

TEST REPORT Product Portable monitor Trade mark Catsights ÷ Model/Type reference See section 4.2 N/A Serial Number **Report Number** FCC ID 2BMQY2024 Date of Issue Mar. 10, 2025 Test Standards **Test result** PASS Prepared for: **Catsights Technology Co., Limited** RM 1209, 12/F INTER-CONTINENTAL PLAZA 94 GRANVILLE RD TSIM SHA TSUI HONGKONG Prepared by: lan. even Compiled by Reviewed by: Keven Tan

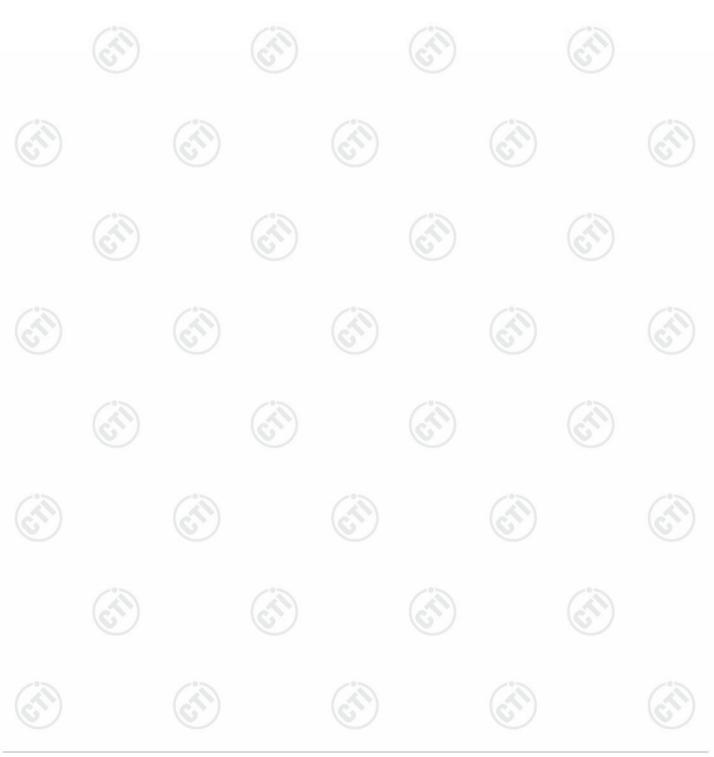
- EED32Q82016801
- 47 CFR Part 15 Subpart C

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District,

Shenzhen, Guangdong, China TEL: +86-755-3368 3668

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 2 of 53


1 Content			
1 CONTENT	~ ~	<	
2 VERSION			3
3 TEST SUMMARY			
4 GENERAL INFORMATION			
4 GENERAL INFORMATION			5
4.1 CLIENT INFORMATION			
4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION			
4.4 TEST ENVIRONMENT			
4.5 DESCRIPTION OF SUPPORT UNITS			7
4.6 TEST LOCATION			
4.7 MEASUREMENT UNCERTAINTY (95			
5 EQUIPMENT LIST			
6 TEST RESULTS AND MEASUREM	ENT DATA		
6.1 ANTENNA REQUIREMENT	<u> </u>	<u> </u>	
6.2 CONDUCTED EMISSIONS			
6.3 MAXIMUM CONDUCTED OUTPUT P			
6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DEN			
6.6 BAND EDGE MEASUREMENTS AND			· · · · · · · · · · · · · · · · · · ·
6.7 RADIATED SPURIOUS EMISSION &	RESTRICTED BANDS		
7 APPENDIX BLUETOOTH LE			
8 PHOTOGRAPHS OF TEST SETUP			
9 PHOTOGRAPHS OF EUT CONSTR			

2 Version

	Version No.	Date	1	Description	
	00	Mar. 10, 2025		Original	
-	2	2	10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	100
	(59)	(c_{2})	(5)	(5)

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

+ Summary

Page 4 of 53

3 Test Summary			
Test Item	Test Requirement	Result	
Antenna Requirement	enna Requirement 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)		
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Model No.: CJ01133a, CJ01133b, CJ01133c, CJ01133d, CJ01133d, CJ01133e, CJ01133f, CJ01133g, CJ01133h, CJ01133J

Only the model CJ01133 was tested. They have same electrical, PCB and layout, only the model name and monitor size are different for marketing requirements.

Model name	Colour
CJ01133	Dark grey
CJ01133a	Grey
CJ01133b	Blue
CJ01133c	Green
CJ01133d	Red
CJ01133e	White
CJ01133f	Black
CJ01133g	Gold
CJ01133h	Purple
CJ01133j	Aurora colour

4 General Information

4.1 Client Information

Applicant:	Catsights Technology Co., Limited
Address of Applicant:	RM 1209, 12/F INTER-CONTINENTAL PLAZA 94 GRANVILLE RD TSIM SHA TSUI HONGKONG
Manufacturer:	Catsights Technology Co., Limited
Address of Manufacturer:	RM 1209, 12/F INTER-CONTINENTAL PLAZA 94 GRANVILLE RD TSIM SHA TSUI HONGKONG
Factory:	Huizhen Miqi Technology Service Co., Ltd
Address of Factory:	5th Floor, Building 1, No. 39 Guangtai Road, Huinan High-Tech Industrial Park, Zhongkai High-Tech Zone, Huizhou City

4.2 General Description of EUT

Portable monitor
CJ01133a, CJ01133b, CJ01133c, CJ01133d, CJ01133d, CJ01133e, CJ01133f, CJ01133g, CJ01133h, CJ01133J
CJ01133
Catsights
□ Mobile
2402MHz~2480MHz
GFSK
⊠ 1Mbps ⊠ 2Mbps
40
PIFA Antenna
1.59dBi
USB port: DC 5V
DC 5V
Dec. 10, 2024
Dec. 10, 2024 to Dec. 24, 2024

Page 5 of 53

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	e Settings:					
Test Software:	FCC.exe	e 🛃	5)	(25)		
EUT Power Grade:		Default (Power level is built-in set parameters and cannot selected)				
Use test software to transmitting of the I		ncy, the middle frequer	ncy and the highest f	requency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
Mode c	GFSK	1Mbps	CH39	2480		
Mode d	GFSK	2Mbps	СНО	2402		
Mode e	GFSK	2Mbps	CH19	2440		
Mode f	GFSK	2Mbps	CH39	2480		

Page 7 of 53

4.4 Test Environment

	Operating Environment	t:					
60	Radiated Spurious Emi	ssions:					
19	Temperature:	22~25.0 °C	(1)		(2)		(2)
2	Humidity:	50~55 % RH	S		C		C
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C					
	Humidity:	50~55 % RH		(\mathcal{O})		(\mathcal{O})	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
100	Temperature:	22~25.0 °C					1
(\mathbf{x})	Humidity:	50~55 % RH	<u>6</u> ~)		(c^{γ})		(c^{γ})
	Atmospheric Pressure:	1010mbar	J		U		U

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

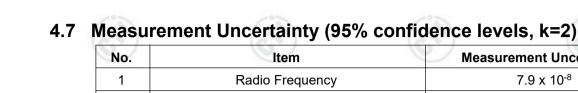
1)	sup	oort	equi	pment
1/	Sup	JUIL	cyui	princine

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

4.6

4.6 Test Location

All tests were performed at:

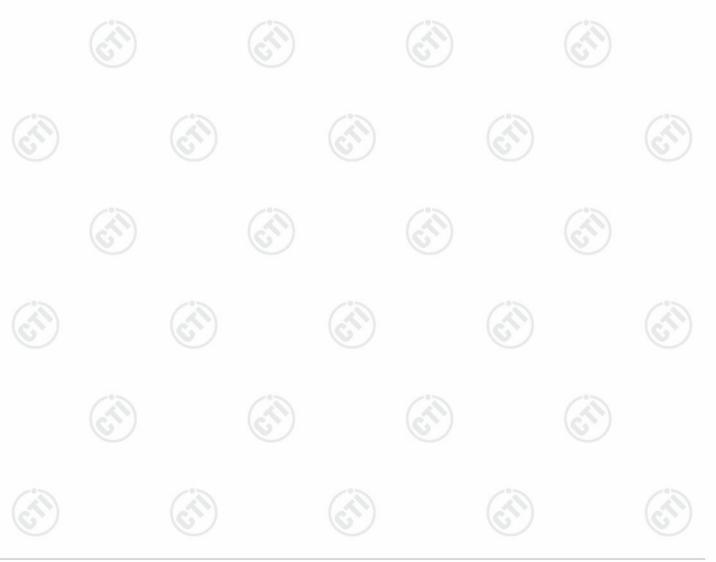

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

CTI华测检测


Report No. : EED32Q82016801

-	······································			
2	DE nower, conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)		
		3.3dB (9kHz-30MHz)		
3	Dedicted Sourieus omission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
(P)		3.4dB (18GHz-40GHz)		
\mathbf{S}	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Page 8 of 53

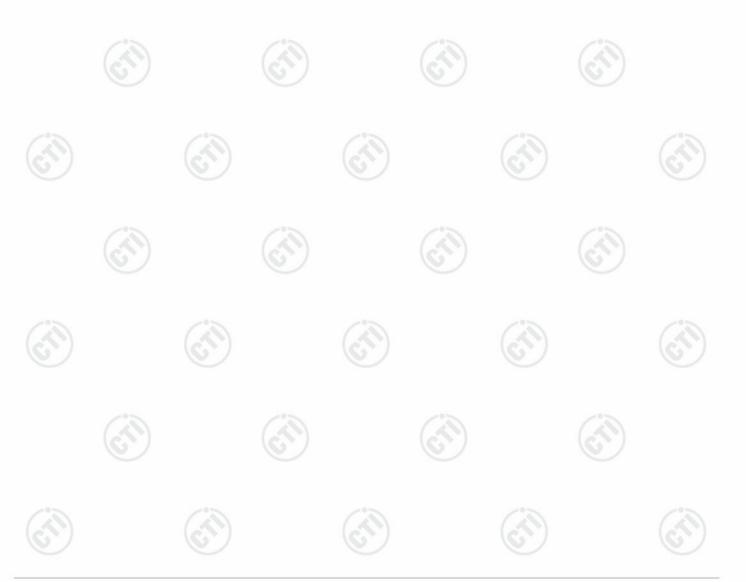
Measurement Uncertainty

7.9 x 10⁻⁸

Equipment List 5

		RF test	system			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-04-2025	
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025	
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025	
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-2025	
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025	
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20	-	_	
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Hotline:400-6788-333


Page 9 of 53

Page 10 of 53

Conducted disturbance Test									
Equipment	Equipment Manufacturer		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)				
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025				
Temperature/ Humidity Indicator	Defu	TH128	1	04-25-2024	04-24-2025				
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025				
Barometer	changchun	DYM3	1188	(S)				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1						
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025				
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025				

3N	I Semi-anechoic	Chamber (2)- Rad	diated distur	bance Test	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	S)	0
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Page 12 of 53

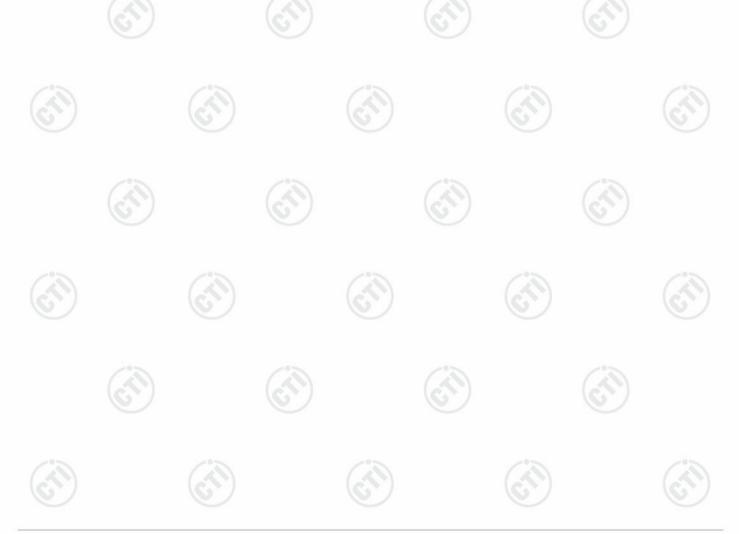
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u>(1)</u> -	-61
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

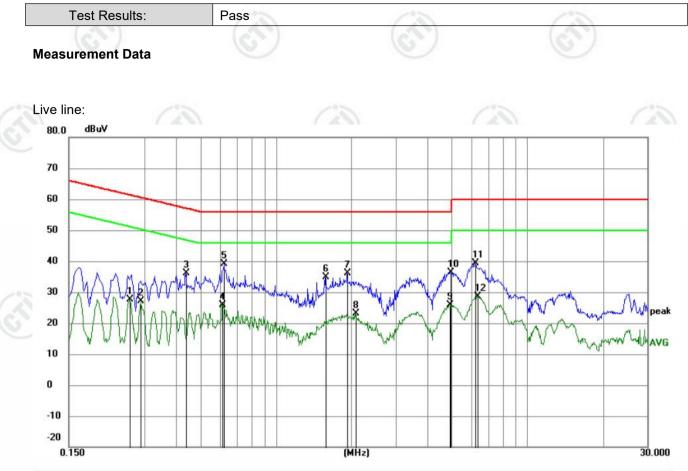
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos					
The antenna is PIEA antenna. The best case gain of the antenna is 1 50dBi						

The antenna is PIFA antenna. The best case gain of the antenna is 1.59dBi.

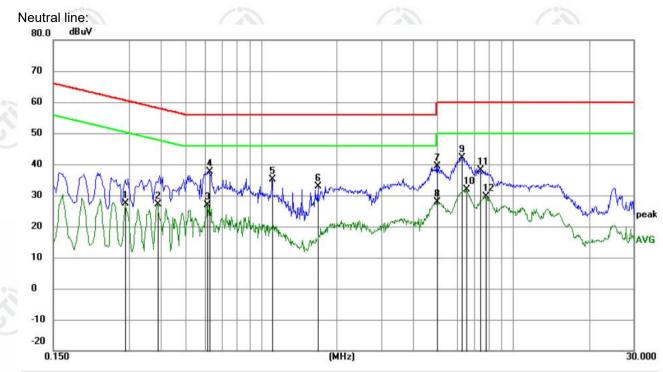
Page 14 of 53



(A)

Page 15 of 53

Report No. : EED32Q82016801

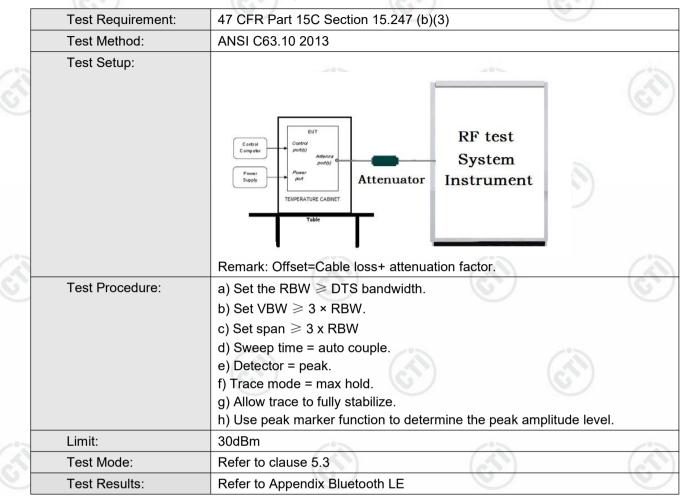

3	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
6			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.2625	17.58	10.16	27.74	51.35	-23.61	AVG	
60	2		0.2894	17.02	10.14	27.16	50.54	-23.38	AVG	
87	3		0.4380	26.16	10.09	36.25	57.10	-20.85	QP	
-	4		0.6133	15.73	10.10	25.83	46.00	-20.17	AVG	
<u>1</u>	5	*	0.6223	29.12	10.11	39.23	56.00	-16.77	QP	
10	6		1.5719	24.83	10.17	35.00	56.00	-21.00	QP	
87	7		1.9184	25.88	10.17	36.05	56.00	-19.95	QP	
3	8		2.0714	12.94	10.17	23.11	46.00	-22.89	AVG	
<u>.</u>	9		4.9154	15.88	10.06	25.94	46.00	-20.06	AVG	
-	10		4.9470	26.20	10.06	36.26	56.00	-19.74	QP	
-	11		6.2160	29.23	10.04	39.27	60.00	-20.73	QP	
-	12		6.3239	18.48	10.04	28.52	50.00	-21.48	AVG	
1										

Remark:

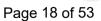
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2894	17.25	10.14	27.39	50.54	- <mark>23.15</mark>	AVG	
2	0.3885	17.13	10.09	27.22	48.10	-20.88	AVG	
3	0.6133	16.76	10.10	26.86	46.00	-19.14	AVG	
4	0.6269	27.57	10.11	37.68	56.00	-18.32	QP	
5	1.1084	25.02	10.18	35.20	56.00	-20.80	QP	
6	1.6889	22.78	10.17	32.95	56.00	-23.05	QP	
7 *	4.9965	29.22	10.06	39.28	56.00	-16.72	QP	
8	4.9965	17.74	10.06	27.80	46.00	-18.20	AVG	
9	6.2609	32.18	10.04	42.22	60.00	-17.78	QP	
10	6.5175	21.93	10.04	31.97	50.00	- <mark>18.0</mark> 3	AVG	
11	7.4130	28.20	10.02	38.22	60.00	-21.78	QP	
12	7.8090	19.70	10.01	29.71	50.00	-20.29	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.




Page 17 of 53

6.3 Maximum Conducted Output Power

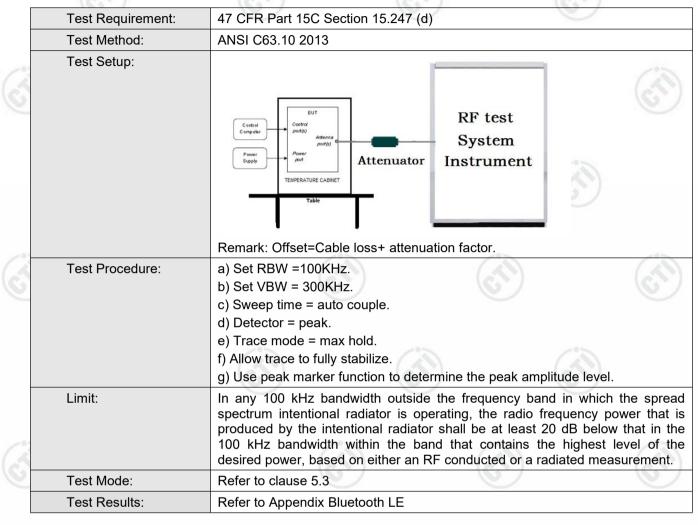
6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10 2013	
Test Setup:		
	Control Computer Porter Porter Porter	RF test System strument
Test Procedure:	Remark: Offset=Cable loss+ attenuation a) Set RBW = 100 kHz.	factor.
	 b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the of frequencies associated with the two oute lower frequencies) that are attenuated by measured in the fundamental emission. 	ermost amplitude points (upper and
Limit:	≥ 500 kHz	(A) (A)
Test Mode:	Refer to clause 5.3	
Test Results:	Refer to Appendix Bluetooth LE	

Page 19 of 53

6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)							
	Test Method:	ANSI C63.10 2013							
3	Test Setup:								
		Control Convolution Convolutio							
6	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set analyzer center frequency to DTS channel center frequency.							
		 b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less 							
	Limit:	than 3 kHz) and repeat. ≤8.00dBm/3kHz							
	Test Mode:	Refer to clause 5.3							
	Test Results:	Refer to Appendix Bluetooth LE							

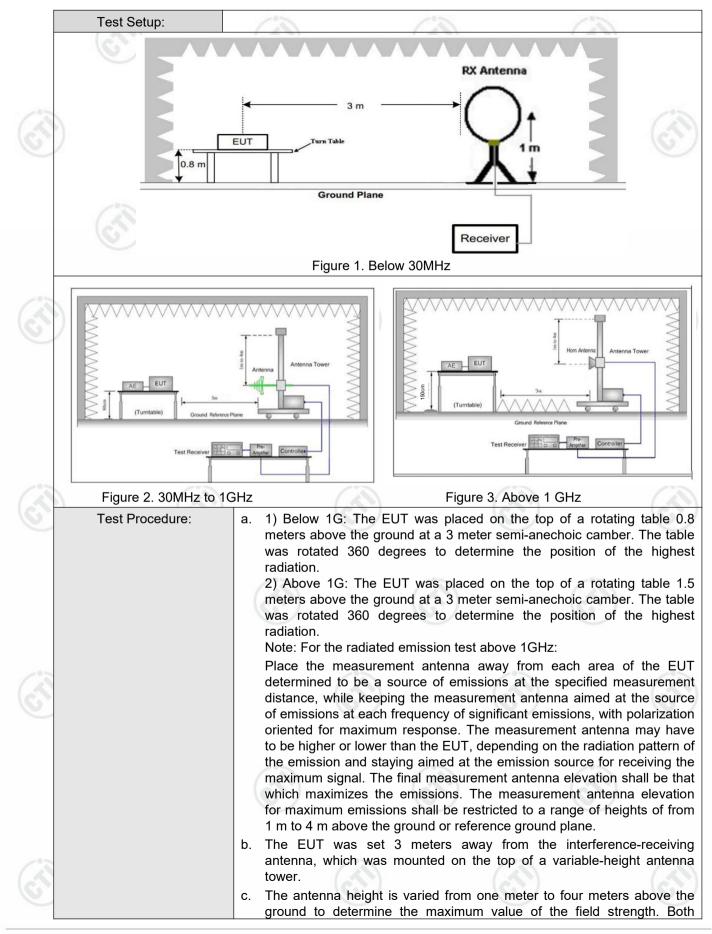


Page 20 of 53

6.6 Band Edge measurements and Conducted Spurious Emission

Page 21 of 53

6.7 Radiated Spurious Emission & Restricted bands

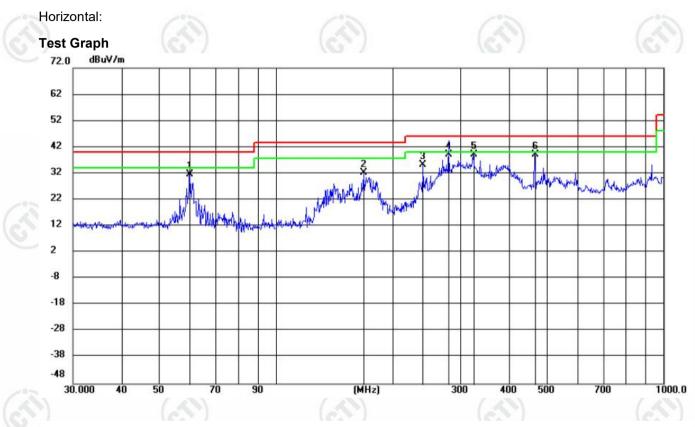

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	/			
	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	0	Detector	RBW	1	VBW	Remark			
S.		0.009MHz-0.090MH	z	Peak	10kHz	2	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak			
23		Above 1GHz		Peak	1MHz		3MHz	Peak			
5				Peak	1MHz)	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measureme distance (m			
		0.009MHz-0.490MHz	2400/F(kHz)		-			300			
		0.490MHz-1.705MHz	24	4000/F(kHz)	-			30			
		1.705MHz-30MHz		30	-			30			
		30MHz-88MHz	100		40.0	Quasi-peak		3			
		88MHz-216MHz		150	43.5	Q	uasi-peak	3			
		216MHz-960MHz	9	200	46.0	Q	uasi-peak	3			
2		960MHz-1GHz	1	500	54.0	Q	uasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	B above the oment under t	maximum est. This p	per	mitted ave	erage emissior			

Page 22 of 53

CTI华测检测

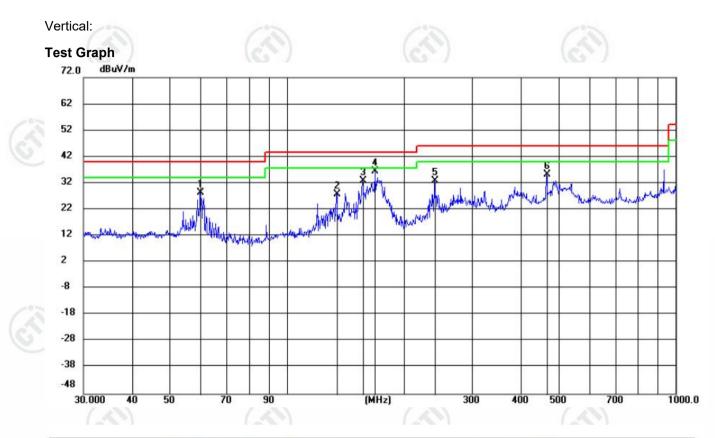
Report No. : EED32Q82016801

Т	est Results:	Pass
Т	est Mode:	Refer to clause 5.3
ŝ		 g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
	1	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.


Page 23 of 53

Page 24 of 53

Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		60.0270	18.78	12.94	31.72	40.00	-8.28	QP	200	352	
2		168.7684	21.03	11.09	32.12	43.50	<mark>-11.38</mark>	QP	200	109	
3		239.9873	21.39	13.89	35.28	46.00	-10.72	QP	100	226	
4	*	279.9747	23.81	15.39	39.20	46.00	-6.80	QP	100	174	
5		324.0013	22.60	16.60	39.20	46.00	-6.80	QP	100	7	
6		466.6618	19.82	19.24	39.06	46.00	-6.94	QP	100	7	

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
2	1		60.0165	15.43	12.95	28.38	40.00	<mark>-11.6</mark> 2	QP	200	291	
	2		134.9845	18.33	9.52	27.85	43.50	-15.65	QP	100	141	
-	3		156.7873	23.12	9.68	32.80	43.50	-10.70	QP	100	330	
-	4	*	168.7685	25.25	11.09	36.34	43.50	-7.16	QP	100	330	
-	5		239.9874	18.85	13.89	32.74	46.00	-13.26	QP	100	352	
	6		467.0711	16.01	19.25	35.26	46.00	-10.74	QP	100	309	
-		17	1		~	1		~	1		· · · · · · · · · · · · · · · · · · ·	× /

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

3	Mode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1164.5443	9.93	36.90	46.83	74.00	27.17	Pass	Н	PK
	2	1725.3817	12.99	36.98	49.97	74.00	24.03	Pass	Н	PK
	3	3701.0467	-12.49	53.75	41.26	74.00	32.74	Pass	Н	PK
	4	5416.1611	-8.55	48.38	39.83	74.00	34.17	Pass	Н	PK
	5	7847.3232	-2.68	46.03	43.35	74.00	30.65	Pass	Н	PK
	6	10297.4865	3.82	43.88	47.70	74.00	26.30	Pass	Н	PK
3	7	1154.9437	10.24	37.61	47.85	74.00	26.15	Pass	V	PK
	8	1687.6458	12.70	37.68	50.38	74.00	23.62	Pass	V	PK
-	9	3803.0535	-12.03	51.61	39.58	74.00	34.42	Pass	V	PK
	10	5057.1371	-8.92	48.93	40.01	74.00	33.99	Pass	V	PK
	11	6997.2665	-5.11	45.74	40.63	74.00	33.37	Pass	V	PK
	12	9817.4545	3.16	44.13	47.29	74.00	26.71	Pass	V	PK

п										
	Mode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2440 MHz	
2	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1162.1441	10.01	37.71	47.72	74.00	26.28	Pass	Н	PK
	2	1706.8471	12.94	38.05	50.99	74.00	23.01	Pass	Н	PK
	3	3551.0367	-12.98	53.23	40.25	74.00	33.75	Pass	Н	PK
	4	5261.1507	-9.34	48.24	38.90	74.00	35.10	Pass	Н	PK
	5	6824.255	-5.09	47.50	42.41	74.00	31.59	Pass	Н	PK
	6	9787.4525	3.01	43.47	46.48	74.00	27.52	Pass	Н	PK
	7	1149.8767	10.41	36.99	47.40	74.00	26.60	Pass	V	PK
	8	1831.3888	14.90	37.35	52.25	74.00	21.75	Pass	V	PK
3	9	3732.0488	-13.04	53.61	40.57	74.00	33.43	Pass	V	PK
	10	5065.1377	-9.04	48.20	39.16	74.00	34.84	Pass	V	PK
-	11	7174.2783	-5.01	46.53	41.52	74.00	32.48	Pass	V	PK
	12	9817.4545	3.16	43.58	46.74	74.00	27.26	Pass	V	PK

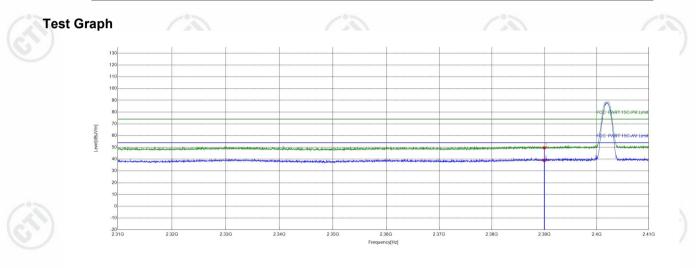
Page 27 of 53

								2 B 10		
	Mode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1149.2099	10.38	38.34	48.72	74.00	25.28	Pass	Н	PK
	2	1752.0501	13.09	36.72	49.81	74.00	24.19	Pass	Н	PK
	3	3441.0294	-12.77	52.86	40.09	74.00	33.91	Pass	н	PK
	4	5364.1576	-8.31	47.82	39.51	74.00	34.49	Pass	Н	PK
	5	7608.3072	-3.64	45.97	42.33	74.00	31.67	Pass	н	PK
	6	10243.4829	2.67	43.28	45.95	74.00	28.05	Pass	Н	PK
	7	1146.6764	10.30	37.77	48.07	74.00	25.93	Pass	V	PK
	8	1702.9802	12.93	37.41	50.34	74.00	23.66	Pass	V	PK
	9	3427.0285	-13.01	53.08	40.07	74.00	33.93	Pass	V	PK
	10	4695.113	-9.10	48.89	39.79	74.00	34.21	Pass	V	PK
3	11	6734.249	-5.97	47.03	41.06	74.00	32.94	Pass	V	PK
	12	9805.4537	3.32	43.48	46.80	74.00	27.20	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Page 28 of 53

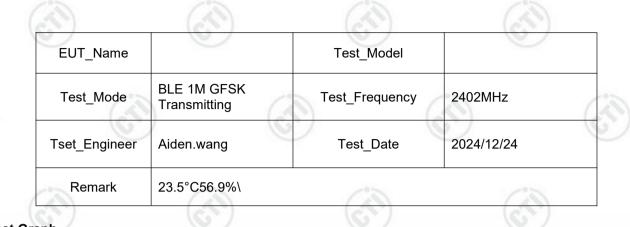

Restricted bands:

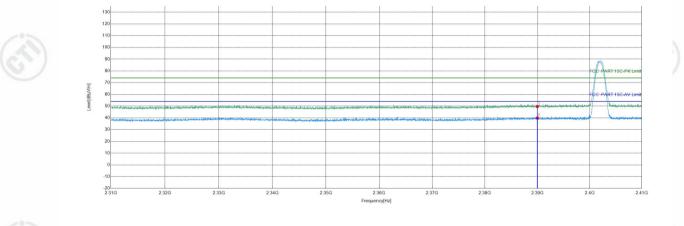
Test plot as follows:

EUT_Name		Test_Model	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/24
Remark	23.5°C56.9%\		

Suspected List

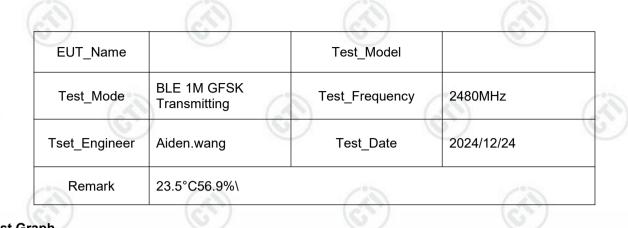
	Suspecie									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
100	1	2390	15.31	34.36	49.67	74.00	24.33	PASS	Horizontal	PK
2	2	2390	15.31	23.65	38.96	54.00	15.04	PASS	Horizontal	AV
V.	/						e e			



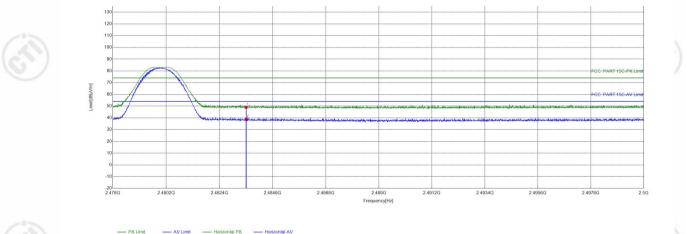


Page 29 of 53

Test Graph

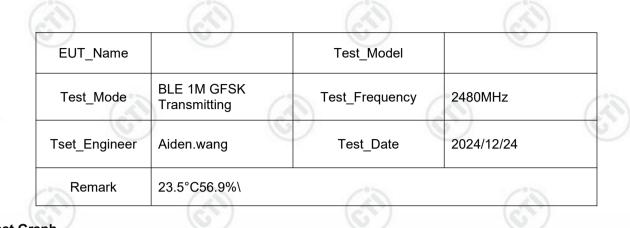

PK Limit AV Limit Vertical PK Vertical AV
 PK Detector
 AV Detector

Suspected List Factor Reading Level Limit Margin Freq. NO [dB] Result Polarity Remark [dB] [dBµV] [dBµV/m] [dBµV/m] [MHz] 2390 15.31 49.73 74.00 24.27 PASS Vertical ΡK 1 34.42 2 2390 15.31 24.54 39.85 54.00 14.15 PASS Vertical AV

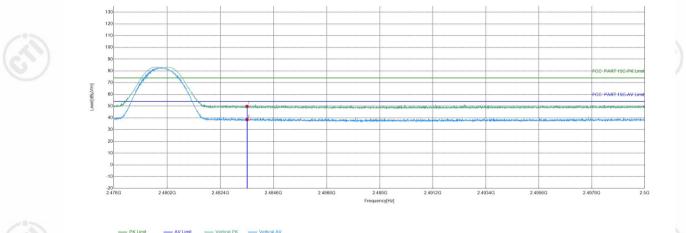


Page 30 of 53

Test Graph

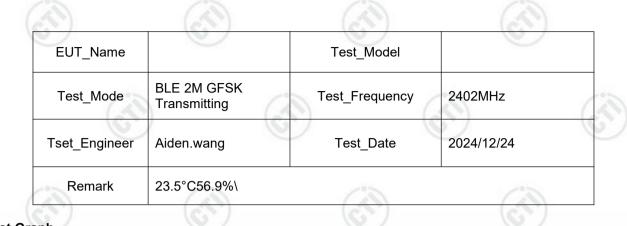


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	15.16	33.85	49.01	74.00	24.99	PASS	Horizontal	PK			
2	2483.5	15.16	23.56	38.72	54.00	15.28	PASS	Horizontal	AV			

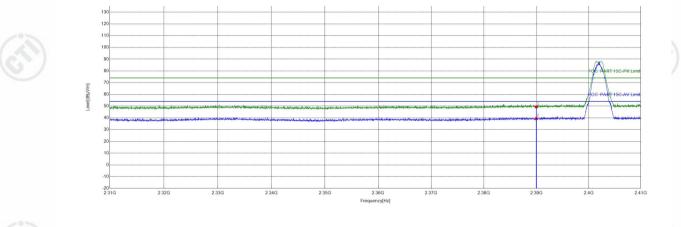


Page 31 of 53

Test Graph



Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	15.16	34.76	49.92	54.00	4.08	PASS	Vertical	PK			
2	2483.5	15.16	23.40	38.56	54.00	15.44	PASS	Vertical	AV			

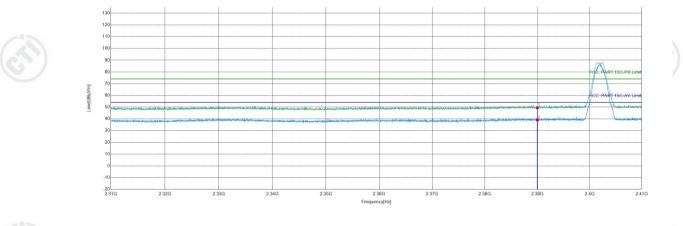


Page 32 of 53

Test Graph

PK Limit AV Limit Horizontal PK Horizontal AV
 PK Detector AV Detector

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	34.07	49.38	74.00	24.62	PASS	Horizontal	PK
2	2390	15.31	24.02	39.33	54.00	14.67	PASS	Horizontal	AV



Page 33 of 53

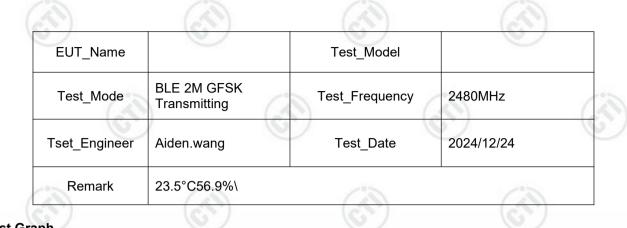
Test Graph

PK Limit AV Limit Vertical PK Vertical AV
 PK Detector AV Detector

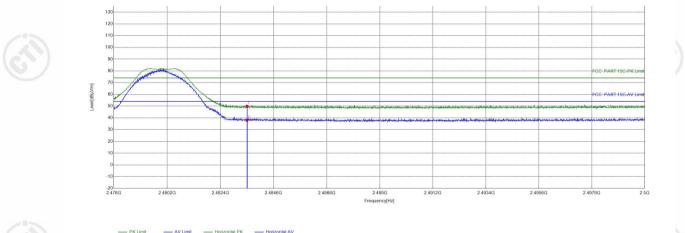
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.31	34.15	49.46	54.00	4.54	PASS	Vertical	PK
2	2390	15.31	23.83	39.14	54.00	14.86	PASS	Vertical	AV

AV Detect

2483.5


15.16

34.79


Page 34 of 53

Remark

ΡK

Test Graph

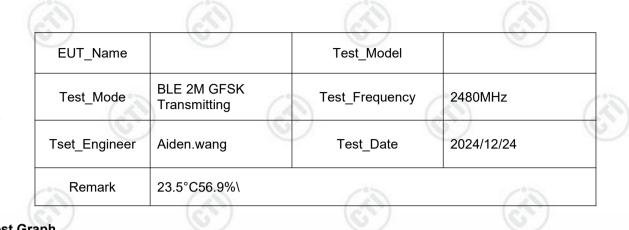
1

Suspecte	d List							
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity

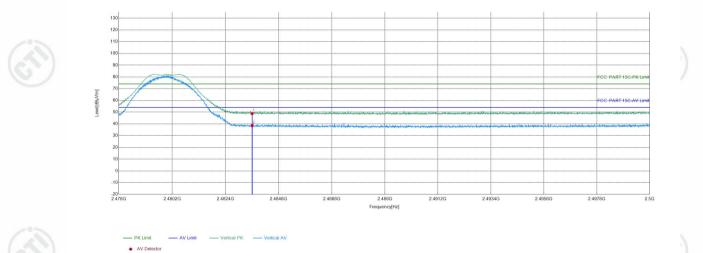
49.95

74.00

24.05


PASS

Horizontal



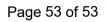
Page 35 of 53

Test Graph

Suspected List

Suspecie										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2483.5	15.16	33.66	48.82	54.00	5.18	PASS	Vertical	PK	
2	2483.5	15.16	23.41	38.57	54.00	15.43	PASS	Vertical	AV	

Note:


The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Statement

1. This report is considered invalid without approved signature, special seal and the seal on the perforation;

2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;

3. The result(s) shown in this report refer(s) only to the sample(s) tested;

4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

5. Without written approval of CTI, this report can't be reproduced except in full;

