

FCC RADIO TEST REPORT

FCC ID	:	2AGOZ-S2Y
Equipment	:	Handheld controller
Brand Name	:	META PLATFORMS TECHNOLOGIES, LLC
Model Name	:	S2Y
Applicant	:	Meta Platforms Technologies, LLC. 1 Hacker Way, Menlo Park, CA 94025, USA
Manufacturer	:	Meta Platforms Technologies, LLC. 1 Hacker Way, Menlo Park, CA 94025, USA
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on May 15, 2023 and testing was performed from May 17, 2023 to May 25, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	EUT Operation Test Setup	9
	2.5	Measurement Results Explanation Example	9
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	11
	3.3	Power Spectral Density Measurement	12
	3.4	Conducted Band Edges and Spurious Emission Measurement	13
	3.5	Radiated Band Edges and Spurious Emission Measurement	14
	3.6	Antenna Requirements	18
4	List o	of Measuring Equipment	19
5	Meas	surement Uncertainty	20
Арј	bendix	x A. Conducted Test Results	
Арј	oendix	x B. Radiated Spurious Emission	
Арј	oendix	x C. Radiated Spurious Emission Plots	
Apj	pendix	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR242106-02	01	Initial issue of report	Jun. 15, 2023
FR242106-02	02	Revise Section 1.1 This report is an updated version, replacing the report issued on Jun. 15, 2023.	Jun. 30, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	3.29 dB under the limit at 12010.000 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.6	15.203	Antenna Requirement Pass		-

Note: Not required means after assessing, test items are not necessary to carry out.

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Cindy Fang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Specification is subject to this standard				
General Specs SRD-nRF				
Tx / Rx Frequency 2402 MHz ~ 2478 MHz				
Type of Modulation	nRF: GFSK			
Antenna information				
2400 MHz ~ 2483.5 MHz Peak Gain (dBi) 1.22				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
Test one No.	TH05-HY, 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

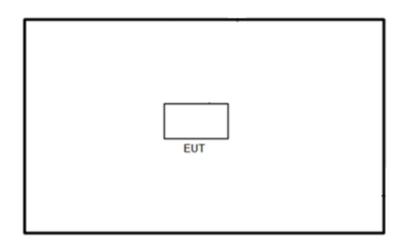
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
2400-2483.5 MHz	9	2420	30	2462
	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	-	-
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases						
Test Item	Data Rate / Modulation						
	Bluetooth – LE / GFSK						
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_2Mbps						
Test Cases	Mode 2: Bluetooth Tx CH19_2440 MHz_2Mbps						
	Mode 3: Bluetooth Tx CH38_2478 MHz_2Mbps						
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz_2Mbps						
Test Cases	Mode 2: Bluetooth Tx CH19_2440 MHz_2Mbps						
Test Cases	Mode 3: Bluetooth Tx CH38_2478 MHz_2Mbps						
	diation spurious emission, the modulation and the data rate picked for testing are						
determ	ined by the Max. RF conducted power.						

2.3 Connection Diagram of Test System

< SRD-nRF Tx Mode>

2.4 EUT Operation Test Setup

The RF test items, utility "python 3.7" was installed in EUT which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

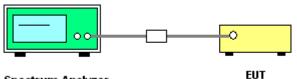
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

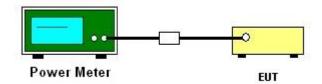
Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

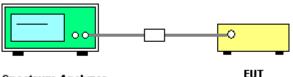
3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

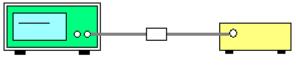
Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

Spectrum Analyzer

EUT

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

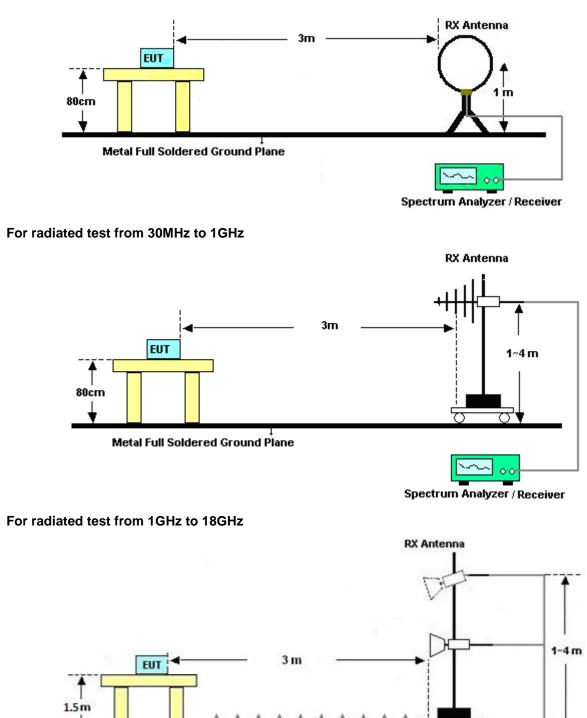
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

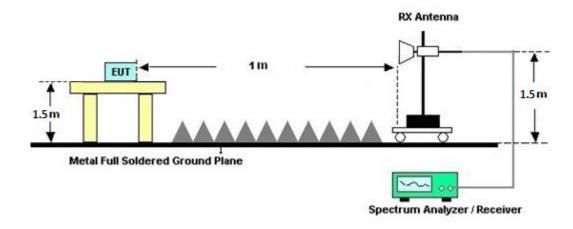
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Metal Full Soldered Ground Plane

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.6 Antenna Requirements

3.6.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	May 19, 2023~ May 20, 2023	Sep. 19, 2023	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N -06	37059 & 01	30MHz~1GHz	Nov. 10, 2022	May 19, 2023~ May 20, 2023	Nov. 09, 2023	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-02114	1GHz~18GHz	Aug. 09, 2022	May 19, 2023~ May 20, 2023	Aug. 08, 2023	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Dec. 24, 2022	May 19, 2023~ May 20, 2023	Dec. 23, 2023	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 21, 2023	May 19, 2023~ May 20, 2023	Mar. 20, 2024	Radiation (03CH12-HY)
Preamplifier	Agilent	8449B	3008A02375	1GHz~26.5GHz	May 24, 2022	May 19, 2023~ May 20, 2023	May 23, 2023	Radiation (03CH12-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-100M-18 G-56-01-A70	EC1900249	1GHz-18GHz	Dec. 21, 2022	May 19, 2023~ May 20, 2023	Dec. 20, 2023	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 07, 2022	May 19, 2023~ May 20, 2023	Dec. 06, 2023	Radiation (03CH12-HY)
Spectrum Analyzer	Agilent	N9010A	MY53470118	10Hz~44GHz	Jan. 10, 2023	May 19, 2023~ May 20, 2023	Jan. 09, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-12 SS	SN2	1.2GHz Low Pass Filter	Mar. 13, 2023	May 19, 2023~ May 20, 2023	Mar. 12, 2024	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0ST	SN2	3GHz High Pass Filter	Jul. 11, 2022	May 19, 2023~ May 20, 2023	Jul. 10, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	May 19, 2023~ May 20, 2023	Mar. 14, 2024	Radiation (03CH12-HY)
RF Cable	TUYUE	RG142D-NmB NCm-3000	H0620	9kHz~30MHz	Mar. 14, 2023	May 19, 2023~ May 20, 2023	Mar. 13, 2024	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30MHz~18GHz	Dec. 20, 2022	May 19, 2023~ May 20, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY15539/4	30MHz~18GHz	Dec. 20, 2022	May 19, 2023~ May 20, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Dec. 20, 2022	May 19, 2023~ May 20, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Dec. 20, 2022	May 19, 2023~ May 20, 2023	Dec. 19, 2023	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303B	TP210090	N/A	Oct. 03, 2022	May 19, 2023~ May 20, 2023	Oct. 02, 2023	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	May 19, 2023~ May 20, 2023	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	May 19, 2023~ May 20, 2023	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 19, 2023~ May 20, 2023	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	May 19, 2023~ May 20, 2023	N/A	Radiation (03CH12-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	May 17, 2023~ May 25, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	May 17, 2023~ May 25, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Dec. 30, 2022	May 17, 2023~ May 25, 2023	Dec. 29, 2023	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.40 dB
of 95% (U = 2Uc(y))	0.40 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.40 dB
of 95% (U = 2Uc(y))	4.40 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.60 dB

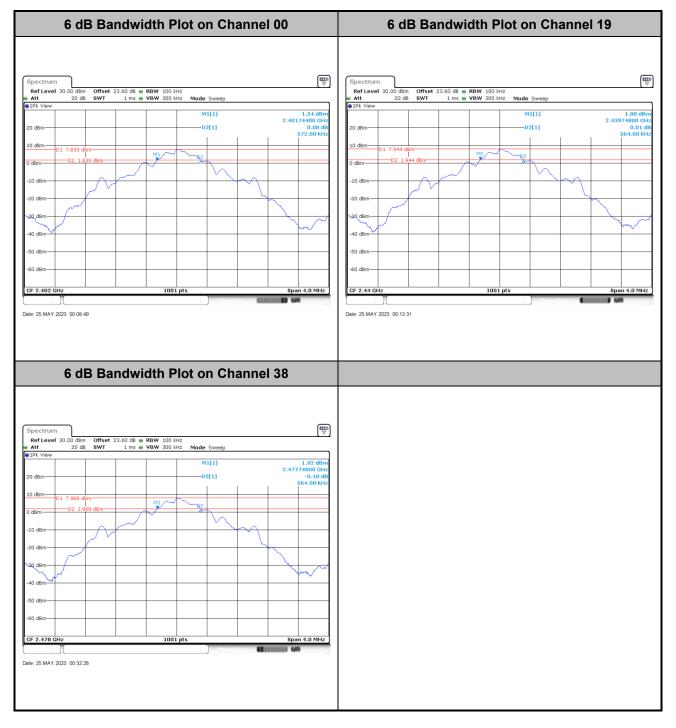
Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20 dB
of 95% (U = 2Uc(y))	5.20 QB

Report Number : FR242106-02

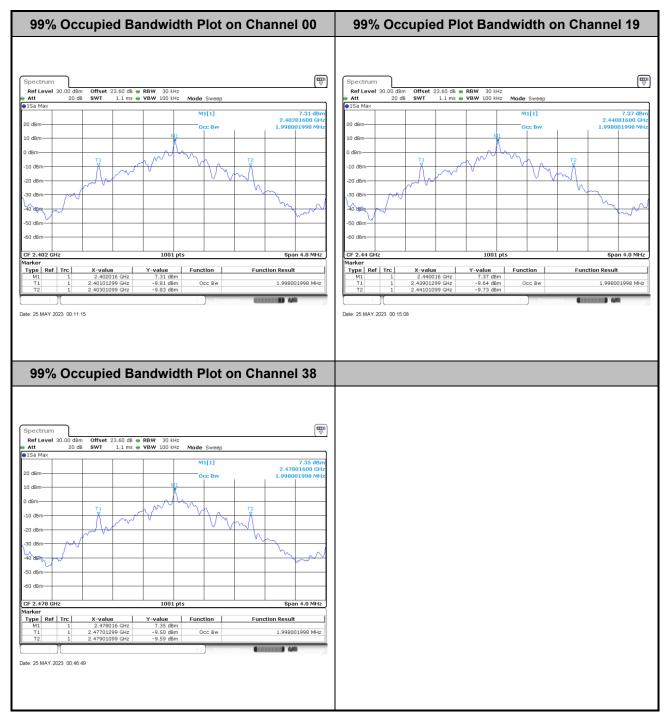
Appendix A. Test Result of Conducted Test Items

Test Engineer:	Ray Wang	Temperature:	21~25	°C
Test Date:	2023/5/17~2023/5/25	Relative Humidity:	51~54	%

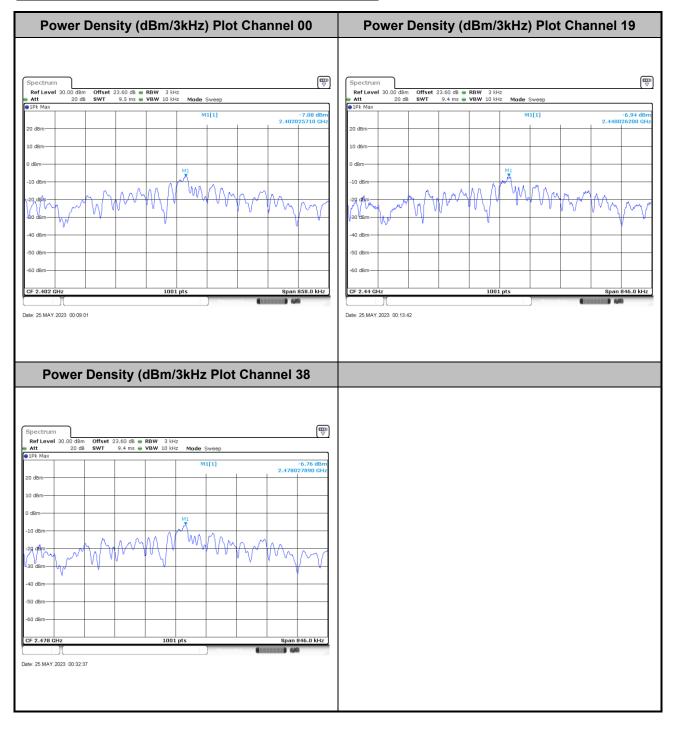

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth											
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
nRF	2Mbps	1	0	2402	1.998	0.572	0.50	Pass			
nRF	2Mbps	1	19	2440	1.998	0.564	0.50	Pass			
nRF	2Mbps	1	38	2478	1.998	0.564	0.50	Pass			

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
nRF	2Mbps	1	0	2402	7.90	30.00	1.22	9.12	36.00	Pass		
nRF	2Mbps	1	19	2440	8.00	30.00	1.22	9.22	36.00	Pass		
nRF	2Mbps	1	38	2480	8.00	30.00	1.22	9.22	36.00	Pass		

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
nRF	2Mbps	1	0	2402	7.87	-7.08	1.22	8.00	Pass	
nRF	2Mbps	1	19	2440	7.98	-6.94	1.22	8.00	Pass	
nRF	2Mbps	1	38	2480	8.00	-6.76	1.22	8.00	Pass	

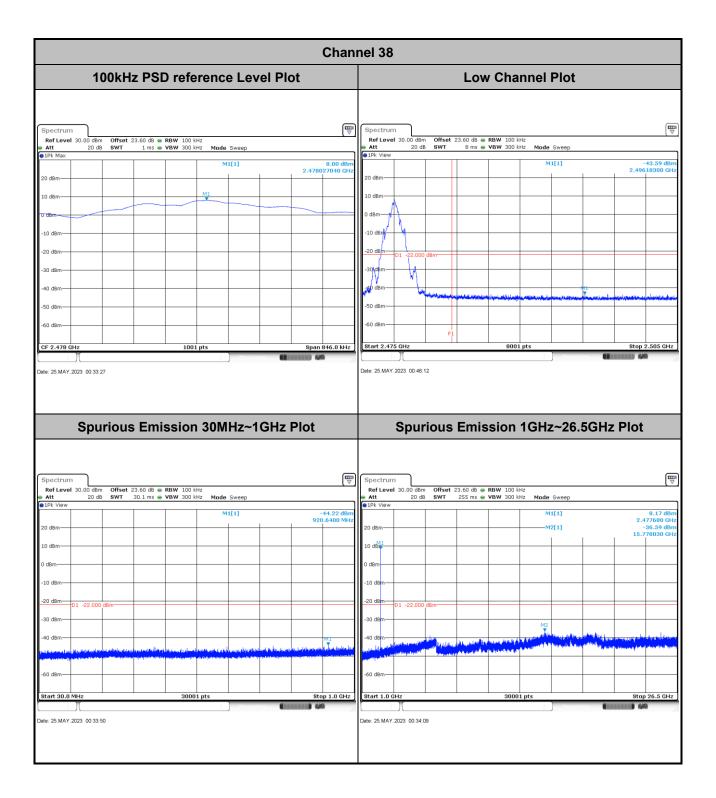


6dB Bandwidth



99% Occupied Bandwidth

Power Spectral Density (dBm/3kHz)


Band Edge and Conducted Spurious Emission

		Chan	nel 00							
100kHz	z PSD reference Le	evel Plot	Low Channel Plot							
Spectrum		(@)	Spectrum		m ∀					
Att 20 dB SWT	3.60 dB • RBW 100 kHz 1 ms • VBW 300 kHz Mode Sweep		Att 20 dB SWT	et 23.60 dB ● RBW 100 kHz F 8 ms ● VBW 300 kHz Mode Sweep						
e 1Pk Max	M1[1]	7.87 dBm 2.402025710 GHz	●1Pk View	M1[1]	-33.61 dBm 2.39995130 GHz					
20 dBm		2.402023710 GHz	20 dBm		2.39995130 GHZ					
10 dBm	M1		10 dBm							
0 dBm			0 dBm		<u> </u>					
-10 dBm			-10 dBm							
-20 dBm			-20 dBm							
			D1 -22.130 dBm							
-30 dBm			-30 dBm		N V					
-40 dBm-			-40 dBm		July Manual M					
-50 dBm			iso canter that the state	identa kanana						
-60 dBm-			-60 dBm							
CF 2.402 GHz	1001 pts	Span 858.0 kHz	Start 2.375 GHz	8001 pts	Stop 2.405 GHz					
			Date: 25.MAY.2023 00:11:00							
Spurious	Emission 30MHz~	_		s Emission 1GHz~26.						
Spurious		-1GHz Plot (₩	Spuriou		.5GHz Plot .₩					
Spectrum Ref Level 30.00 dBm Offset 2:	3.60 dB • RBW 100 kHz 30.1 ms • VBW 300 kHz Mode Sweep	_	Spuriou	set 23.60 d8 ● RBW 100 kHz						
Spectrum Ref Level 30.00 dBm Offset 22 Att 20 db SWT 3	3.60 dB RBW 100 kHz	_	Spectrum Ref Level 30.00 dbm Offs • Att 20 dB SWT • IPK View	set 23.60 dB = RBW 100 HHz f 255 ms = VBW 300 HHz Mode Sweep M1[1]	(₩ ▼ 7.76 dBm 2.402030 GHz					
Spectrum Ref Level 30.00 dBm Offset 22 Att 20 dB SWT 3	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dbm Offs Att 20 db SWT	set 23.60 dB ● RBW 100 kHz f _ 255 ms ● VBW 300 kHz _ Mode Sweep	(₩ 7.76 dBm					
Spectrum Ref Level 30.00 dBm Offset 22 Att 20 db SWT 3	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dbm Offs • Att 20 dB SWT • IPK View	set 23.60 dB = RBW 100 HHz f 255 ms = VBW 300 HHz Mode Sweep M1[1]	(∰ 7.76 dBm 2.402030 GHz -36.21 dBm					
Spectrum Ref Level 30.00 dBm Offset 2: Att 20 dB SWT 3 1Pk View 20 dBm 0	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dbm Offs Att 20 db SWT 0 IPk View 20 dbm	set 23.60 dB = RBW 100 HHz f 255 ms = VBW 300 HHz Mode Sweep M1[1]	(∰ 7.76 dBm 2.402030 GHz -36.21 dBm					
Spectrum Ref Level 30.00 dBm Offset 2: Att 20 dB SWT 20 dB SWT 10 10 dBm 10 10	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dBm Offs Att 20 dB SWT 20 dBm 10 dBm 10 dBm	set 23.60 dB = RBW 100 HHz f 255 ms = VBW 300 HHz Mode Sweep M1[1]	(∰ 7.76 dBm 2.402030 GHz -36.21 dBm					
Spectrum Ref Level 30.00 dBm Offset 2: 0 dB PF View 20 dB 30 dBm 10 dBm 10 dBm 10 dBm	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dBm Offs Att 20 dB SWT D IPL View 20 dBm 10 dBm -10 dBm -10 dBm	set 23.60 dB = RBW 100 HHz f 255 ms = VBW 300 HHz Mode Sweep M1[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Offset 2: Att 20 dB 9 WT 10 dBm 0 dBm 0 dBm 10 dBm 0 dBm 0 dBm	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dbm Offs Att 20 db SWT Dipk View 20 dbm 10 dbm -10 dbm	M1[1] M1[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Ref Level 30.00 dBm Offset 2: 20 dB PIP View 20 dB 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm 01 -22.130 dBm	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	-44.29 dBm 982.5890 MHz	Spectrum Ref Level 30.00 dbm Offs • Att 20 db • Di View 20 db • Di View 20 db • 10 dbm	Note: 23.60 db RBW 100 LHz Made Sweep 255 ms VBW 300 LHz Made Sweep M1[1] M1[1] M2[1] M2[1] M2[1] M2[1] M2[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Offset 2: Att 20 dB Offset 2: 10 dBm 0 0 10 dBm 0 0 -10 dBm 0 0 -20 dBm 0 -22.130 dBm	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	(₩ ▼ -44.29 dBm	Spectrum Ref Level 30.00 dBm Att 20 dB D IPk View 10 dBm -10 dBm -20 dBm 01 -22.130 dBm	et 23.60 dB • RBW 100 HH; 255 ms • VBW 300 HH; Mode Sweep M1[1] M2[1] M2[1] M2[1] M2[1] M2[1] M2[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Offset 2: Ref Lovel 30.00 dBm Offset 2: Att 20 dB SWT 3 1Pk View 0 20 dBm 0 10 dBm 0 -20 dBm 0 -30 dBm 0 -40 dBm 0 -20 dBm 0	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	-44.29 dBm 982.5890 MHz	Spectrum Offs Ref Lovel 30.00 dBm Offs 10 dBm 20 dB 10 dBm 0 -20 dBm 01 -22.130 dBm -30 dBm 01 -22.130 dBm	N2 M1[1] M1[1] M2[1] M1[1] M2[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Ref Level 30.00 dBm Offset 2: 20 dB DFP View 20 dB 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm 01 -22.130 dBm	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	-44.29 dBm 982.5890 MHz	Spectrum Ref Level 30.00 dbm Offs • Att 20 db • Di View 20 db • Di View 20 db • 10 dbm	N2 M1[1] M1[1] M2[1] M1[1] M2[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Ref Lovel 30.00 dBm Offset 2: 10 dBm 0 10 dBm 0 -10 dBm 0 -20 dBm 0 -20 dBm 0 -20 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -60 dBm 0	3.60 dB ⊕ RBW 100 kHz 30.1 ms ⊕ VBW 300 kHz Mode Sweep	-44.29 dBm 982.5890 MHz 980 MHz 982.5890 MHz 980 MLz <td>Spectrum Offs Ref Lovel 30.00 dBm Offs 10 dBm 20 dB 10 dBm 0 -20 dBm 01 -22.130 dBm -30 dBm 01 -22.130 dBm</td> <td>N2 M1[1] M1[1] M2[1] M1[1] M2[1]</td> <td>7.76 dBm 2.402030 GHz 15.941230 GHz 15.941230 GHz 10.941230 GH</td>	Spectrum Offs Ref Lovel 30.00 dBm Offs 10 dBm 20 dB 10 dBm 0 -20 dBm 01 -22.130 dBm -30 dBm 01 -22.130 dBm	N2 M1[1] M1[1] M2[1] M1[1] M2[1]	7.76 dBm 2.402030 GHz 15.941230 GHz 15.941230 GHz 10.941230 GH					
Spectrum Ref Level 30.00 dBm Offset 21 Att 20 dB SWT 91Pk View 20 dB SWT 10 dBm 10 10 -10 dBm 01 -22.130 dBm -30 dBm 01 -22.130 dBm -30 dBm 01 -21.10 dBm	3.60 dB RBW 100 kHz 30.1 ms VBW 300 kHz Mode Sweep M1[1] M1[1]	-44.29 dBm 982.5890 MHz 982.5890 MHz	Spectrum Ref Level 30.00 dbm Offs • Att 20 db SWT • 1Pk View 20 dBm 10 dbm -10 dbm -20 dBm -30 dbm -40 dbm -60 dBm -50 dBm -50 dBm	N1[1] M2 M1[1] M2[1]	(∰ ⊽ 2.402030 GH 36.21 dBr					
Spectrum Ref Lovel 30.00 dBm Offset 2: 20 dBm 1Pk View 20 dB 20 dBm 10 dBm 10 dBm 10 dBm -10 dBm 11 -22:130 dBm -30 dBm -12:130 dBm -30 dBm -12:130 dBm -30 dBm -12:130 dBm -30 dBm -10:12:130 dBm	3.60 dB RBW 100 kHz 30.1 ms VBW 300 kHz Mode Sweep M1[1] M1[1]	-44.29 dBm 982.5890 MHz 980 MHz 982.5890 MHz 980 MLz <td>Spectrum Ref Level 30.00 dbm Offse • Att 20 dbm 0 • D IPk View 0 0 • 0 dbm 0 0 -10 dbm 0 - -30 dbm 0 - -40 dbm - - -60 dbm - -</td> <td>N1[1] M2 M1[1] M2[1]</td> <td>7.76 dBr 2.40200 GH 15.941230 GH</td>	Spectrum Ref Level 30.00 dbm Offse • Att 20 dbm 0 • D IPk View 0 0 • 0 dbm 0 0 -10 dbm 0 - -30 dbm 0 - -40 dbm - - -60 dbm - -	N1[1] M2 M1[1] M2[1]	7.76 dBr 2.40200 GH 15.941230 GH					
Spectrum Ref Level 30.00 dBm Offset 2: 20 dBm 1Pk View 20 dB 20 dBm 10 dBm 10 dBm 10 dBm -30 dBm 01 -22.130 dBm -30 dBm -01 -22.130 dBm -60 dBm -01 -22.130 dBm	3.60 dB RBW 100 kHz 30.1 ms VBW 300 kHz Mode Sweep M1[1] M1[1]	-44.29 dBm 982.5890 MHz 980 MHz 982.5890 MHz 980 MLz <td>Spectrum Ref Level 30.00 dbm Offs • Att 20 db SWT • 1Pk View 20 dBm 10 dbm -10 dbm -20 dBm -30 dbm -40 dbm -60 dBm -50 dBm -50 dBm</td> <td>N1[1] M2 M1[1] M2[1]</td> <td>7.76 dbr 2.40200 CH 15.941230 CH</td>	Spectrum Ref Level 30.00 dbm Offs • Att 20 db SWT • 1Pk View 20 dBm 10 dbm -10 dbm -20 dBm -30 dbm -40 dbm -60 dBm -50 dBm -50 dBm	N1[1] M2 M1[1] M2[1]	7.76 dbr 2.40200 CH 15.941230 CH					

Cha	nnel 19
100kHz PSD reference Level Plot	Low Channel Plot
Spectrum Image: Construct of the second	
CF 2.44 GHz 1001 pts Span 846.0 kHz Date: 25 MAY 2023 00:14:18 To contract and the second secon	Spurious Emission 1GHz~26.5GHz Plot
Image: Second	M 12 M1[1] 4.88 dBm
-20 dBm D1 -22.020 dBm Image: Constraint of the constraint of t	-20 dBm 01 - 22.020 dBm 1 1 1 1 -30 dBm -20 dBm -20 dBm 1 1 1 -40 dBm -20 dBm -20 dBm -20 dBm 1 1 -60 dBm - <t< td=""></t<>
Start 30.0 MHz Stop 1.0 GHz Image: 25 MAY 2023 00:14:39	Start 1.0 GHz 30001 pts Stop 26.5 GHz Under 25 MAY 2023 00:14:55 Maximum Control of Cont

Appendix B. Radiated Spurious Emission

Test Engineer :	Jesse Fan. Tim Lee and Wilson Wu	Temperature :	20 ~ 25°C
lest Engineer.		Relative Humidity :	50 ~ 60%

2.4GHz 2400~2483.5MHz

nRF (Band Edge @ 3m)

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2372.79	56.96	-17.04	74	46.47	27.24	16.73	33.48	121	220	Ρ	Н
		2338.245	48.45	-5.55	54	38.16	27.1	16.66	33.47	121	220	А	Н
	*	2402	102.7	-	-	92.01	27.41	16.78	33.5	121	220	Р	Н
	*	2402	102.13	-	-	91.44	27.41	16.78	33.5	121	220	А	Н
nRF CH 00													Н
2402MHz		2373.735	55.34	-18.66	74	44.85	27.24	16.73	33.48	189	4	Р	V
240210112		2375.94	47.51	-6.49	54	37.01	27.26	16.73	33.49	189	4	А	V
	*	2402	101.97	-	-	91.28	27.41	16.78	33.5	189	4	Р	V
	*	2402	101.39	-	-	90.7	27.41	16.78	33.5	189	4	А	V
													V
		2343.32	55.39	-18.61	74	45.09	27.1	16.67	33.47	120	212	Ρ	Н
		2375.8	48.37	-5.63	54	37.88	27.25	16.73	33.49	120	212	А	Н
	*	2440	101.54	-	-	90.57	27.64	16.85	33.52	120	212	Ρ	Н
	*	2440	100.97	-	-	90	27.64	16.85	33.52	120	212	А	Н
		2498.32	55.77	-18.23	74	44.48	27.89	16.95	33.55	120	212	Ρ	Н
nRF CH 19		2492.51	48.06	-5.94	54	36.8	27.87	16.94	33.55	120	212	А	Н
2440MHz		2349.76	55.31	-18.69	74	45	27.1	16.68	33.47	100	171	Ρ	V
2440101112		2376.08	47.96	-6.04	54	37.46	27.26	16.73	33.49	100	171	А	V
	*	2440	101.4	-	-	90.43	27.64	16.85	33.52	100	171	Р	V
	*	2440	100.82	-	-	89.85	27.64	16.85	33.52	100	171	А	V
		2497.13	55.58	-18.42	74	44.29	27.89	16.95	33.55	100	171	Ρ	V
		2496.15	48.06	-5.94	54	36.78	27.88	16.95	33.55	100	171	А	V

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		<i></i> .			Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2478	100.83	-	-	89.64	27.81	16.92	33.54	114	224	Ρ	Н
	*	2478	100.14	-	-	88.95	27.81	16.92	33.54	114	224	А	Н
		2499.36	56.21	-17.79	74	44.91	27.9	16.95	33.55	114	224	Ρ	Н
		2488.68	48.58	-5.42	54	37.33	27.85	16.94	33.54	114	224	А	Н
													Н
nRF													Н
CH 38 2478MHz	*	2478	102	-	-	90.81	27.81	16.92	33.54	201	8	Ρ	V
24701112	*	2478	101.42	-	-	90.23	27.81	16.92	33.54	201	8	А	V
		2487.92	55.71	-18.29	74	44.47	27.85	16.93	33.54	201	8	Р	V
		2485.52	48.55	-5.45	54	37.32	27.84	16.93	33.54	201	8	А	V
													V
													V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

	-		[RF (Harm		5111)		r	F	-	-	
nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)			(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	-	
		4804	45.63	-28.37	74	69.27	32.32	10.87	66.83	100	20	Р	Н
		4804	43.46	-10.54	54	67.1	32.32	10.87	66.83	100	20	Α	Н
		12010	56.14	-17.86	74	65.29	38.91	17.75	65.81	100	226	Р	Н
		12010	50.71	-3.29	54	59.86	38.91	17.75	65.81	100	226	А	Н
													Н
													Н
													Н
													Н
													Н
													Н
nRF													Н
CH 00													Н
2402MHz		4804	47.92	-26.08	74	71.56	32.32	10.87	66.83	281	146	Р	V
		4804	43.25	-10.75	54	66.89	32.32	10.87	66.83	281	146	А	V
		12010	55.71	-18.29	74	64.86	38.91	17.75	65.81	100	175	Р	V
		12010	49.54	-4.46	54	58.69	38.91	17.75	65.81	100	175	А	V
													V
													V
													V
													V
													V
													V
													V
													V

nRF (Harmonic @ 3m)

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	48.03	-25.97	74	71.06	32.66	11.03	66.72	100	20	Р	Н
		4880	43.1	-10.9	54	66.13	32.66	11.03	66.72	100	20	А	Н
		7320	50.16	-23.84	74	65.04	36.96	13.55	65.39	399	10	Ρ	н
		7320	44.91	-9.09	54	59.79	36.96	13.55	65.39	399	10	А	Н
		12200	55.56	-18.44	74	64.4	39.1	17.99	65.93	106	230	Ρ	Н
		12200	49.82	-4.18	54	58.66	39.1	17.99	65.93	106	230	А	Н
													Н
													Н
													Н
													Н
»DE													н
nRF CH 19													н
2440MHz		4880	49.48	-24.52	74	72.51	32.66	11.03	66.72	285	125	Р	V
244010112		4880	45.83	-8.17	54	68.86	32.66	11.03	66.72	285	125	А	V
		7320	52.7	-21.3	74	67.58	36.96	13.55	65.39	105	235	Ρ	V
		7320	48.54	-5.46	54	63.42	36.96	13.55	65.39	105	235	А	V
		12200	56.68	-17.32	74	65.52	39.1	17.99	65.93	100	174	Р	V
		12200	49.68	-4.32	54	58.52	39.1	17.99	65.93	100	174	А	V
													V
													V
													V
													V
													V
													V

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
	ļ				Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4956	44.68	-29.32	74	67.16	32.95	11.18	66.61	-	-	Р	Н
		7434	51.09	-22.91	74	66.44	36.46	13.72	65.53	399	2	Р	Н
		7434	45.32	-8.68	54	60.67	36.46	13.72	65.53	399	2	Α	Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
													Н
nRF													Н
CH 38		4956	45.09	-28.91	74	67.57	32.95	11.18	66.61	-	-	Р	V
2478MHz		7434	52.67	-21.33	74	68.02	36.46	13.72	65.53	100	235	Р	V
		7434	48.55	-5.45	54	63.9	36.46	13.72	65.53	100	235	А	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.	<u> </u>		<u> </u>				<u> </u>	<u> </u>	1	
		I results are PA		Peak and	Average lim	it line.							
Remark	3. Tł	ne emission pos	ition marked	as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flc	oor only.											

Emission above 18GHz

2.4GHz nRF (SHF)

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24626.7	39.47	-34.53	74	40.25	39.05	13.17	53	150	360	Р	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													н
													н
2.4GHz													
nRF		0.40.40.7						10.0	= 0				H
SHF		24848.7	39.36	-34.64	74	39.98	39.08	13.3	53	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.	1		l	1		I	I	I	1	<u>I</u>
	2. A	II results are PA	SS against li	mit line.									
Remark	3. TI	he emission po	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
		oor only.											
	1	-											

Emission below 1GHz

nRF	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		30.97	24.21	-15.79	40	28.83	24.52	0.61	29.75	30.97	24.21	Р	Н
		133.79	19.09	-24.41	43.5	29.32	17.78	1.65	29.66	133.79	19.09	Р	Н
		262.8	21.56	-24.44	46	28.97	19.73	2.36	29.5	262.8	21.56	Р	Н
		495.6	31.02	-14.98	46	32.89	23.91	3.28	29.06	495.6	31.02	Р	Н
		734.22	32.76	-13.24	46	29.41	27.95	3.99	28.59	734.22	32.76	Р	Н
		888.45	37.61	-8.39	46	32.41	29.17	4.54	28.51	888.45	37.61	Р	Н
													н
													н
													н
													н
													н
2.4GHz													н
nRF LF		80.44	32.3	-7.7	40	47.29	13.46	1.27	29.72	80.44	32.3	Р	V
LF		132.82	18.56	-24.94	43.5	28.9	17.7	1.63	29.67	132.82	18.56	Р	V
		360.77	24.18	-21.82	46	29.86	20.93	2.74	29.35	360.77	24.18	Р	V
		499.48	31.01	-14.99	46	32.78	23.99	3.3	29.06	499.48	31.01	Р	V
		757.5	32.8	-13.2	46	28.97	28.35	4.04	28.56	757.5	32.8	Р	V
		902.03	36.62	-9.38	46	31.19	29.3	4.6	28.47	902.03	36.62	Р	V
													V
													V
													V
													V
													V
													V
	1. No other spurious found.												
	2. All	results are PA	SS against li	mit line.									
Remark	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected en	nission foun	d and err	nission lev	el has at	least 60	IB ma	rgin
	ad	ainst limit or er	nission is no	ise floor (only								

2.4GHz nRF (LF)

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

A calculation example for radiated spurious emission is shown as below:

BLE	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 00	2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
2402MHz	2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

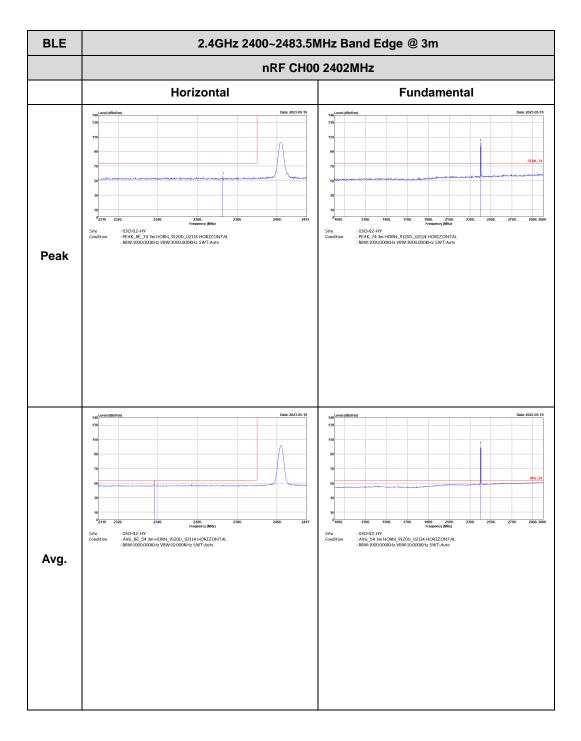
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

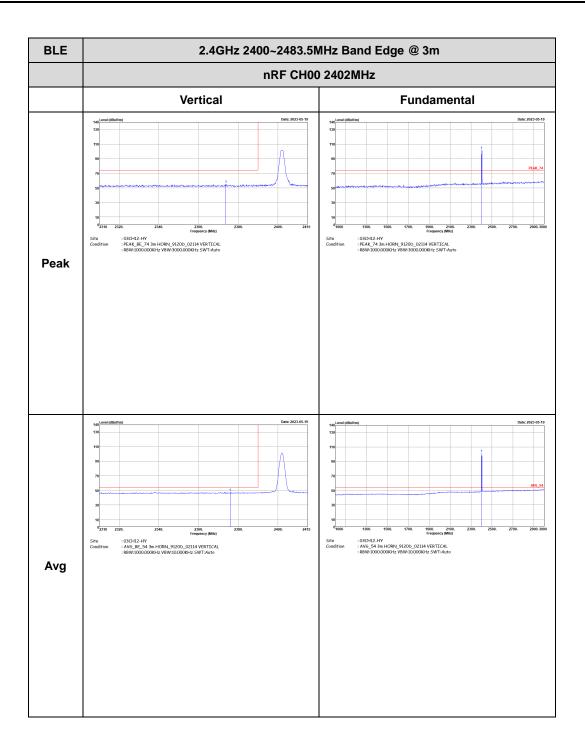
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Test Engineer :	Jesse Fan, Tim Lee and Wilson Wu	Temperature :	20 ~ 25°C
		Relative Humidity :	50 ~ 60%

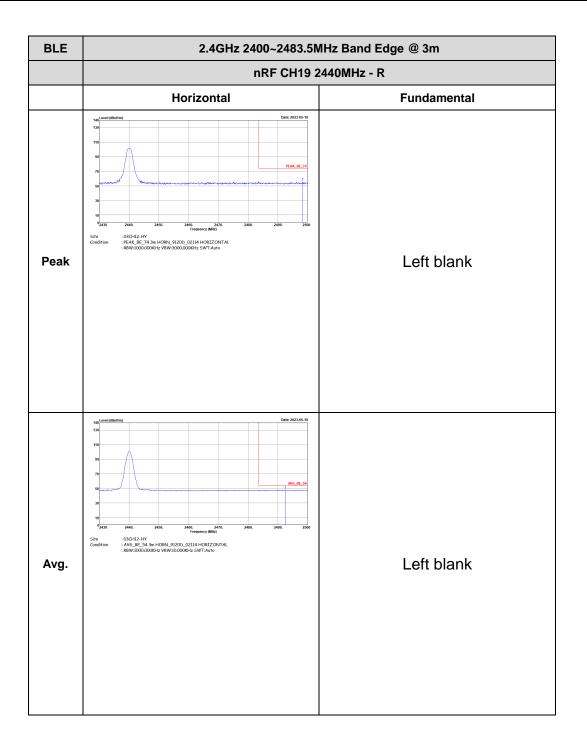

Note symbol

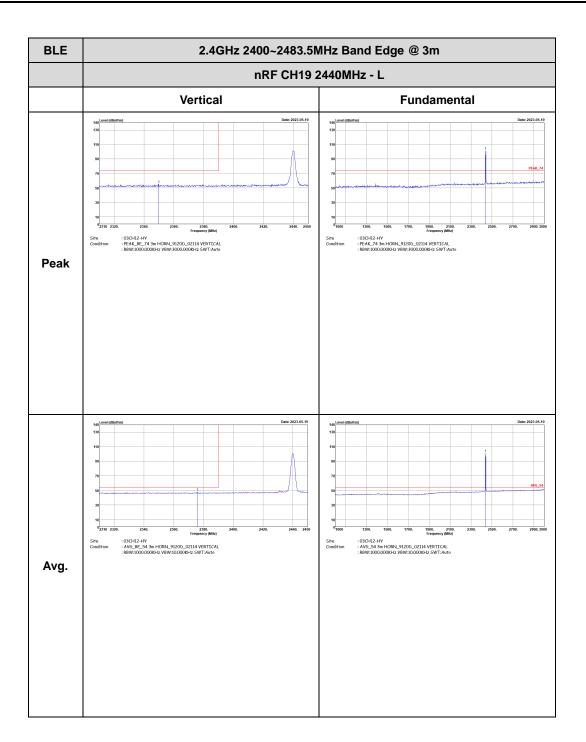
-L	Low channel location
-R	High channel location

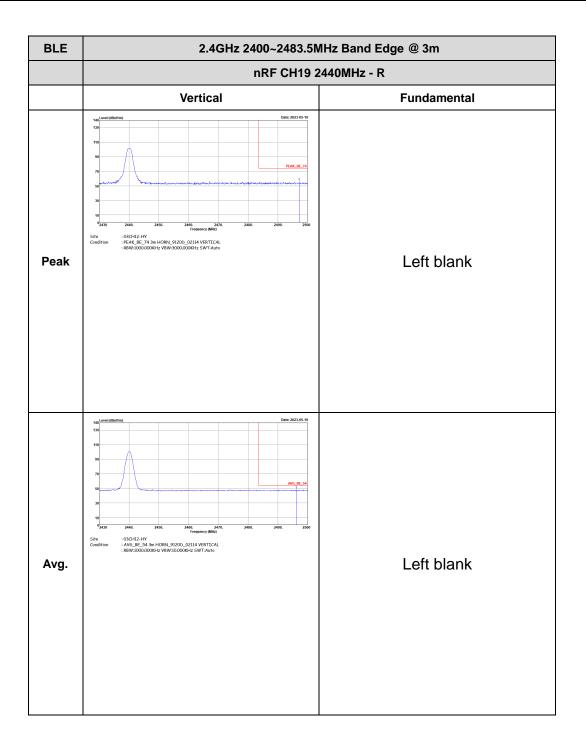


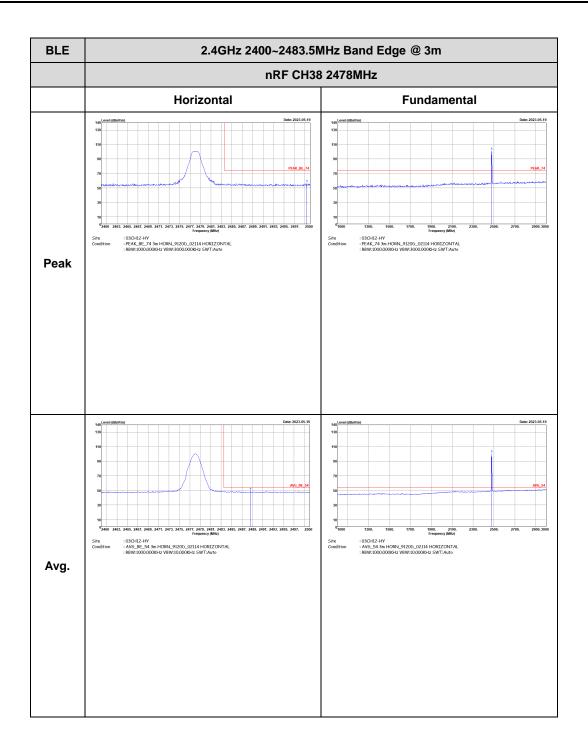
2.4GHz 2400~2483.5MHz

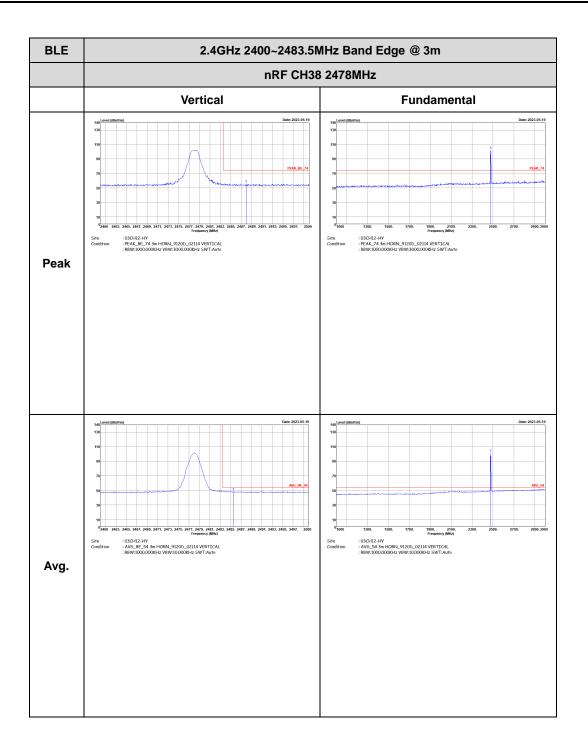

nRF (Band Edge @ 3m)

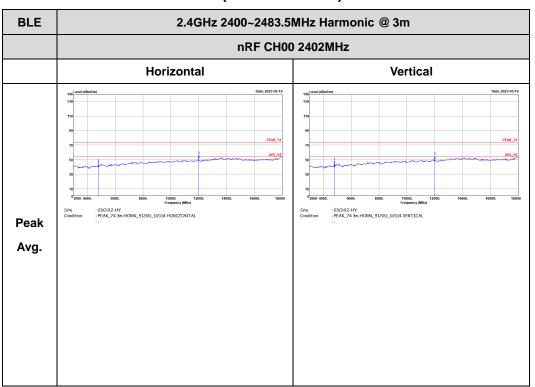


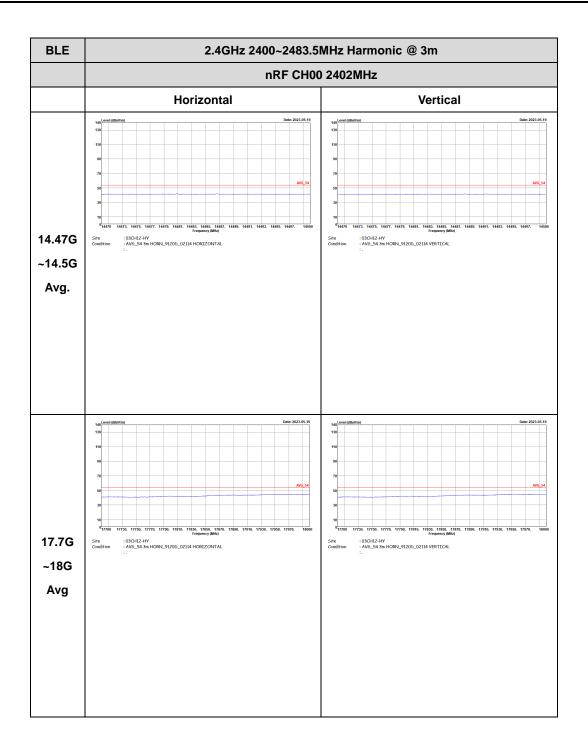




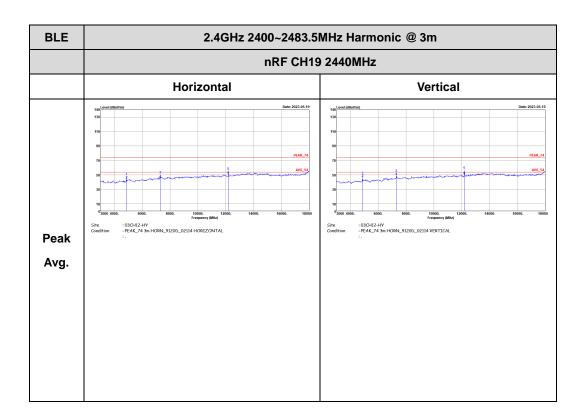




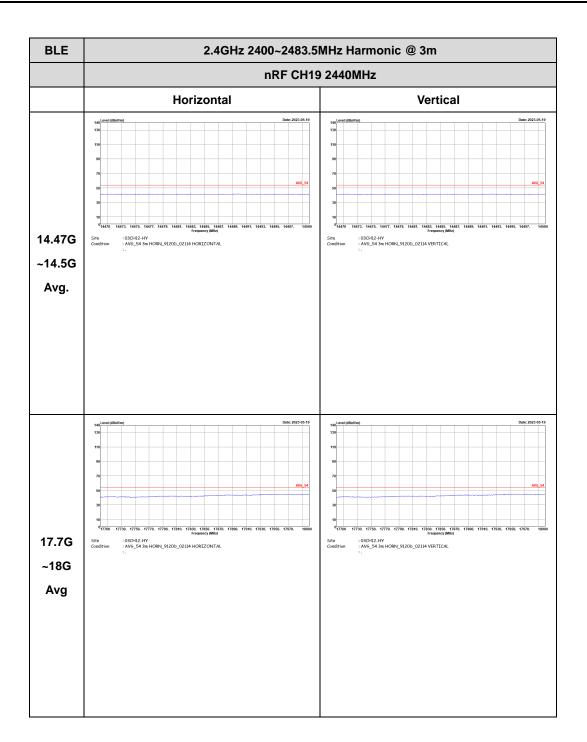


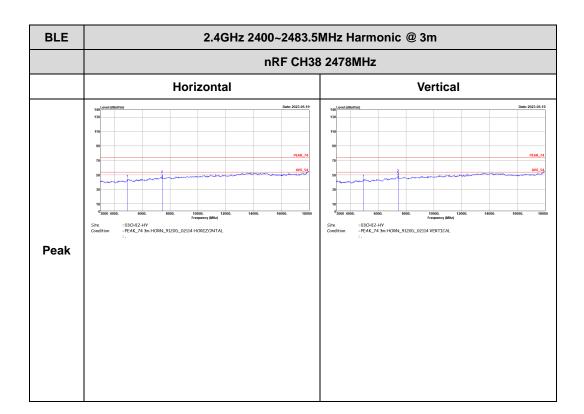


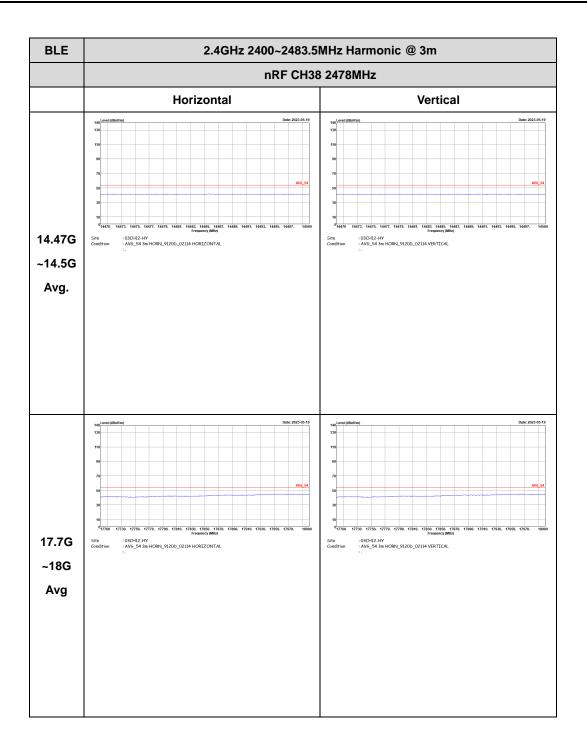
2.4GHz 2400~2483.5MHz

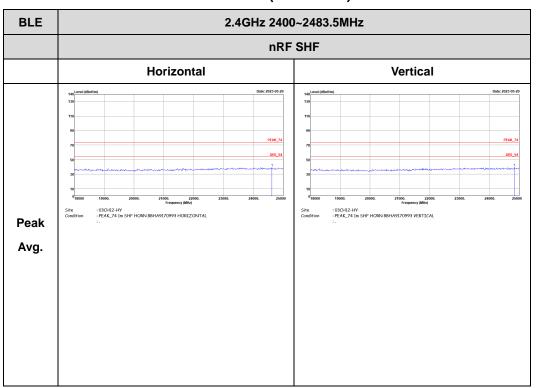


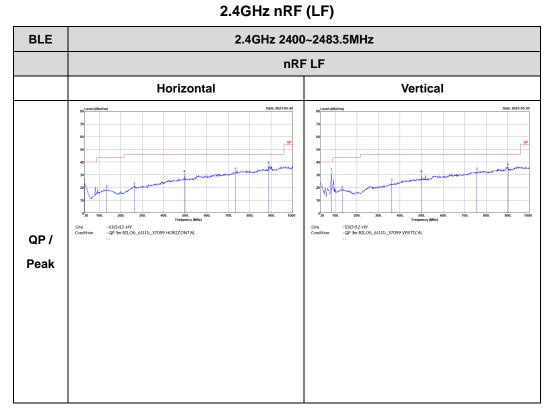
nRF (Harmonic @ 3m)





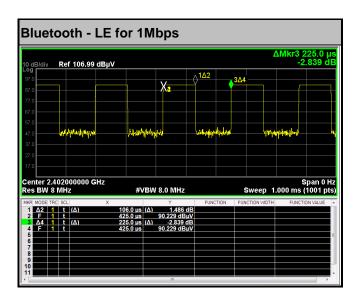






Emission above 18GHz

2.4GHz nRF (SHF @ 1m)


Emission below 1GHz

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	47.11	106	9.43	10kHz

