Jun-21 (CTTL, No.J21X07447) | Jun-21 | | Power sensor NRP-Z91 | 101548 | 20-Jun-21 (CTTL, No.J21X07447) | Jun-21 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-22(CTTL,No.J22X01547) | Mar-22 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-22(CTTL, No.J22X01548) | Mar-22 | | Reference Probe EX3DV4 | SN 7433 | 26-Sep-21 (SPEAG,No.EX3-7433_Sep21) | Sep-21 | | DAE4 | SN 549 | 13-Dec-21 (SPEAG, No.DAE4-549_Dec21) | Dec -21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-21 (CTTL, No.J21X04776) | Jun-21 | | Network
Analyzer E5071C | MY46110673 | 13-Jan-22 (CTTL, No.J22X00285) | Jan -22 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | ENE) | | Reviewed by: | Lin Hao | SAR Test Engineer | 林杨 | | Approved by: | Qi Dianyuan | SAR Project Leader | 252 | | | | | | Issued: May06 , 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-98671 Page 1 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: =86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cul@chinattl.com Http://www.chinattl.com Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: Z21-98671 Page 2 of 11 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 60 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Probe EX3DV4 SN: 7396 Calibrated: May 06, 2022 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z21-98671 Page 3 of 11 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 61 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.54 | 0.53 | 0.50 | ±10.0% | | DCP(mV) ^B | 97.8 | 104.5 | 102.5 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 | cw | X | 0.0 | 0.0 | 1.0 | 0.00 | 199.9 | ±2.4% | | | | Y | 0.0 | 0.0 | 1.0 | | 203.3 | 7 | | | | Z | 0.0 | 0.0 | 1.0 | | 195.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. Certificate No: Z21-98671 Page 4 of 11 ^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6). ^E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 ## Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.82 | 9.82 | 9.82 | 0.30 | 0.85 | ±12.1% | | 835 | 41.5 | 0.90 | 9.71 | 9.71 | 9.71 | 0.15 | 1.36 | ±12.1% | | 900 | 41.5 | 0.97 | 9.87 | 9.87 | 9.87 | 0.16 | 1.37 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.61 | 8.61 | 8.61 | 0.25 | 1.04 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.13 | 8.13 | 8.13 | 0.24 | 1.01 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.14 | 8.14 | 8.14 | 0.24 | 1.04 | ±12.1% | | 2300 | 39.5 | 1.67 | 7.85 | 7.85 | 7.85 | 0.40 | 0.75 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.57 | 7.57 | 7.57 | 0.50 | 0.75 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.64 | 0.68 | ±12.1% | | 5250 | 35.9 | 4.71 | 5.33 | 5.33 | 5.33 | 0.45 | 1.30 | ±13.3% | | 5600 | 35.5 | 5.07 | 4.89 | 4.89 | 4.89 | 0.45 | 1.35 | ±13.3% | | 5750 | 35.4 | 5.22 | 4.92 | 4.92 | 4.92 | 0.45 | 1.45 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z21-98671 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 63 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: ettl@chinattl.com Http://www.chinattl.cn ## DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 #### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.09 | 10.09 | 10.09 | 0.30 | 0.90 | ±12.1% | | 835 | 55.2 | 0.97 | 9.88 | 9.88 | 9.88 | 0.19 | 1.32 | ±12.1% | | 900 | 55.0 | 1.05 | 9.82 | 9.82 | 9.82 | 0.23 | 1.15 | ±12.1% | | 1750 | 53.4 | 1.49 | 8.24 | 8.24 | 8.24 | 0.24 | 1.06 | ±12.1% | | 1900 | 53.3 | 1.52 | 7.97 | 7.97 | 7.97 | 0.19 | 1.24 | ±12.1% | | 2100 | 53.2 | 1.62 | 8.18 | 8.18 | 8.18 | 0.19 | 1.39 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.88 | 7.88 | 7.88 | 0.55 | 0.80 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.53 | 7.53 | 7.53 | 0.46 | 0.89 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.38 | 7.38 | 7.38 | 0.52 | 0.80 |
±12.1% | | 5250 | 48.9 | 5.36 | 4.93 | 4.93 | 4.93 | 0.45 | 1.80 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.19 | 4.19 | 4.19 | 0.48 | 1.90 | ±13.3% | | 5750 | 48.3 | 5.94 | 4.52 | 4.52 | 4.52 | 0.48 | 1.95 | ±13.3% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z21-98671 Page 6 of 11 FAt frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 64 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No: Z21-98671 Page 7 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Receiving Pattern (Φ), θ=0° # f=600 MHz, TEM # f=1800 MHz, R22 Certificate No: Z21-98671 Page 8 of 11 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Hup://www.chinattl.cn # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) 10 Input Signal[µV] 104 103 102 10-2 10 10° 10² 103 SAR[mW/cm3] not compensated compensated Error[dB] 10-2 SAR[mW/cm not compensated Uncertainty of Linearity Assessment: ±0.9% (k=2) Certificate No: Z21-98671 Page 9 of 11 #### Shenzhen Anbotek Compliance Laboratory Limited Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 67 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **Conversion Factor Assessment** #### f=900 MHz, WGLS R9(H_convF) ### f=1750 MHz, WGLS R22(H_convF) # **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) Certificate No: Z21-98671 Page 10 of 11 Fax: (86) 755-26014772 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7396 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 156.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z21-98671 Page 11 of 11 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 69 of 97 Schmid & Partner Engineering AG s p e a g Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com #### IMPORTANT NOTICE #### **USAGE OF THE DAE 4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. E-Stop Failures: Touch detection may be maifunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering TN_BR040315AD DAE4.doc 11.12.2009 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 70 of 97 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Anbotek (Auden) Certificate No: DAE4-387_Sep10 Accreditation No.: SCS 0108 #### CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BM - SN: 387 Calibration procedure(s) QA CAL-06.v29 Calibration procedure for the data acquisition electronics (DAE) Calibration date: September 06, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 15-Aug-20 (No:21092) | Aug-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 05-Jan-21 (in house check) | In house check: Jan-22 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 05-Jan-21 (in house check) | In house check: Jan-22 | | | | | | Name Function Signature Calibrated by: Dominique Steffen Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: September 06, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-387_Sep10 Page 1 of 5 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 71 of 97 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage
is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-387_Sep10 Page 2 of 5 ### DC Voltage Measurement A/D - Converter Resolution nominal | Calibration Factors | x | Y | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.489 ± 0.02% (k=2) | 404.852 ± 0.02% (k=2) | 404.862 ± 0.02% (k=2) | | Low Range | 3.97827 ± 1.50% (k=2) | 3.95875 ± 1.50% (k=2) | 3.97982 ± 1.50% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 53.0 ° ± 1 ° | |---|--------------| |---|--------------| Certificate No: DAE4-387_Sep10 Page 3 of 5 # Appendix (Additional assessments outside the scope of SCS0108) ## 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200032.85 | -3.31 | -0.00 | | Channel X + Input | 20007.64 | 1.88 | 0.01 | | Channel X - Input | -20003.48 | 1.18 | -0.01 | | Channel Y + Input | 200034.23 | -1.43 | -0.00 | | Channel Y + Input | 20006.60 | 0.91 | 0.00 | | Channel Y - Input | -20004.04 | 0.72 | -0.00 | | Channel Z + Input | 200035.38 | -0.83 | -0.00 | | Channel Z + Input | 20003.69 | -2.11 | -0.01 | | Channel Z - Input | -20006.38 | -1.59 | 0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2001.63 | 0.08 | 0.00 | | Channel X + Input | 202.29 | 0.70 | 0.35 | | Channel X - Input | -197.90 | 0.60 | -0.30 | | Channel Y + Input | 2001.33 | -0.07 | -0.00 | | Channel Y + Input | 200.86 | -0.60 | -0.30 | | Channel Y - Input | -199.87 | -1.23 | 0.62 | | Channel Z + Input | 2001.61 | 0.27 | 0.01 | | Channel Z + Input | 200.60 | -0.70 | -0.35 | | Channel Z - Input | -199.51 | -0.85 | 0.43 | # 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 13.50 | 11.56 | | | - 200 | -8.64 | -11.18 | | Channel Y | 200 | -0.81 | -1.28 | | | - 200 | 1.05 | 0.09 | | Channel Z | 200 | 7.17 | 6.91 | | | - 200 | -9.46 | -9.01 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -1.70 | 0.33 | | Channel Y | 200 | 10.70 | - | -0.38 | | Channel Z | 200 | 7.11 | 7.89 | - | Certificate No: DAE4-387_Sep10 Page 4 of 5 # AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15969 | 17466 | | Channel Y | 15661 | 16162 | | Channel Z | 15990 | 16190 | ## 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.73 | -2.58 | 3.29 | 0.62 | | Channel Y | 0.41 | -0.49 | 1.23 | 0.40 | | Channel Z | -0.80 | -1.88 | 0.30 | 0.42 | # 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Certificate No: DAE4-387_Sep10 Page 5 of 5 In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client Anbotek (Auden) Certificate No: Z21-97091 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 910 Calibration Procedure(s) FD-Z21-2-003-01 Calibration Procedures for dipole validation kits Calibration date: Jun 15, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | 01-Jul-20 (CTTL, No.J20X04256)
01-Jul-20 (CTTL, No.J20X04256)
19-Feb-21(SPEAG,No.EX3-7307_Feb21)
02-Feb-21(CTTL-SPEAG,No.Z21-97011) | Jun-21
Jun-21
Feb-22
Feb-22 | |--|---| | 19-Feb-21(SPEAG,No.EX3-7307_Feb21) | Feb-22 | | | | | 02-Feb-21/CTTL-SPEAG No. 721-97011) | Eab. 22 | | 02-1 CD-21(0112-01 E/10,110,221-01011) | 160-22 | | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 0 01-Feb-21 (CTTL, No.J18X00893) | Jan-22 | | 3 26 Jan 21 (CTT) No. (18Y00894) | Jan-22 | | | 00 01-Feb-21 (CTTL, No.J18X00893)
3 26-Jan-21 (CTTL, No.J18X00894) | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 20 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | wor | | Approved by: | Lu Bingsong | Deputy Director of the laboratory | - In with | | | | | | Issued: Jun 17, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-97091 Page 1 of 8 In Collaboration with S P e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-97091 Page 2 of 8 In Collaboration with S P E A G
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.en #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.77 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 244 | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.4 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.06 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 mW /g ± 20.4 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.97 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.8 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.18 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.7 mW /g ± 20.4 % (k=2) | Certificate No: Z21-97091 Page 3 of 8 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 78 of 97 In Collaboration with S P e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### Appendix # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.6Ω+ 2.77jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.8dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.7Ω+ 4.28jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 27.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.263 ns | |----------------------------------|-----------| | Electrical Delay (one direction) | 11200 110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | P | | | |-----------------|-------|--| | Manufactured by | SPEAG | | Certificate No: Z21-97091 Page 4 of 8 In Collaboration with S P E A G Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.767$ S/m; $\epsilon = 39.01$; $\rho = 1000$ kg/m3 Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7307; ConvF(7.36, 7.36, 7.36); Calibrated: 2/19/2021; Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn771; Calibrated: 2021-02-02 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 06.15.2021 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.5 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg Certificate No: Z21-97091 Page 5 of 8 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 80 of 97 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.972 S/m; ε_r = 52.92; ρ = 1000 kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7307; ConvF(7.22, 7.22, 7.22); Calibrated: 2/19/2021; - · Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2021-02-02 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Date: 06.15.2021 Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 19.3 W/kg = 12.86 dBW/kg Certificate No: Z21-97091 Page 7 of 8 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 83 of 97 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Anbotek (Auden) Certificate No: D5GHzV2-1160_Oct11 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1160 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: October 02, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Ca | |-----------------------------|--------------------|--------------------------------|--------------| | Power meter EPM-442A | GB37480704 | 07-Oct-17 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | US37292783 | 07-Oct-20 (No. 217-02020) | Oct-15 | | Power sensor HP 8481A | MY41092317 | 07-Oct-20 (No. 217-02021) | Oct-15 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-21 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-21 (Np. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-21 (No. DAE4-601_Aug15) | Aug-16 | | | | | | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | |---------------------------|------------------|-----------------------------------|------------------------| | RF generator R&S SMT-06 | 100972 | 18-Jun-21 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 15-Oct-20 (in house check Oct-14) | In house check: Oct-15 | Calibrated by: Lelf Klysner Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 6, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: D5GHzV2-1160_Oct11 Page 1 of 15 Function Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 84 of 97 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue
simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1160 Oct11 age 2 of 15 #### **Measurement Conditions** DASY system configuration, as far as not given on page | DASY Version | DASY5 | V52.8.8 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | #### Head TSL parameters at 5200 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.4 ± 6.% | 4.57 mha/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAH measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ² (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1160_Oct11 age 3 of 15 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 86 of 97 ## Head TSL parameters at 5300 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.2 ± 6 % | 4.68 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | - | #### SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.7 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.7 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | nee. | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 87.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1160_Oct11 age 4 of 15 #### Head TSL parameters at 5800 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5,27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 5.26 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 3444 | Anto- | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.20 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1160_Oct11 Page 5 of 15 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 88 of 97 ## Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.9 ± 6 % | 5.35 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.81 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.7 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22,0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.7 ± 6 % | 5.49 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ² (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.88 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1160_Oct11 Page 6 of 15 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 89 of 97 #### Body TSL parameters at 5600 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.7 ± 6 % | 5.99 mho/m ± 6 % | | Body TSL temperature change during
test | < 0.5 °C | | **** | #### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 81.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 6,27 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.88 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.8 W/kg ± 19.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.1 Ω - 8.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.0 dB | # Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 50.2 Ω + 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 54.8 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 53.0 Ω - 3.0 μΩ | |--------------------------------------|-----------------| | Return Loss | - 27.7 dB | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 91 of 97 #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 48.6 Ω - 6.8 JΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | #### Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 49.0 Ω - 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | -27.1 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.2 ω - 0.7 μΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | #### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 55.9 Ω - 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.8 dB | #### General Antenna Parameters and Design | Ciecurical Delay (tine direction) | Electrical Delay (one direction) | 1,199 ns | |-----------------------------------|----------------------------------|----------| |-----------------------------------|----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | 1 | Manufactured by | SPEAG | |-----|-----------------|---------------| | - 1 | Manufactured on | June 06, 2013 | Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 92 of 97 #### DASY5 Validation Report for Head TSL Date: 24.09.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.57$ S/m; $\epsilon_r = 36.4$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5300 MHz; $\sigma = 4.68$ S/m; $\epsilon_r = 36.2$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5600 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.26$ S/m; $\epsilon_r = 35.3$; $\rho = 1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration; - Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51); Calibrated: 30.12.2021, ConvF(5.21, 5.21, 5.21); Calibrated: 30.12.2021, ConvF(4.92, 4.92, 4.92); Calibrated: 30.12.2021, ConvF(4.9, 4.9, 4.9); Calibrated: 30.12.2021, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 17.08.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.41 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 18.7 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.31 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.26 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 19.4 W/kg Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.34 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.47 W/kgMaximum value of SAR (measured) = 21.0 W/kg Certificate No: D5GHzV2-1160_Oct11 Page 10 of 15 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 93 of 97 Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.41 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 20.5 W/kg 0 dB = 18.7 W/kg = 12.72 dBW/kg Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 95 of 97 #### **DASY5 Validation Report for Body TSL** Date: 05.10.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1160 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.35$ S/m; $\epsilon_r = 47.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.27$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.95, 4.95, 4.95); Calibrated: 30,12,2021, ConvF(4.78, 4.78, 4.78); Calibrated: 30,12,2021; ConvF(4.35, 4.35, 4.35); Calibrated: 30,12,2021, ConvF(4.32, 4.32, 4.32); Calibrated: 30,12,2021; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 17.08.2021 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.2 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.22 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 18.8 W/kg Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.36 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 36.6 W/kg SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 20.2 W/kg Certificate No: D5GHzV2-1160_Oct11 Page 13 of 15 Report No.: 18220WC20143505 FCC ID: 2A37Q-EM-I17J Page 96 of 97 Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.22 V/m; Power Drift = -0.03 dB Peak SAR
(extrapolated) = 37.1 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.2 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 18.2 W/kg = 12.60 dBW/kg Certificate No: D5GHzV2-1160_Oct11 Dane 14 of t # *****END OF REPORT****