

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Intel Mobile Communication 100 Center Point Circle, Suite 200 Columbia, SC 29210 Dates of Test: November 18-20, 2014
Test Report Number: SAR.20141107

FCC ID: PD917265NG (Contains Model 17265NGW, 17265NGW LC)
IC Certificate: 1000M-17265NG (Contains Model 17265NGW, 17265NGW LC)

Model(s): HSTNN-I22C

Contains WLAN Model(s): Intel® Tri-Band Wireless-AC 17265 (Model 17265NGW, 17265NGW LC)

Test Sample: Engineering Unit Same as Production

Serial Number: Eng 1 & Eng 2

Equipment Type: Wireless Module Installed in Notebook/Tablet

Classification: Portable Transmitter Next to Body

TX Frequency Range: 2412 – 2462 MHz; 5180 – 5320 MHz; 5500 – 5700 MHz; 5745 – 5825 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 2450 MHz (b) – 17.50 dB, 2450 MHz (g) – 17.50 dB, 2450 MHz (n20) – 17.50 dB,

2450 MHz (n40) - 16.50 dB, 5250 MHz (a) - 16.00 dB, 5250 MHz (n20) - 16.00 dB, 5250 MHz (n40) - 16.50 dB, 5250 MHz (ac) - 13.50 dB, 5600 MHz (a) - 16.50 dB, 5600 MHz (n20) - 16.50 dB, 5600 MHz (n40) - 16.50 dB, 5600 MHz (ac) - 16.50 dB, 5800 MHz (n20) - 16.50 dB, 5800 MHz (n20) - 16.50 dB, 5800 MHz (n20) - 16.50 dB, 5800 MHz (n40) - 16

5800 MHz (ac) - 16.50 dB Conducted

Signal Modulation: DSSS, OFDM

Antenna Type: TE Connectivity, P/N 6036B0131201/1556680-01 (Tx1 & Tx2); Yageo Corporation, P/N

6036B0129101/ANTA0HV08352WLAN9 (Tx2); PIFA Antenna

Application Type: Certification FCC Rule Parts: Part 2, 15C, 15E

KDB Test Methodology: KDB 447498 D01 v05r02, KDB 248227 v01r02, KDB 616217 D04 v01

Industry Canada: RSS-102, Safety Code 6
Maximum SAR Value: 1.39 W/kg Reported
Max. Simultaneous SAR: 1.40 W/kg Reported

Separation Distance: 4.9 mm

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and IEC 62209-2:2010 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application is subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President ACCREDITED
Testing Cert. # 2387.01

Table of Contents

1. Introduction	3
SAR Definition [5]	
2. SAR Measurement Setup	5
Robotic System	5
System Hardware	5
System Electronics	6
Probe Measurement System	6
3. Probe and Dipole Calibration	14
4. Phantom & Simulating Tissue Specifications	15
Head & Body Simulating Mixture Characterization	15
5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]	16
Uncontrolled Environment	16
Controlled Environment	16
6. Measurement Uncertainty	17
7. System Validation	18
Tissue Verification	18
Test System Verification	18
8. SAR Test Data Summary	19
Procedures Used To Establish Test Signal	19
Device Test Condition	
SAR Data Summary – 2450 MHz Body 802.11b & BT	
SAR Data Summary – 5250 MHz Body 802.11a	39
SAR Data Summary – 5600 MHz Body 802.11a	40
SAR Data Summary – 5800 MHz Body 802.11a	41
SAR Data Summary – 5 GHz Body 802.11ac 80 MHz Bandwidth	
SAR Data Summary – Simultaneous Evaluation	43
9. Test Equipment List	
10. Conclusion	
11. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	103

1. Introduction

This measurement report shows compliance of the Intel Mobile Communications Model 17265NGW including family sub-models 17265NGW LC installed in HP Model HSTNN-I22C FCC ID: PD917265NG with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 1000M-17265NG with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test results recorded herein are based on a single type test of Intel Mobile Communications Model 17265NGW including family sub-models 17265NGW LC installed in HP Model HSTNN-I22C and therefore apply only to the tested sample.

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], IEEE Std.1528 – 2003 Recommended Practice [4], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

The following table indicates all the wireless technologies operating in the 17265NGW including family sub-models 17265NGW LC installed in HP Model HSTNN-I22C wireless modem. The table also shows the tolerance for the power level for each mode.

Band	Technology	3GPP Nominal Power dBm	Setpoint Nominal Power dBm	Tolerance dBm	Lower Tolerance dBm	Upper Tolerance dBm
WLAN – 2.4 GHz	802.11b (Ch. 2-10)	N/A	16	±1.5	14.5	17.5
WLAN – 2.4 GHz	802.11b (Ch. 1,11)	N/A	15	±1.5	13.5	16.5
WLAN – 2.4 GHz	802.11g/n20(Ch. 3-9)	N/A	16	±1.5	14.5	17.5
WLAN – 2.4 GHz	802.11g/n20(Ch. 2,10)	N/A	14	±1.5	12.5	15.5
WLAN – 2.4 GHz	802.11g/n20(Ch. 1,11)	N/A	11	±1.5	9.5	12.5
WLAN – 2.4 GHz	n40 SISO	N/A	15	±1.5	13.5	16.5
WLAN – 2.4 GHz	n40 MIMO	N/A	12	±1.5	10.5	13.5
WLAN - 5 GHz Band I, II	802.11a/n20 (Ch. 40-60)	N/A	14.5	±1.5	13	16
WLAN – 5 GHz Band I, II	802.11a/n20 (Ch. 36-64)	N/A	12.5	±1.5	11	14
WLAN - 5 GHz Band I, II	40 MHz SISO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band I, II	40 MHz MIMO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band I, II	80 MHz SISO	N/A	12	±1.5	10.5	13.5
WLAN – 5 GHz Band I, II	80 MHz MIMO	N/A	12	±1.5	10.5	13.5
WLAN – 5 GHz Band III	802.11a/n20 (Ch. 104-136)	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band III	802.11a/n20 (Ch. 100)	N/A	12	±1.5	10.5	13.5
WLAN – 5 GHz Band III	802.11a/n20 (Ch. 140)	N/A	11.5	±1.5	10	13
WLAN – 5 GHz Band III	40 MHz SISO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band III	40 MHz MIMO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band III	80 MHz SISO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band III	80 MHz MIMO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band IV	802.11a/n20 (Ch. 149-165)	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band IV	40 MHz SISO & MIMO	N/A	15	±1.5	13.5	16.5
WLAN – 5 GHz Band IV	80 MHz SISO & MIMO	N/A	15	±1.5	13.5	16.5

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

These measurements are performed using the DASY52 automated dosimetric assessment system. The DASY52 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Intel Core2 computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 2.1).

System Hardware

A cell controller system contains the power supply, robot controller teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the HP Intel Core2 computer with Windows XP system and SAR Measurement Software DASY52, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

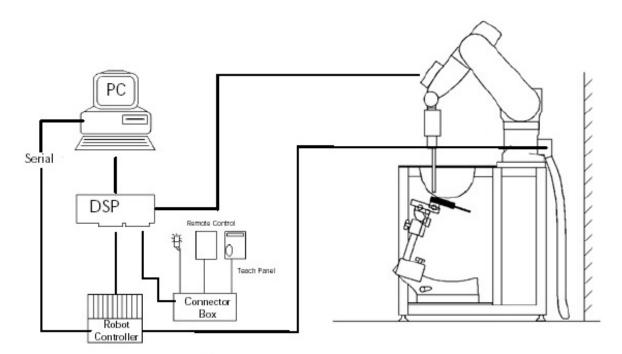


Figure 2.1 SAR Measurement System Setup

System Electronics

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

Probe Measurement System

The SAR measurements were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration (see Fig. 2.2) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi fiber line ending at the front of the probe tip. (see Fig. 2.3) It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY52 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

DAE System

Probe Specifications

Calibration: In air from 10 MHz to 6.0 GHz

In brain and muscle simulating tissue at Frequencies of 450 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 3500 MHz, 5200

MHz, 5300 MHz, 5600 MHz, 5800 MHz

Frequency: 10 MHz to 6 GHz

Linearity: ±0.2dB (30 MHz to 6 GHz)

Dynamic: 10 mW/kg to 100 W/kg

Range: Linearity: ±0.2dB

Dimensions: Overall length: 330 mm

Tip length: 20 mm

Body diameter: 12 mm

Tip diameter: 2.5 mm

Distance from probe tip to sensor center: 1 mm

Application: SAR Dosimetry Testing

Compliance tests of wireless device

Figure 2.2 Triangular Probe Configurations

Figure 2.3 Probe Thick-Film Technique

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in and found to be better than +/-0.25dB. The sensitivity parameters (Norm X, Norm Y, Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

Temperature Assessment *

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium, correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor based temperature probe is used in conjunction with the E-field probe

$$SAR = C \frac{\Delta T}{\Delta t}$$

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

where: where:

 Δt = exposure time (30 seconds), σ = simulated tissue conductivity,

C = heat capacity of tissue (brain or muscle), ρ = Tissue density (1.25 g/cm³ for brain tissue)

 ΔT = temperature increase due to RF exposure.

SAR is proportional to ΔT / Δt , the initial rate of tissue heating, before thermal diffusion takes place.

Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E- field;

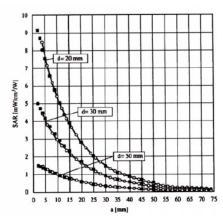


Figure 2.4 E-Field and Temperature Measurements at 900MHz

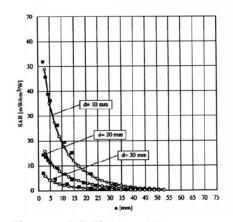


Figure 2.5 E-Field and Temperature Measurements at 1800MHz

Data Extrapolation

The DASY52 software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given like below:

with
$$V_i = \text{compensated signal of channel i}$$
 $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $U_i = \text{input signal of channel i}$ $(i=x,y,z)$ $C_i = \text{crest factor of exciting field}$ $C_i = C_i = C_i$ $C_i = C_i = C_i$ $C_i = C_$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: with
$$V_i$$
 = compensated signal of channel i (i = x,y,z)
Norm_i = sensor sensitivity of channel i (i = x,y,z)
 $\mu V/(V/m)^2$ for E-field probes
ConvF = sensitivity of enhancement in solution
 E_i = electric field strength of channel i in V/m

The RSS value of the field components gives the total field strength (Hermetian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$
 with SAR = local specific absorption rate in W/g = total field strength in V/m = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 with $P_{pwe} = \text{equivalent power density of a plane wave in W/cm}^2$ = total electric field strength in V/m

Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges 2GHz is 15 mm in x and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges						
Frequency range	Grid spacing					
≤ 2 GHz	≤ 15 mm					
2 – 4 GHz	≤ 12 mm					
4 – 6 GHz	≤ 10 mm					

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

• A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x,y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges							
Frequency range	Grid spacing	Grid spacing	Minimum zoom				
i requericy rarige	for x, y axis	for z axis	scan volume				
≤ 2 GHz	≤ 8 mm	≤ 5 mm	≥ 30 mm				
2 – 3 GHz	≤ 5 mm	≤ 5 mm	≥ 28 mm				
3 – 4 GHz	≤ 5 mm	≤ 4 mm	≥ 28 mm				
4 – 5 GHz	≤ 4 mm	≤ 3 mm	≥ 25 mm				
5 – 6 GHz	≤ 4 mm	≤ 2 mm	≥ 22 mm				

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on Efield probes.

SAM PHANTOM

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (see Fig. 2.6)

Phantom Specification

Phantom: SAM Twin Phantom (V4.0)

Shell Material: Vivac Composite **Thickness:** 2.0 ± 0.2 mm

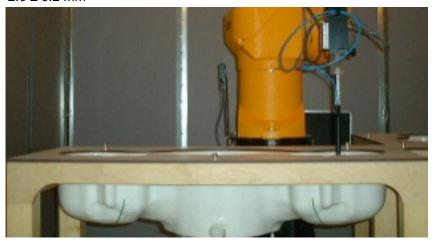


Figure 2.6 SAM Twin Phantom

Device Holder for Transmitters

In combination with the SAM Twin Phantom V4.0 the Mounting Device (see Fig. 2.7), enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately, and repeat ably be positioned according to the FCC, CENELEC, IEC and IEEE specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Figure 2.7 Mounting Device

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produce infinite number of configurations. To produce the worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

3. Probe and Dipole Calibration

See Appendix D and E.

4. Phantom & Simulating Tissue Specifications

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in IEEE1528-2013 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 4.1 Typical Composition of Ingredients for Tissue

Ingredients		Simulating Tissue					
		2450 MHz Body			5785 MHz Body		
Mixing Percentage							
Water		73.20					
Sugar		0.00					
Salt		0.04	Proprietary Mixture				
HEC		0.00	Procured from Speag				
Bactericide 0.00							
DGBE		26.70					
Dielectric Constant	Target	52.70	48.96	48.47	48.25		
Conductivity (S/m)	Target	1.95	5.35	5.77	5.96		

5. ANSI/IEEE C95.1 – 1992 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 5.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Head	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

6. Measurement Uncertainty

Measurement uncertainty table is not required per KDB 865664 D01 v01 section 2.8.2 page 12. SAR measurement uncertainty analysis is required in the SAR report only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR. The equivalent ratio (1.5/1.6) should be applied to extremity and occupational exposure conditions. The highest reported value is less than 1.5 W/kg. Therefore, the measurement uncertainty table is not required.

7. System Validation

Tissue Verification

Table 7.1 Measured Tissue Parameters

		2450 MHz Body		5200 MHz Body	
Date(s)		Nov.	Nov. 20, 2014		18, 2014
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured
Dielectric Constant: ε		52.70	52.58	49.01	48.94
Conductivity: σ		1.95	2.00	5.30	5.34
		5600 l	MHz Body	5800 1	MHz Body
Date(s)		Nov. 18, 2014		Nov. 18, 2014	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured
Dielectric Constant: ε		48.47	48.36	48.20	48.05
Conductivity: σ		5.77	5.80	6.00	6.04

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the ±10% of the specifications at the test frequency by using the system kit. Power is normalized to 1 watt. (Graphic Plots Attached)

Table 7.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Tissue Used for Verification	Deviation Target and Fast SAR to SAR (%)	Plot Number
20-Nov-2014	2450 MHz	51.50	52.00	Body	+ 0.97	1
18-Nov-2014	5200 MHz	73.40	73.60	Body	+ 0.27	2
18-Nov-2014	5600 MHz	79.10	79.90	Body	+ 1.01	3
18-Nov-2014	5800 MHz	72.90	72.10	Body	- 1.10	4

See Appendix A for data plots.

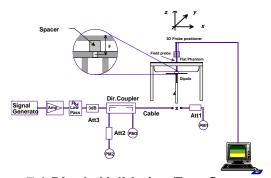


Figure 7.1 Dipole Validation Test Setup

8. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

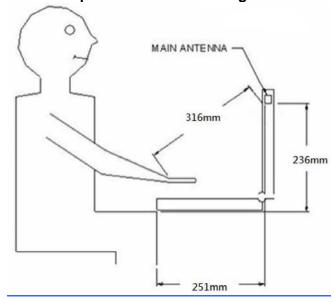
Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

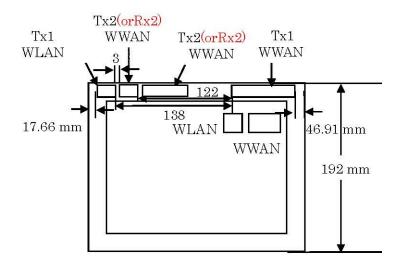
The EUT was tested in on all sides of the device where the antenna was within 25 mm of that side in the tablet mode. The laptop mode was not tested as the antennas were greater than 20 cm. All measurements for the tablet condition were conducted with the side of the device in direct contact with the phantom. For sides of the antenna which were not measured in this report, the SAR was conduct on the module in the modular approval with the maximum distance of 8 mm on all six sides of the antenna. Therefore, the requirements mentioned in RSS-102 Supplementary Procedures (SPR)-001 – SAR Testing Requirements with Regards to Bystanders for Laptop Type Computers with Antennas Built-In on Display Screen (Laptop/Tablet Mode) are covered.

The Bluetooth transmitter does simultaneously transmit with the WiFi transmitter. When the BT is turned on, it transmits on Main and the WiFi transmits on Aux. Simultaneous transmission is evaluated on page 43.

The main antenna was evaluated for stand-alone SAR per the Draft RSS-102 Issue 5 for BT. The Tablet Back, Top Edge and Left Side was tested. The Bottom and Right sides were excluded due to distance from the antenna (192 mm and 218 mm respectively). Please see data sheet summary on page 38.


The data rates used when evaluating the WiFi transmitter were the lowest data rates for each mode. The device was operating at its maximum output power at the lowest data rate for all measurements.

The tablet was using the Intel test utility DRTU Version 1.7.3-955 and the device driver was version 17.1.0.13.


The antenna was on a minimum of 10 cm of Styrofoam during each test. The following is a pictorial drawing of the locations and separation distances.

Location and Separation Distances Diagrams Tablet Mode

Location and Separation Distances Diagrams Laptop Mode

Band 2450 MHz	802.11b	20 20	1 6 11 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Frequency (MHz) 2412 2437 2462 2412 2437 2462 2412 2437 2462	Rate 1 Mbps	Chain A Chain B	(dBm) 16.49 17.50 16.47 16.47 17.50 16.45		
2450 MHz	802.11g		6 11 1 6 11 1 6 11 1 1	2437 2462 2412 2437 2462 2412 2437	1 Mbps		17.50 16.47 16.47 17.50 16.45		
2450 MHz	802.11g		11 1 6 11 1 6 11 1	2462 2412 2437 2462 2412 2437	1 Mbps		16.47 16.47 17.50 16.45		
2450 MHz	802.11g		1 6 11 1 6 11	2412 2437 2462 2412 2437	1 Mbps	Chain B	16.47 17.50 16.45		
2450 MHz		20	11 1 6 11	2462 2412 2437		Chain B	17.50 16.45		
2450 MHz		20	1 6 11 1	2412 2437					
2450 MHz		20	6 11 1	2437					
2450 MHz		20	11 1			Chain A	13.97 17.49		
2450 MHz		20		2402	C Mhas		12.42		
2450 MHz				2412	6 Mbps		14.43		
2450 MHz			6 11	2437 2462		Chain B	17.44 12.46		
			1	2412			13.92		
			6	2437		Chain A	17.46		
	802.11n	20	11	2462	HT4		12.44		
			<u>1</u> 6	2412 2437		Chain B	14.39 17.42		
			11	2462		Chair	12.40		
			3	2422			13.42		
			6	2437		Chain A	16.46		
	802.11n	40	9 3	2452 2422	HT4		12.40 13.43		
			6	2437		Chain B	16.47		
			9	2452			11.42		
					36	5180			13.97
			40 44	5200 5220		Chain A	15.92 16.00		
	802.11a	20	48	5240	6 Mbps	Chain B	15.93		
		20	36	5180			13.92		
			40 44	5200 5220			15.96 16.00		
			48	5240			15.94		
			36	5180	HT4	Chain A Chain B	13.92		
	802.11n 20		40	5200			15.90		
5.15-5.25 GHz			44 48	5220 5240			16.00 15.95		
		20	36	5180			13.97		
			40	5200			15.94		
			44	5220 5240			16.00		
			48 38	5190			15.93 11.94		
	802.11n	40	46	5230	HT4	Chain A	16.47		
	002.1111	40	38	5190	HT4	Chain B	13.42		
<u> </u>			46	5230		Chain A	16.49 13.47		
	802.11ac	80	42	5210	VHT6	Chain B	13.42		
	<u> </u>		52	5260			15.92		
			56	5280		Chain A	15.89		
	002.44	22	60 64	5300 5320	CAN		16.00 13.48		
	802.11a	20	52	5260	6 Mbps		15.92		
			56	5280		Chain B	15.97		
			60 64	5300 5320			16.00 13.46		
-			52	5260			13.46 15.89		
			56	5280		Chain A	15.87		
5.25-5.35 GHz			60	5300			15.96		
	802.11n	20	64 52	5320 5260	HT4		13.45 15.92		
			56	5280		Chain B	15.96		
			60	5300		Citalii B	15.98		
<u> </u>			64	5320			13.42		
			54 62	5270 5310	HT4	Chain A	16.47 13.43		
	802.11n	40	54	5270	HT4	Chain B	16.44		
 			62	5310	п14		13.49		
	802.11ac	80	58	5290	VHT6	Chain A Chain B	13.42 13.48		

Mode MHz Chaine	Power		Data	Frequency		Bandwidth		
104 5520 112 112 5560 116 5580 116 5580 116 5580 116 5580 116 5580 116 5580 116 5580 116 5580 118 5580	(dBm)	Antenna			Channel		Mode	Band
108	13 42	_						
112 5560 120 5600 124 5620 136 5880 132 5660 136 5880 132 5660 136 5880 137 5880 137 5880 138 5540 138 5540 136 5880 136 5880 136 5880 137 5880 137 5880 138 138 5880 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 138 5880 138 1	16.43	<u> </u>						
116 5580 Chain A 120 5600 124 5620 128 5640 129 128 5640 129 128 5640 129 128 5640 129 128 5640 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129 128 129	16.37							
120	16.50 16.42							
124 5620 132 5660 132 5660 132 5660 132 5660 1340 5700 104 5520 116 5880 112 5560 116 5880 120 5600 136 5880 132 5660 132 5660 136 5880 132 5660 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 136 5880 137 5660 138 5540 138 5540 1312 5560 136 5880 1312 5660 1316 5880 1312 5660 1316 5880 1312 5660 1316 5880 1312 5660 1316 5880 1316 5880 1316 5880 1317 5860 1316 5880 131	16.47	Chain A						
802.11a 20	16.44							
136 5680 140 5700 100 5500 104 5520 108 5540 112 5560 116 5580 120 5600 124 5620 128 5640 112 5560 116 5580 120 5600 124 5620 128 5640 129 5600 124 5620 124 5620 124 5620 124 5620 124 5620 124 5620 125 5600 120 5600 120 5600 120 5600 120 5600 120 5600 120 5600 1212 5560 136 5680 13	16.37			5640				
Section Sect	16.50							
\$02.11a	16.47 12.98							
104 5520 108 5540 112 5560 116 5580 120 5600 124 5620 128 5640 132 5660 136 5580 136 5680 136 5680 136 5680 137 5600 136 5680 137 5600 136 5680 137 5600 137 5600 138 5540 132 5660 138 5540 132 5660 138 5540 132 5660 138 5540 132 5660 138 5540 132 5660 138 5540 132 5660 136 5680 130 5550 130 138 55580 Chain A 130 138 55580 Chain A 130 1	13.37		6 Mbps			20	802.11a	
112 5560 120 5600 124 5620 136 5680 1312 5660 1313 5660 1313 5660 1313 5660 1313 5660 1314 5700 100 5550 1316 5680 1316 5680 1316 5680 1316 5680 1316 5680 1316 5680 1316 5680 1316 5580 1318 5580 1318 1318 1318 1318 1318 1318 1318 1318 1318 1318 1318 1318 1318	16.38							
116 5580 120 5600 124 5620 128 5640 1332 5660 136 5580 140 5700 116 5580 124 5660 136 5680 13	16.46			5540	108			
120 5600 Chain B 124 5620 128 5640 132 5660 132 5660 140 5700 140 5520 140 5520 140 5520 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5520 140 5520 140 5520 140 5520 140 5520 140 5520 140 5520 140 5520 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 5580 140 140 5700 140 140 5700 140 140 5700 140 140 5700 140 5550 140 5500 140 5550 140 5550 140 5550 140 5550 140 55	16.50	<u> </u>						
124 5620 128 5640 132 5660 1340 5700 1400 5700 1400 5520 1400 5540 1400 5700 1400 5520 1400 5560 1400 5560 1400 1400 5560 1400 1400 1500 1400 1500 1400 150	16.42	Chain B						
128 5640 132 5660 136 5680 136 5680 140 5700 140 5520 140 5520 140 5520 140 5520 140 5580 140 112 5560 140 5580 120 5600 124 5620 128 5640 132 5660 136 5580 120 5500 136 5580 136 5580 140 5700 140 5520 108 5540 116 5580 120 5600 116 5580 120 5600 116 5580 120 5600 124 5620 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 133 5680 1340 5700 130 5550 110 5550 118 5580 Chain A 130 1318 5580 Chain A 130 Chain A 1	16.48 16.44	Cildiii b						
132 5660 136 5680 140 5700 100 5500 104 5520 108 5540 112 5560 122 5660 133 5560 136 5580 132 5660 136 5580 136 5580 136 5580 137 138 5640 138 5580 138 5580 138 5580 138 5580 138 5580 138 5640 138 5580 138 5640 132 5660 138 5580 138 5580 138 5640 132 5660 138 5580 138 5640 132 5660 138 5640 132 5660 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5550 136 5550 138 5550 138 5550 138 5550 138 5550 138 5550 138 5580 Chain A 138 Ch	16.40							
140 5700 100 5500 104 5520 108 5540 116 5580 120 5600 120 5600 132 5660 132 5660 132 5660 1340 5520 108 5540 116 5580 132 5660 1340 5700 104 5520 108 5540 116 5580 116 5580 116 5580 120 5600 120 5600 124 5620 132 5660 136 5680 1	16.50							
100 5500 104 5520 118 5540 112 5560 116 5580 120 5600 124 5620 132 5660 132 5660 132 5660 132 5660 132 5660 100 5500 100 5500 100 5500 116 5580 112 5560 116 5580 112 5560 116 5580 120 5600 116 5580 120 5600 116 5580 120 5600 124 5620 128 5640 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 133 5580 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 130 5550 130 5550 130 130 5550 130 5550 130 130 1	16.47							
104 5520 108 5540 116 5580 120 5600 124 5620 136 5580 120 132 5660 136 5580 132 5660 136 5580 136 5680 136 5580 136 5680 136 5580 136 5680 136 5580 136 5680 136 5580 136 5680 136 5580 136 5680 136 5580 136 5680 136 5680 136 5680 136 5680 1320 56600 136 5680 1320 56600 136 5680 1320 5660 136 5680 130 5550 130 5550 130 5550 130 5550 130 5550 130 5550 130 5550 130 5550 130 5550 1318 5580 Chain A 1318 Chain	12.96							
108 5540 112 5560 1 116 5580 1 120 5600 1 124 5620 1 128 5660 1 136 5680 1 120 5500 1 124 5620 1 124 5520 1 124 5520 1 124 5580 1 124 5620 1 124 5620 1 124 5620 1 124 5620 1 124 5620 1 128 5640 1 128 5640 1 128 5640 1 128 5640 1 128 5660 1 136 5680 1 140 5700 1 140 5700 1 140 5700 1 140 5700 1 140 5700 1 140 5700 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 1 140 5550 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140 5560 1 140	13.45 16.42							
112 5560 116 5580 124 5620 128 5640 132 5660 136 5580 128 5640 132 5660 1340 5700 140 5520 116 5580 120 5600 140 5520 1608 5540 116 5580 120 5600 124 5620 128 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 1332 5660 132 5660 136 5680 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5700 140 5750 140 5750 140 5550 140 140 5550 140 5	16.42							
116 5580 120 5600 124 5620 128 5640 132 5660 136 5680 140 5700 116 5580 120 5600 116 5580 120 5600 124 5620 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 136 5680 140 5700 102 5510 110 5550 110 5550 110 5550 110 5550 110 5550 110 5550 118 5580 Chain A	16.38							
124 5620 128 5640 132 5660 136 5680 140 5700 100 5500 104 5520 112 5560 112 5560 112 5560 113 5580 120 5600 124 5620 128 5640 131 5620 140 5700 110 5580 110 5580 120 5600 124 5620 128 5640 132 5660 133 5680 130 5700 100 5550 110 5550 110 5550 110 5550 111 5550	16.46	Chain A	HT4					
128 5640 132 5660 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5680 136 5580 136 5580 136 5680 132 5660 132 5660 132 5660 132 5660 132 5660 136 5680 136 5680 136 5680 136 5580 130 5550 130 5550 130 5550 1318 5580 Chain A 130 5680 130 5580 Chain A 130 5680 130 5580 Chain A 130 5580 Chain A 130 5580 Chain A 130 5680 Chain A 130	16.47							
132 5660 136 5680 140 5700 100 5500 116 5580 116 5580 124 5620 124 5620 128 5660 132 5660 132 5660 132 5660 132 5660 132 5660 132 5660 136 5680 140 5700 100 5550 110 5550 110 5550 110 5550 110 5550 118 5580 Chain A 1	16.41							
136 5680 140 5700 100 5500 104 5520 108 5540 112 5560 116 5580 124 5620 124 5620 132 5660 132 5660 132 5660 132 5660 136 5580 140 5700 102 5510 110 5550 118 5580 Chain A 1	16.40 16.39							
802.11n 20	16.48							
100 5500 104 5520 108 5540 112 5560 116 5580 120 5600 124 5620 128 5640 132 5660 132 5660 130 5700 140 5700 110 5550 110 5550 118 5580 Chain A	12.91						902.115	5600 MHz
108	13.47	Chain B		5500		20	802.1111	
112 5560 116 5580 120 5600 124 5620 128 5640 132 5660 136 5680 140 5700 102 5510 110 5550 118 5580 Chain A	16.43							
116	16.38							
120 5600 Chain B 124 5620 128 5640 132 5660 136 5680 140 5700 102 5510 110 5550 118 5580 Chain A 1	16.37 16.39							
124 5620 128 5640 132 5660 136 5680 140 5700 102 5510 110 5550 118 5580 Chain A	16.42							
132 5660 136 5680 140 5700 102 5510 110 5550 118 5580 Chain A	16.45							
136 5680 140 5700 1	16.46							
140 5700 1 102 5510 1 110 5550 1 118 5580 Chain A	16.44							
102 5510 110 5550 118 5580 Chain A	16.48							
110 5550 118 5580 Chain A	12.95 13.42	-				+		1
118 5580 Chain A	16.48	<u> </u>						1
1 126 5610 1	16.42	Chain A				1		1
	16.44	Ļ						
	16.43		HT4			40	802.11n	1
	13.89 16.38	-						
	16.46	Chain B						1
	16.47							
134 5670	16.42							
	16.42		,	5720	144	20		1
VHT0 Chain B	16.45		VHT0					
	16.46 16.47			5710	142	40		1
106 5520	13.42	CHAITE		5530	106		002.44	1
602.11dt 122 5610 Chain A	16.45	Chain A					802.11ac	
80 138 5690 VHT6	16.48		VHT6		138	80		1
106 5530	13.40	Ch-i- D	0					1
	16.39 16.46	Cnain B				1		1

Band	Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	Data Rate	Antenna	Power (dBm)
			149	5745			16.42
			153	5765			16.45
			157	5785		Chain A	16.50
			161	5805			16.43
	802.11a	20	165	5825	6 Mbps		16.39
	002.110	20	149	5745	o iviops	_	16.47
			153	5765			16.43
5800 MHz 802.11n		157	5785		Chain B	16.50	
		161	5805			16.42	
		165	5825			16.44	
			149	5745			16.43
		153	5765			16.42	
			157	5785	HT8	Chain A	16.48
		1n 20	161	5805			16.43
	802 11n		165	5825			16.44
	20	149	5745	По		16.40	
		153	5765		Chain B	16.37	
		157	5785			16.43	
			161	5805			16.42
		165	5825			16.37	
			151	5755		Chain A	16.46
	802.11n	40	159	5795	HT8	CHAILLY	16.41
	002.1111	40	151	5755	пів	Chain B	16.43
			159	5795			16.48
	802.11ac	80	155	5775	VHT6	Chain A Chain B	16.42 16.44

Figure 8.1 Test Reduction Table - 2.4 GHz Main

i igaic c	- · · · · · · · · · · · · · · · · · · ·		
Mode	Side	Required Channel	Tested/Reduced
		1 – 2412 MHz	Tested
	Back	6 – 2437 MHz	Tested
		11 – 2462 MHz	Tested
		1 – 2412 MHz	Reduced ¹
	Top	6 – 2437 MHz	Tested
000 445	·	11 – 2462 MHz	Reduced ¹
802.11b	Left	1 – 2412 MHz	Reduced ¹
		6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ³
	Bottom & Right	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
	Тор	1 – 2412 MHz	Reduced ²
		6 – 2437 MHz	Reduced ²
000.44		11 – 2462 MHz	Reduced ²
802.11g	Left	1 – 2412 MHz	Reduced ²
		6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Bottom & Right	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
802.11n		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Тор	6 – 2437 MHz	Reduced ²
	' T	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Left	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Bottom & Right	6 – 2437 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[[(3.0)/(\sqrt{2.462})]*50 \text{ mm}]+[(192-50 \text{ mm})*10]=1423 \text{ mW}$ which is greater than 44.7 mW

Figure 8.2 Test Reduction Table - 2.4 GHz Aux

i igaio (=:: 0::= / .4//
Mode	Side	Required Channel	Tested/Reduced
		1 – 2412 MHz	Reduced ¹
	Back	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ¹
	Тор	6 – 2437 MHz	Tested
000 445	· · ·	11 – 2462 MHz	Reduced ¹
802.11b		1 – 2412 MHz	Reduced ¹
	Left	6 – 2437 MHz	Tested
		11 – 2462 MHz	Reduced ¹
		1 – 2412 MHz	Reduced ³
	Bottom & Right	6 – 2437 MHz	Reduced ³
		11 – 2462 MHz	Reduced ³
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Тор	6 – 2437 MHz	Reduced ²
000 11 ~		11 – 2462 MHz	Reduced ²
802.11g		1 – 2412 MHz	Reduced ²
	Left	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Bottom & Right	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Back	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Тор	6 – 2437 MHz	Reduced ²
000 44=		11 – 2462 MHz	Reduced ²
802.11n		1 – 2412 MHz	Reduced ²
	Left	6 – 2437 MHz	Reduced ²
	Ī	11 – 2462 MHz	Reduced ²
		1 – 2412 MHz	Reduced ²
	Bottom & Right	6 – 2437 MHz	Reduced ²
		11 – 2462 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[[(3.0)/(\sqrt{2.462})]*50 \text{ mm}]+[(192-50 \text{ mm})*10]=1423 \text{ mW}$ which is greater than 44.7 mW

Figure 8.3 Test Reduction Table - 5.1 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		36 – 5180 MHz	Reduced ¹
	Back	40 – 5200 MHz	Reduced ¹
	Dack	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Tested
	Тор	44 – 5220 MHz	Tested
802.11a		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ¹
	Left	40 – 5200 MHz	Reduced ¹
	Len	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ³
	Bottom & Right	40 – 5200 MHz	Reduced ³
		44 – 5220 MHz	Reduced ³
		48 – 5240 MHz	Reduced ³
		36 – 5180 MHz	Reduced ²
	Back	40 – 5200 MHz	Reduced ²
	Dack	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Тор	44 – 5220 MHz	Reduced ²
802.11n		48 – 5240 MHz	Reduced ²
5150 MHz		36 – 5180 MHz	Reduced ²
	Left	40 – 5200 MHz	Reduced ²
	Loit	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Bottom & Dight	40 – 5200 MHz	Reduced ²
	Bottom & Right	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Back	42 – 5210 MHz	Reduced ²
802.11ac	Тор	42 – 5210 MHz	Tested
5210 MHz	Left	42 – 5210 MHz	Reduced ²
	Bottom & Right	42 – 5210 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{192-50 \text{ mm}\}*10]=1485 \text{ mW}$ which is greater than 44.7 mW

Figure 8.4 Test Reduction Table – 5.1 GHz Aux

rigaro			
Mode	Side	Required Channel	Tested/Reduced
		36 – 5180 MHz	Reduced ¹
		40 – 5200 MHz	Reduced ¹
	Back	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ¹
	T	40 – 5200 MHz	Reduced ¹
	Тор	44 – 5220 MHz	Tested
802.11a		48 – 5240 MHz	Reduced ¹
5150 MHz		36 – 5180 MHz	Reduced ¹
	1 044	40 – 5200 MHz	Reduced ¹
	Left	44 – 5220 MHz	Tested
		48 – 5240 MHz	Reduced ¹
		36 – 5180 MHz	Reduced ³
	Bottom & Right	40 – 5200 MHz	Reduced ³
		44 – 5220 MHz	Reduced ³
		48 – 5240 MHz	Reduced ³
		36 – 5180 MHz	Reduced ²
	Back	40 – 5200 MHz	Reduced ²
	Dack	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
		40 – 5200 MHz	Reduced ²
	Тор	44 – 5220 MHz	Reduced ²
802.11n		48 – 5240 MHz	Reduced ²
5150 MHz		36 – 5180 MHz	Reduced ²
	Left	40 – 5200 MHz	Reduced ²
	Leit	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
		36 – 5180 MHz	Reduced ²
	Bottom & Right	40 – 5200 MHz	Reduced ²
	Bollom & Right	44 – 5220 MHz	Reduced ²
		48 – 5240 MHz	Reduced ²
	Back	42 – 5210 MHz	Reduced ²
802.11ac	Тор	42 – 5210 MHz	Reduced ²
5210 MHz	Left	42 – 5210 MHz	Reduced ²
the same for het	Bottom & Right	42 – 5210 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.24})]*50 \text{ mm}\}]+[\{192-50 \text{ mm}\}*10]=1485 \text{ mW}$ which is greater than 44.7 mW

Figure 8.5 Test Reduction Table – 5.2 GHz Main

rigaroo	io root read	# # # # # # # #	<u> </u>
Mode	Side	Required Channel	Tested/Reduced
		52 – 5260 MHz	Reduced ¹
	Deal	56 – 5280 MHz	Tested
	Back	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ¹
		56 – 5280 MHz	Tested
	Тор	60 – 5300 MHz	Tested
802.11a	·	64 – 5320 MHz	Reduced ¹
5250 MHz		52 – 5260 MHz	Reduced ¹
	1 - 6	56 – 5280 MHz	Reduced ¹
	Left	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ³
	Bottom & Right	56 – 5280 MHz	Reduced ³
		60 – 5300 MHz	Reduced ³
		64 – 5320 MHz	Reduced ³
		52 – 5260 MHz	Reduced ²
		56 – 5280 MHz	Reduced ²
	Back	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
		52 – 5260 MHz	Reduced ²
		56 – 5280 MHz	Reduced ²
	Тор	60 – 5300 MHz	Reduced ²
802.11n	·	64 – 5320 MHz	Reduced ²
5250 MHz		52 – 5260 MHz	Reduced ²
	1 -44	56 – 5280 MHz	Reduced ²
	Left	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
		52 – 5260 MHz	Reduced ²
	Dattern O. Diedat	56 – 5280 MHz	Reduced ²
	Bottom & Right	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
	Back	58 – 5290 MHz	Reduced ²
802.11ac	Тор	58 – 5290 MHz	Tested
5210 MHz	Left	58 – 5290 MHz	Reduced ²
	Bottom & Right	58 – 5290 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.32})]*50 \text{ mm}\}]+[\{192-50 \text{ mm}\}*10]=1485 \text{ mW}$ which is greater than 44.7 mW

Figure 8.6 Test Reduction Table - 5.2 GHz Aux

rigaro	10 1001 1100	<u> </u>	<u> </u>
Mode	Side	Required Channel	Tested/Reduced
		52 – 5260 MHz	Reduced ¹
		56 – 5280 MHz	Reduced ¹
	Back	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ¹
		56 – 5280 MHz	Reduced ¹
	Тор	60 – 5300 MHz	Tested
802.11a	·	64 – 5320 MHz	Reduced ¹
5250 MHz		52 – 5260 MHz	Reduced ¹
	1.4	56 – 5280 MHz	Reduced ¹
	Left	60 – 5300 MHz	Tested
		64 – 5320 MHz	Reduced ¹
		52 – 5260 MHz	Reduced ³
	Bottom & Right	56 – 5280 MHz	Reduced ³
		60 – 5300 MHz	Reduced ³
		64 – 5320 MHz	Reduced ³
	5 .	52 – 5260 MHz	Reduced ²
		56 – 5280 MHz	Reduced ²
	Back	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
		52 – 5260 MHz	Reduced ²
		56 – 5280 MHz	Reduced ²
	Тор	60 – 5300 MHz	Reduced ²
802.11n	•	64 – 5320 MHz	Reduced ²
5250 MHz		52 – 5260 MHz	Reduced ²
	l off	56 – 5280 MHz	Reduced ²
	Left	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
		52 – 5260 MHz	Reduced ²
	Dattana 0 Dialat	56 – 5280 MHz	Reduced ²
	Bottom & Right	60 – 5300 MHz	Reduced ²
		64 – 5320 MHz	Reduced ²
	Back	58 – 5290 MHz	Reduced ²
802.11ac	Тор	58 – 5290 MHz	Reduced ²
5210 MHz	Left	58 – 5290 MHz	Reduced ²
	Bottom & Right	58 – 5290 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.32})]*50 \text{ mm}\}]+[\{78-50 \text{ mm}\}*10]=1485 \text{ mW}$ which is greater than 44.7 mW

Figure 8.7 Test Reduction Table - 5.6 GHz Main

Mode	Side	Poguired Channel	Tostod/Boducad
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Tested
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Back	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Tested
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Top	120 – 5600 MHz	Reduced ¹
	·	124 – 5620 MHz	Tested
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
802.11a		140 – 5700 MHz	Reduced ¹
5600 MHz		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Left	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ³
		104 – 5520 MHz	Reduced ³
		108 – 5540 MHz	Reduced ³
		112 – 5560 MHz	Reduced ³
		116 – 5580 MHz	Reduced ³
	Bottom & Right	120 – 5600 MHz	Reduced ³
	Dottom & riight	124 – 5620 MHz	Reduced ³
		128 – 5640 MHz	Reduced ³
		132 – 5660 MHz	Reduced ³
		136 – 5680 MHz	Reduced ³
		140 – 5700 MHz	Reduced ³
41		140 - 5700 WIAZ	Reduced

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.70})]*50 \text{ mm}\}]+[\{192-50 \text{ mm}\}*10]=1482 \text{ mW}$ which is greater than 44.7 mW

Figure 8.8 Test Reduction Table – 5.6 GHz Main

i igai o o	10 1001 1100		010 011 <u>2</u> 1114111
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Back	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Top	120 – 5600 MHz	Reduced ²
	·	124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
802.11n		140 – 5700 MHz	Reduced ²
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Left	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Bottom & Right	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5.

Figure 8.9 Test Reduction Table – 5.6 GHz Main

Mode	Side	Required Channel	Tested/Reduced
		106 – 5530 MHz	Reduced ²
	Back	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Тор	122 – 5610 MHz	Tested
802.11ac		138 – 5690 MHz	Reduced ²
5600 MHz	Left	106 – 5530 MHz	Reduced ²
		122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Bottom & Right	122 – 5610 MHz	Reduced ²
1		138 – 5690 MHz	Reduced ²

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5.

Figure 8.10 Test Reduction Table – 5.6 GHz Aux

		duction rable -	- J.O GITZ AUX
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Back	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Тор	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
802.11a		140 – 5700 MHz	Reduced ¹
5600 MHz		100 – 5500 MHz	Reduced ¹
		104 – 5520 MHz	Reduced ¹
		108 – 5540 MHz	Reduced ¹
		112 – 5560 MHz	Reduced ¹
		116 – 5580 MHz	Tested
	Left	120 – 5600 MHz	Reduced ¹
		124 – 5620 MHz	Reduced ¹
		128 – 5640 MHz	Reduced ¹
		132 – 5660 MHz	Reduced ¹
		136 – 5680 MHz	Tested
		140 – 5700 MHz	Reduced ¹
		100 – 5500 MHz	Reduced ³
		104 – 5520 MHz	Reduced ³
		108 – 5540 MHz	Reduced ³
		112 – 5560 MHz	Reduced ³
		116 – 5580 MHz	Reduced ³
	Bottom & Right	120 – 5600 MHz	Reduced ³
		124 – 5620 MHz	Reduced ³
		128 – 5640 MHz	Reduced ³
		132 – 5660 MHz	Reduced ³
		136 – 5680 MHz	Reduced ³
		140 – 5700 MHz	Reduced ³

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

 $[\{[(3.0)/(\sqrt{5.70})]*50 \text{ mm}\}]+[\{192-50 \text{ mm}\}*10]=1482 \text{ mW}$ which is greater than 44.7 mW

Figure 8.11 Test Reduction Table - 5.6 GHz Aux

		auction rable -	
Mode	Side	Required Channel	Tested/Reduced
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Back	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Top	120 – 5600 MHz	Reduced ²
	,	124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
802.11n		140 – 5700 MHz	Reduced ²
5600 MHz		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Left	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²
		100 – 5500 MHz	Reduced ²
		104 – 5520 MHz	Reduced ²
		108 – 5540 MHz	Reduced ²
		112 – 5560 MHz	Reduced ²
		116 – 5580 MHz	Reduced ²
	Bottom & Right	120 – 5600 MHz	Reduced ²
		124 – 5620 MHz	Reduced ²
		128 – 5640 MHz	Reduced ²
		132 – 5660 MHz	Reduced ²
		136 – 5680 MHz	Reduced ²
		140 – 5700 MHz	Reduced ²

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5.

Figure 8.12 Test Reduction Table – 5.6 GHz Aux

Mode	Side	Required Channel	Tested/Reduced
		106 – 5530 MHz	Reduced ²
	Back	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Тор	122 – 5610 MHz	Reduced ²
802.11ac		138 – 5690 MHz	Reduced ²
5600 MHz	Left	106 – 5530 MHz	Reduced ²
		122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²
		106 – 5530 MHz	Reduced ²
	Bottom & Right	122 – 5610 MHz	Reduced ²
		138 – 5690 MHz	Reduced ²

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the a mode, testing is not required per KDB 248227 page 5.

Figure 8.13 Test Reduction Table – 5.8 GHz Main

		auction rable -	
Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Back	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Tested
		153 – 5765 MHz	Reduced ¹
	Тор	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
802.11a		165 – 5825 MHz	Tested
5800 MHz		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Left	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Bottom & Right	157 – 5785 MHz	Reduced ³
		161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Back	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Тор	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
802.11n		165 – 5825 MHz	Reduced ²
5800 MHz		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Left	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Bottom & Right	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
	Back	155 – 5775 MHz	Reduced ²
802.11ac 5775 MHz	Тор	155 – 5775 MHz	Tested
	Left	155 – 5775 MHz	Reduced ²
	Bottom & Right	155 – 5775 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

[{[(3.0)/($\sqrt{5.825}$)]*50 mm}]+[{192-50 mm}*10]=1482 mW which is greater than 44.7 mW

Figure 8.14 Test Reduction Table - 5.8 GHz Aux

i igaio o		<u> </u>	0.0 01.2 7 10.70
Mode	Side	Required Channel	Tested/Reduced
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Back	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Top	157 – 5785 MHz	Tested
	•	161 – 5805 MHz	Reduced ¹
802.11a		165 – 5825 MHz	Reduced ¹
5800 MHz		149 – 5745 MHz	Reduced ¹
		153 – 5765 MHz	Reduced ¹
	Left	157 – 5785 MHz	Tested
		161 – 5805 MHz	Reduced ¹
		165 – 5825 MHz	Reduced ¹
		149 – 5745 MHz	Reduced ³
		153 – 5765 MHz	Reduced ³
	Bottom & Right	157 – 5785 MHz	Reduced ³
		161 – 5805 MHz	Reduced ³
		165 – 5825 MHz	Reduced ³
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Back	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Тор	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
802.11n		165 – 5825 MHz	Reduced ²
5800 MHz		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Left	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
		149 – 5745 MHz	Reduced ²
		153 – 5765 MHz	Reduced ²
	Bottom & Right	157 – 5785 MHz	Reduced ²
		161 – 5805 MHz	Reduced ²
		165 – 5825 MHz	Reduced ²
	Back	155 – 5775 MHz	Reduced ²
802.11ac	Тор	155 – 5775 MHz	Reduced ²
5775 MHz	Left	155 – 5775 MHz	Reduced ²
	Bottom & Right	155 – 5775 MHz	Reduced ²

Test Reduction was the same for both antennas. (TE and Yageo)

Reduced¹ – When the mid channel is 3 dB below the limit, the remaining channels are not required per KDB 447498 D01 v05r02 section 4.3.3 page 14.

Reduced² – When the conducted power in this mode is less than 0.25 dB higher than the b mode, testing is not required per KDB 248227 page 5.

Reduced³ – When the antenna is more than 25 mm from a side, the test can be reduced per KDB447498 D01 v05r02 section 4.3.1 1) page 11. See below for calculations.

Calculations for test exclusion for Bottom and Right side.

Maximum power: 44.7 mW Bottom Side distance: 192 mm Right Side distance: 218 mm

The closest distance is from the bottom side. Therefore, if the bottom side is excluded the right side would also be excluded.

[{[(3.0)/($\sqrt{5.825}$)]*50 mm}]+[{192-50 mm}*10]=1482 mW which is greater than 44.7 mW

SAR Data Summary – 2450 MHz Body 802.11b & BT

ME	ASU	REMEN	IT RES	ULTS															
Plot	Gap	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR									
FIOL	Gap	Antenna	FOSILIOII	MHz	Ch.	Wiodulation	Antenna	(dBm)	(W/kg)	(W/kg)									
1				2412	1	DSSS		16.49	1.08	1.08									
			Back	2437	6	DSSS	Main	17.50	1.02	1.02									
			Dack	2462	11	DSSS		16.47	0.893	0.90									
		TE		2437	6	DSSS	Aux	17.50	0.404	0.40									
		16	Top Edge	2437	6	DSSS	Main	17.50	0.167	0.17									
			Top Edge	2437	6	DSSS	Aux	17.50	0.064	0.06									
			Left	2437	6	DSSS	Main	17.50	0.132	0.13									
			Leit	2437	6	DSSS	Aux	17.50	0.052	0.05									
			Back	2412	1	DSSS		16.49	0.772	0.77									
				2437	6	DSSS	Main	17.50	0.801	0.80									
	0		Dack	2462	11	DSSS		16.47	0.826	0.83									
	mm	Yageo		2437	6	DSSS	Aux	17.50	0.455	0.46									
	111111	rageo	Top Edge	2437	6	DSSS	Main	17.50	0.327	0.33									
					Top Edge	2437	6	DSSS	Aux	17.50	0.143	0.14							
															Left	2437	6	DSSS	Main
			Len	2437	6	DSSS	Aux	17.50	0.0146	0.02									
		TE	Repeated	2412	1	DSSS	Main	16.49	1.01	1.01									
			Back	2440	39	GFSK		7.78	0.0105	0.01									
		TE	Top Edge	2440	39	GFSK		7.78	0.0098	0.01									
			Left	2440	39	GFSK	Main	7.78	0.0134	0.01									
			Back	2440	39	GFSK	IVIAIII	7.78	0.0122	0.01									
		Yageo	Top Edge	2440	39	GFSK		7.78	0.0106	0.01									
			Left	2440	39	GFSK		7.78	0.0111	0.01									

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	II tests.		
	Power Measured		□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	ılator
4.	Test Configuration		Without Belt Clip	N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 5250 MHz Body 802.11a

MEASUREMENT RESULTS

Plot	Gan	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR
Piot	Gap	Antenna	Position	MHz	Ch.	Wiodulation	Antenna	(dBm)	(W/kg)	(W/kg)
				5220	44	OFDM		16.00	0.762	0.76
				5280	56	OFDM	Main	15.89	1.06	1.09
			Back	5300	60	OFDM		16.00	0.948	0.95
				5220	44	OFDM	Auna	16.00	0.316	0.32
				5300	60	OFDM	Aux	16.00	0.214	0.21
				5200	40	OFDM		15.92	1.06	1.08
				5220	44	OFDM	Main	16.00	1.23	1.23
2		TE	Tan Edma	5280	56	OFDM	Main	15.89	1.35	1.39
			Top Edge	5300	60	OFDM		16.00	1.20	1.20
				5220	44	OFDM	A	16.00	0.233	0.23
				5300	60	OFDM	Aux	16.00	0.284	0.28
			Left	5220	44	OFDM	Main	16.00	0.0543	0.05
				5300	60	OFDM		16.00	0.0455	0.05
				5220	44	OFDM	A	16.00	0.0000157	<<0.01
				5300	60	OFDM	Aux	16.00	0.000353	<<0.01
	0 mm			5220	44	OFDM	Main	16.00	0.637	0.64
				5280	56	OFDM		15.89	0.987	1.01
			Back	5300	60	OFDM		16.00	0.925	0.93
				5220	44	OFDM	Aux	16.00	0.277	0.28
				5300	60	OFDM	Aux	16.00	0.446	0.45
				5200	40	OFDM		15.92	0.656	0.67
				5220	44	OFDM	Main	16.00	0.832	0.83
		Yageo	Ton Edge	5280	56	OFDM	IVIAIII	15.89	0.741	0.76
		-	Top Edge	5300	60	OFDM		16.00	0.854	0.85
				5220	44	OFDM	Aux	16.00	0.365	0.37
				5300	60	OFDM	Aux	16.00	0.442	0.44
				5220	44	OFDM	Main	16.00	0.042	0.04
			l oft	5300	60	OFDM	Main	16.00	0.0274	0.03
			Left	5220	44	OFDM	A	16.00	0.0000123	<<0.01
				5300	60	OFDM	Aux	16.00	0.0000174	<<0.01
		TE	Repeated	5280	56	OFDM	Main	15.89	1.28	1.31

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for	or all tests.		
	Power Measured	□ Conducted	□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode		☐Base Station Simul	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
5.	Tissue Depth is at least 15	5.0 cm	_	

SAR Data Summary – 5600 MHz Body 802.11a

MEASUREMENT RESULTS

Plot	Gap	Antenna	Position	Frequ	ency	Modulation	Antenna	End Power	Measured SAR	Reported SAR
FIOL	Gap	Antenna	Fosition	MHz	Ch.	Wiodulation	Antenna	(dBm)	(W/kg)	(W/kg)
				5520	104	OFDM		16.43	0.821	0.83
				5580	116	OFDM	Main	16.42	1.01	1.03
			Back	5680	136	OFDM		16.47	0.709	0.71
				5580	116	OFDM	Aux	16.47	0.40	0.40
				5680	136	OFDM	Aux	16.47	0.262	0.26
				5520	104	OFDM		16.43	1.22	1.24
3				5580	116	OFDM	Main	16.42	1.26	1.28
		TE	Top Edge	5620	124	OFDM	IVIAIII	16.44	1.16	1.18
			Top Eage	5680	136	OFDM		16.47	1.14	1.15
				5580	116	OFDM	Aux	16.42	0.511	0.52
				5680	136	OFDM	Aux	16.47	0.351	0.35
			Left	5580	116	OFDM	Main	16.42	0.0855	0.09
				5680	136	OFDM		16.47	0.068	0.07
				5580	116	OFDM	Aux	16.42	0.00186	<<0.01
				5680	136	OFDM		16.47	0.000502	<<0.01
	0 mm		Back	5520	104	OFDM	Main	16.43	1.09	1.11
				5580	116	OFDM		16.42	1.09	1.11
				5680	136	OFDM		16.47	0.688	0.69
				5580	116	OFDM	Aux	16.47	0.53	0.53
				5680	136	OFDM	Aux	16.47	0.459	0.46
				5520	104	OFDM		16.43	1.23	1.25
				5580	116	OFDM	Main	16.42	1.20	1.22
		Yageo	Top Edge	5620	124	OFDM	IVIAIII	16.44	1.13	1.15
			Top Lage	5680	136	OFDM		16.47	1.06	1.07
				5580	116	OFDM	Aux	16.42	0.706	0.72
				5680	136	OFDM	Aux	16.47	0.667	0.67
				5580	116	OFDM	Main	16.42	0.0697	0.07
			Left	5680	136	OFDM	IVIAIII	16.47	0.0392	0.04
			Leit	5580	116	OFDM	Aux	16.42	0.0191	0.02
				5680	136	OFDM	-	16.47	0.0204	0.02
		TE	Repeated	5580	116	OFDM	Main	16.42	1.19	1.21

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for	all tests.		
	Power Measured		□ERP	□EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	☐Right Head
	SAR Configuration	Head	\square Body	
3.	Test Signal Call Mode		☐Base Station Simulator	
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
5	Tissue Depth is at least 15 0	l cm		

SAR Data Summary – 5800 MHz Body 802.11a

ME	ASU	REMEN	IT RESI	JLTS						
Plot	Gap	Antenna	Position	Frequ	iency	Modulation	Antenna	End Power	Measured SAR	Reported SAR
FIOL	Gap	Antenna	Position	MHz	Ch.	Wiodulation	Antenna	(dBm)	(W/kg)	(W/kg)
			Back	5785	157	OFDM	Main	16.50	0.726	0.73
			Dack	5785	157	OFDM	Aux	16.50	0.319	0.32
				5745	149	OFDM		16.42	1.11	1.13
		TE	Top Edge	5785	157	OFDM	Main	16.50	1.21	1.21
4		16	Left	5825	165	OFDM		16.39	1.27	1.30
				5785	157	OFDM	Aux	16.50	0.358	0.36
				5785	157	OFDM	Main	16.50	0.0729	0.07
	0			5785	157	OFDM	Aux	16.50	0.0122	0.01
	mm		Back	5785	157	OFDM	Main	16.50	0.779	0.78
	1111111		Васк	5785	157	OFDM	Aux	16.50	0.299	0.30
				5745	149	OFDM		16.42	1.01	1.03
		Vagoo	Top Edge	5785	157	OFDM	Main	16.50	1.12	1.12
		Yageo	Top Edge	5825	165	OFDM		16.39	1.20	1.23
				5785	157	OFDM	Aux	16.50	0.462	0.46
			Left	5785	157	OFDM	Main	16.50	0.054	0.05
			Leit	5785	157	OFDM	Aux	16.50	0.0199	0.02
		TE	Repeated	5825	165	OFDM	Main	16.39	1.21	1.24

Body
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.		
	Power Measured		☐ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	Test Code T	☐Base Station Sin	nulator
4.	Test Configuration	☐With Belt Clip	Without Belt Cli	ip N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – 5 GHz Body 802.11ac 80 MHz Bandwidth

ME	MEASUREMENT RESULTS																
Diet	Can	Antenna	Position	Frequency		Madulatian	A t	End Power	Measured SAR	Reported SAR							
Plot	Gap		Position	MHz	Ch.	Modulation	Antenna	(dBm)	(W/kg)	(W/kg)							
											5210	42	OFDM		13.42	0.562	0.57
		TE	Ton	5290	58	OFDM		13.48	0.621	0.62							
		16	TE Top Edge	5610	122	OFDM		16.39	0.975	1.00							
	0			5775	155	OFDM	Main	16.44	0.986	1.00							
	mm	Vasaa	Vagas	Vagoo		5210	42	OFDM	IVIAIII	13.42	0.384	0.39					
					Back	5290	58	OFDM		13.48	0.469	0.47					
		Yageo	Top	5610	122	OFDM		16.39	0.932	0.96							
			Edge	5775	155	OFDM		16.44	0.918	0.93							

Body 1.6 W/kg (mW/g) averaged over 1 gram

Ι.	Battery is fully charged for a	II tests.		
	Power Measured	⊠Conducted	□ERP	☐EIRP
2.	SAR Measurement			
	Phantom Configuration	Left Head	⊠Eli4	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	N/A
5.	Tissue Depth is at least 15.0	cm		

SAR Data Summary – Simultaneous Evaluation

MEA	MEASUREMENT RESULTS											
Frequency		Modulation	Frequ	Frequency Modulation		SAR₁	SAR ₂	SAR Total				
MHz	Ch.	Wodulation	MHz	Ch.	modulation	C7 1	O7 11 12	57 1 5				
2437	6	DSSS	2440	39	GFSK	1.08	0.01	1.09				
5280	56	OFDM	2440	39	GFSK	1.39	0.01	1.40				
5580	116	OFDM	2440	39	GFSK	1.28	0.01	1.29				
5825	165	OFDM	2440	39	GFSK	1.30	0.01	1.31				

Body 1.6 W/kg (mW/g) averaged over 1 gram

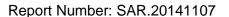
The sum of the two transmitters is less than the limit; therefore, the simultaneous transmission meets the requirements of KDB447498 D01 v05r02 section 4.3.2 page 11.

9. Test Equipment List

Table 9.1 Equipment Specifications

Type	Calibration Due Date	Calibration Done Date	Serial Number
Staubli Robot TX60L	N/A	N/A	F07/55M6A1/A/01
Measurement Controller CS8c	N/A	N/A	1012
ELI4 Flat Phantom	N/A	N/A	1065
Device Holder	N/A	N/A	N/A
Data Acquisition Electronics 4	01/13/2015	01/13/2014	1416
SPEAG E-Field Probe EX3DV4	04/15/2015	04/15/2014	3662
Speag Validation Dipole D2450V2	12/04/2014	12/04/2012	829
Speag Validation Dipole D5GHzV2	12/11/2014	12/11/2012	1085
Agilent N1911A Power Meter	03/24/2015	03/24/2014	GB45100254
Agilent N1922A Power Sensor	09/02/2015	09/02/2014	MY45240464
Advantest R3261A Spectrum Analyzer	03/24/2015	03/24/2014	31720068
Agilent (HP) 8350B Signal Generator	03/24/2015	03/24/2014	2749A10226
Agilent (HP) 83525A RF Plug-In	03/24/2015	03/24/2014	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/25/2015	03/25/2014	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/25/2015	03/25/2014	2904A00595
Anritsu MT8820C	07/29/2015	07/29/2014	6201176199
Agilent 778D Dual Directional Coupler	N/A	N/A	MY48220184
MiniCircuits BW-N20W5+ Fixed 20 dB Attenuator	N/A	N/A	N/A
MiniCircuits SPL-10.7+ Low Pass Filter	N/A	N/A	R8979513746
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5 Ghz)	N/A	N/A	N/A

10. Conclusion


The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC/IC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

11. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1992, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] International Electrotechnical Commission, IEC 62209-2 (Edition 1.0), Human Exposure to radio frequency fields from hand-held and body mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), March 2010.
- [5] IEEE Standard 1528 2013, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, June 2013.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), March 2010.
- [7] Health Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 2009.

Appendix A – System Validation Plots and Data

^{*} value interpolated

Test Result for UIM Dielectric Parameter Tue 18/Nov/2014 Freq Frequency(GHz) FCC_eH Limits for Head Epsilon FCC_sH Limits for Head Sigma FCC_eB Limits for Body Epsilon FCC_sB Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM **************** FCC_eB FCC_sB Test_e Test_s 49.15 5.18 49.09 5.22 49.12 5.21 49.06 5.25 Freq 5.1000 5.1200

^{*} value interpolated

RF Exposure Lab

Plot 1

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ S/m}$; $\epsilon_r = 52.58$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

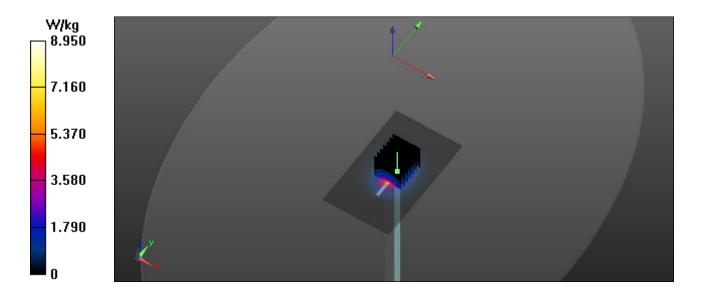
Test Date: Date: 11/20/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/2450 MHz/Area Scan (61x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 8.85 W/kg


Body Verification/2450 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.243 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 11.1 W/kg

Pin=100 mW

SAR(1 g) = 5.2 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 8.93 W/kg

RF Exposure Lab

Plot 2

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.34 \text{ S/m}$; $\epsilon_r = 48.94$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

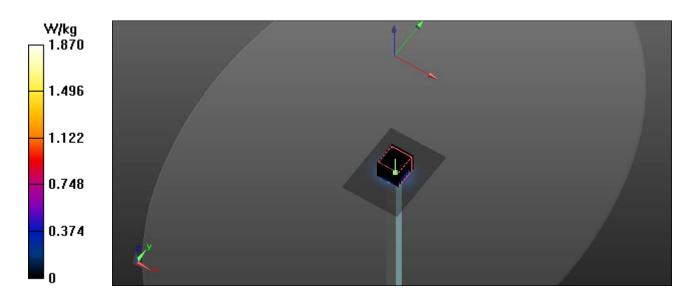
Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.59, 4.59, 4.59); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065

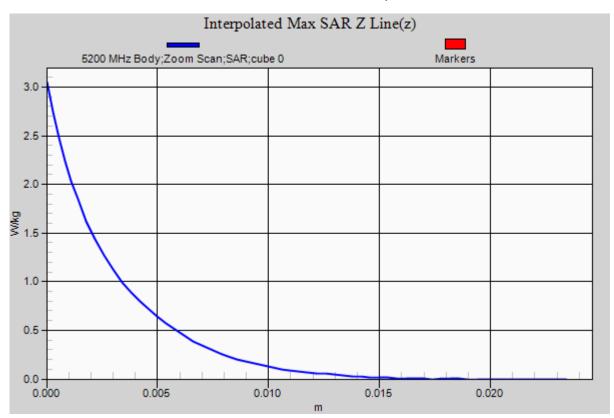
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5200 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.76 W/kg


Body Verification/5200 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.429 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.08 W/kg

Pin=10 mW

SAR(1 g) = 0.736 W/kg; SAR(10 g) = 0.201 W/kg Maximum value of SAR (measured) = 1.87 W/kg

RF Exposure Lab

Plot 3

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5600 MHz; $\sigma = 5.8$ S/m; $\epsilon_r = 48.36$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

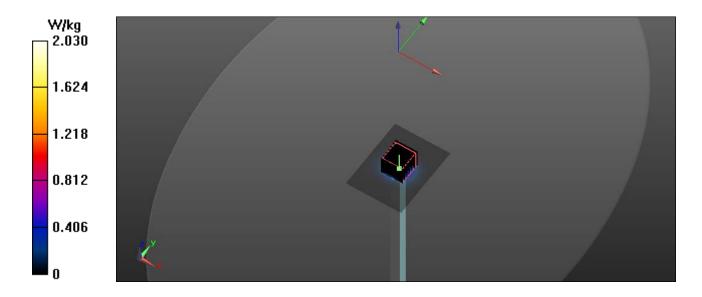
Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(3.97, 3.97, 3.97); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065

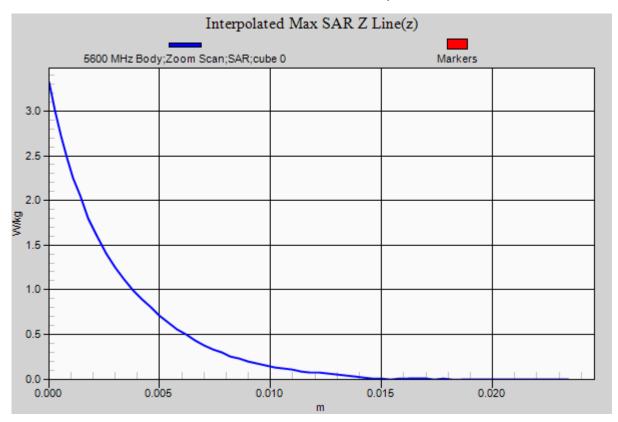
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5600 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.89 W/kg


Body Verification/5600 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.967 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 3.35 W/kg

Pin=10 mW

SAR(1 g) = 0.799 W/kg; SAR(10 g) = 0.213 W/kg Maximum value of SAR (measured) = 2.03 W/kg

RF Exposure Lab

Plot 4

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used: f = 5800 MHz; $\sigma = 6.04 \text{ S/m}$; $\epsilon_r = 48.05$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

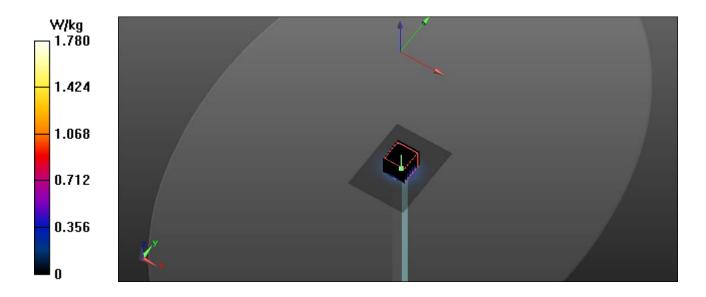
Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C Probe: EX3DV4 - SN3662; ConvF(4.1, 4.1, 4.1); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP: 1065

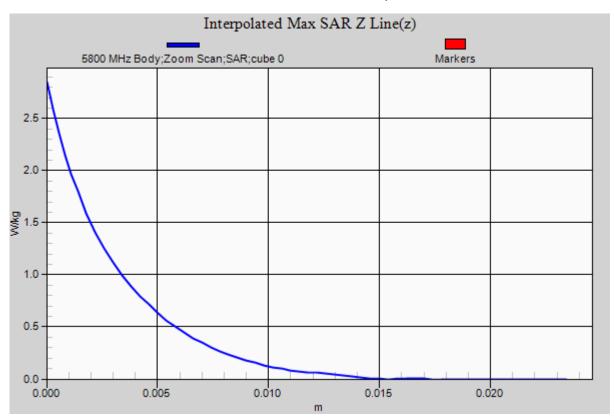
Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

Body Verification/5800 MHz/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.69 W/kg


Body Verification/5800 MHz/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.497 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 2.87 W/kg

Pin=10 mW

SAR(1 g) = 0.721 W/kg; SAR(10 g) = 0.199 W/kg Maximum value of SAR (measured) = 1.79 W/kg

Appendix B – SAR Test Data Plots

RF Exposure Lab

Plot 1

DUT: HSTNN-I22C; Type: Convertible Laptop; Serial: Eng 1

Communication System: WiFi 802.11b (DSSS, 1 Mbps); Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.952$ S/m; $\epsilon_r = 52.656$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 11/20/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(7.12, 7.12, 7.12); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1416; Calibrated: 1/13/2014

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

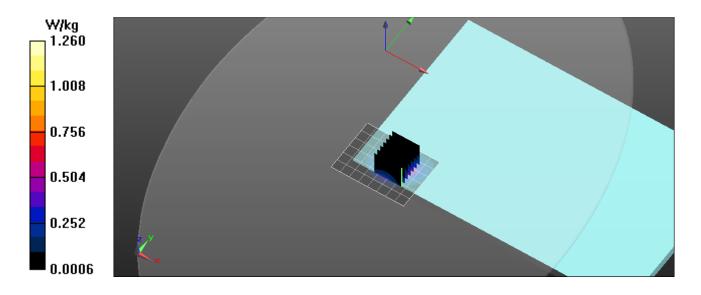
Procedure Notes:

2450 MHz TE/Back Tx1 Low/Area Scan (9x7x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.76 W/kg

2450 MHz TE/Back Tx1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 13.10 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.08 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.26 W/kg

RF Exposure Lab

Plot 2

DUT: HSTNN-I22C; Type: Convertible Laptop; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5280 MHz; σ = 5.43 S/m; ϵ_r = 48.84; ρ = 1000 kg/m³

Phantom section: Flat Section

Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.43, 4.43, 4.43); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:

5200 MHz TE/Top Edge Tx1 56/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.54 W/kg

5200 MHz TE/Top Edge Tx1 56/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 8.966 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 5.20 W/kg

SAR(1 g) = 1.35 W/kg

Maximum value of SAR (measured) = 2.82 W/kg

RF Exposure Lab

Plot 3

DUT: HSTNN-I22C; Type: Convertible Laptop; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5580 MHz; Duty Cycle: 1:1 Medium: MSL 3-6 GHz; Medium parameters used: f = 5580 MHz; $\sigma = 5.77$ S/m; $\epsilon_r = 48.39$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

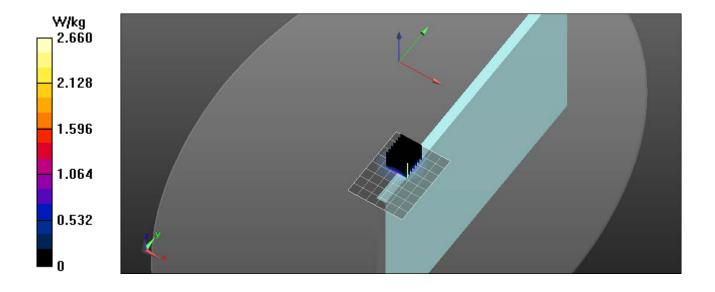
Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(3.97, 3.97, 3.97); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Procedure Notes:


5600 MHz TE/Top Edge Tx1 116/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.75 W/kg

5600 MHz TE/Top Edge Tx1 116/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 7.277 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 5.17 W/kg

SAR(1 g) = 1.26 W/kg

Maximum value of SAR (measured) = 2.66 W/kg

RF Exposure Lab

Plot 4

DUT: HSTNN-I22C; Type: Convertible Laptop; Serial: Eng 1

Communication System: WiFi 802.11a (OFDM, 6 Mbps); Frequency: 5825 MHz; Duty Cycle: 1:1

Medium: MSL 3-6 GHz; Medium parameters used (interpolated): f = 5825 MHz; $\sigma = 6.068$ S/m; $\epsilon_r = 48.013$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Test Date: Date: 11/18/2014; Ambient Temp: 23 °C; Tissue Temp: 21 °C

Probe: EX3DV4 - SN3662; ConvF(4.1, 4.1, 4.1); Calibrated: 4/15/2014;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1416; Calibrated: 1/13/2014 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1065

Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

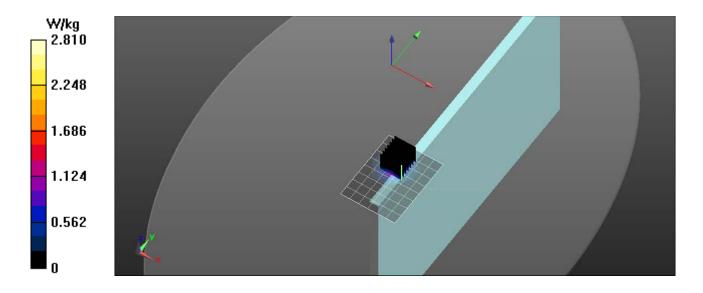
Procedure Notes:

5800 MHz TE/Top Edge Tx1 165/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 1.66 W/kg

5800 MHz TE/Top Edge Tx1 165/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 7.795 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 5.51 W/kg

SAR(1 g) = 1.27 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 2.81 W/kg

Appendix D – Probe Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: EX3-3662_Apr14

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3662

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,

QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

April 15, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Name

Function

Signature

Calibrated by:

Jeton Kastrati

Laboratory Technician

27, 32, 23, 1, 0

Issued: April 15, 2014

Approved by:

Katja Pokovic

Technical Manager

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL sensitivity in free space NORMx,y,z

sensitivity in TSL / NORMx,y,z ConvF diode compression point **DCP**

crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A. B. C. D

φ rotation around probe axis Polarization φ

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close

proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx.v.z:* Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3662_Apr14 Page 2 of 11 EX3DV4 - SN:3662 April 15, 2014

Probe EX3DV4

SN:3662

Manufactured:

October 20, 2008

Calibrated:

April 15, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

April 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.42	0.49	0.50	± 10.1 %
DCP (mV) ^B	98.4	97.6	95.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	X 0.0	0.0	1.0	0.00	119.4	±1.7 %
		Y	0.0	0.0	1.0		118.3	
		Z	0.0	0.0	1.0		110.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

B Numerical linearization parameter: uncertainty not required.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3662 April 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
150	52.3	0.76	10.96	10.96	10.96	0.00	1.00	± 13.3 %
220	49.0	0.81	10.87	10.87	10.87	0.00	1.00	± 13.3 %
450	43.5	0.87	10.99	10.99	10.99	0.18	1.20	± 13.3 %
750	41.9	0.89	9.72	9.72	9.72	0.21	1.44	± 12.0 %
835	41.5	0.90	9.43	9.43	9.43	0.22	1.20	± 12.0 %
900	41.5	0.97	9.23	9.23	9.23	0.15	1.56	± 12.0 %
1750	40.1	1.37	8.01	8.01	8.01	0.76	0.57	± 12.0 %
1900	40.0	1.40	7.75	7.75	7.75	0.46	0.77	± 12.0 %
2450	39.2	1.80	7.04	7.04	7.04	0.57	0.68	± 12.0 %
2600	39.0	1.96	6.84	6.84	6.84	0.26	1.06	± 12.0 %
5200	36.0	4.66	5.22	5.22	5.22	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.99	4.99	4.99	0.30	1.80	± 13.1 %
5500	35.6	4.96	4.89	4.89	4.89	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.84	4.84	4.84	0.35	1.80	± 13.1 %
5800	35.3	5.27	4.87	4.87	4.87	0.35	1.80	± 13.1 %

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At force page 2, and so year to ± 10% if liquid companies formula is applied to

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

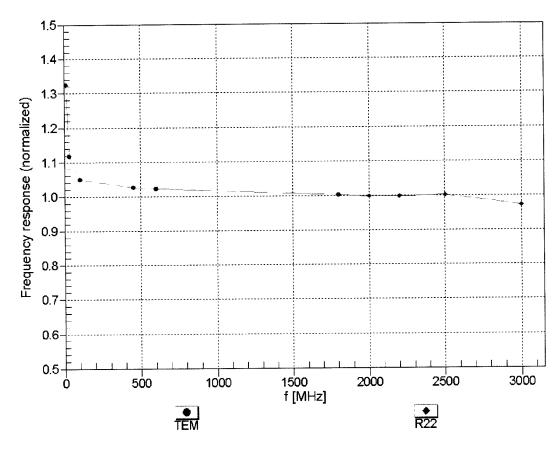
EX3DV4- SN:3662 April 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Calibration Parameter Determined in Body Tissue Simulating Media

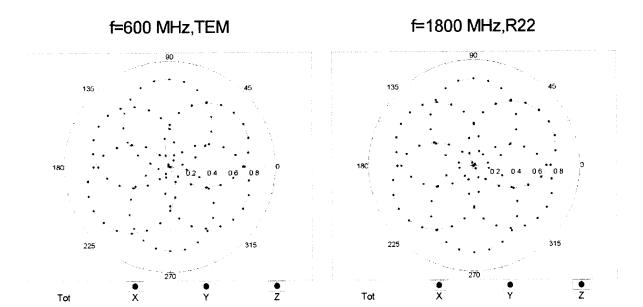
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
150	61.9	0.80	10.62	10.62	10.62	0.00	1.00	± 13.3 %
220	59.4	0.88	10.31	10.31	10.31	0.00	1.00	± 13.3 %
450	56.7	0.94	10.37	10.37	10.37	0.10	1.20	± 13.3 %
750	55.5	0.96	9.42	9.42	9.42	0.57	0.75	± 12.0 %
835	55.2	0.97	9.30	9.30	9.30	0.43	0.86	± 12.0 %
900	55.0	1.05	9.13	9.13	9.13	0.39	0.89	± 12.0 %
1750	53.4	1.49	7.76	7.76	7.76	0.27	1.06	± 12.0 %
1900	53.3	1.52	7.47	7.47	7.47	0.42	0.82	± 12.0 %
2450	52.7	1.95	7.12	7.12	7.12	0.77	0.57	± 12.0 %
2600	52.5	2.16	6.95	6.95	6.95	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.59	4.59	4.59	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.43	4.43	4.43	0.40	1.90	± 13.1 %
5500	48.6	5.65	4.22	4.22	4.22	0.40	1.90	± 13.1 %
5600	48.5	5.77	3.97	3.97	3.97	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.10	4.10	4.10	0.50	1.90	± 13.1 %

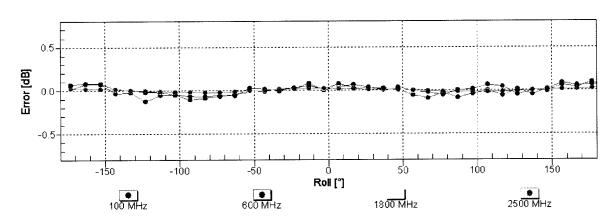
Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: EX3-3662_Apr14 Page 6 of 11

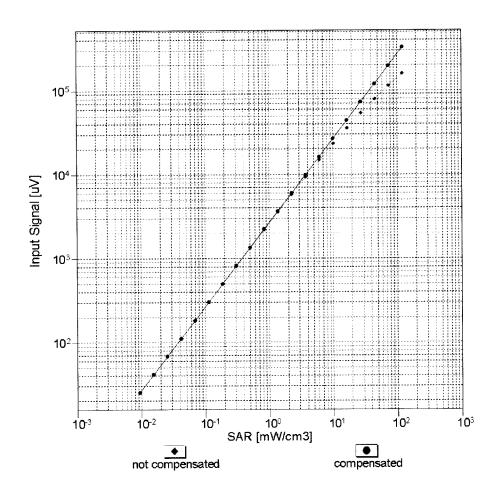
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvE uncertainty for indicated target tissue parameters.

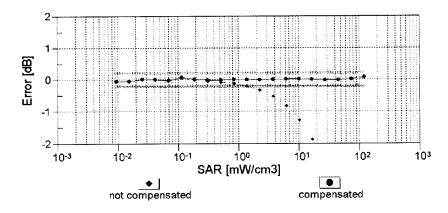
the ConvF uncertainty for indicated target tissue parameters.


Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

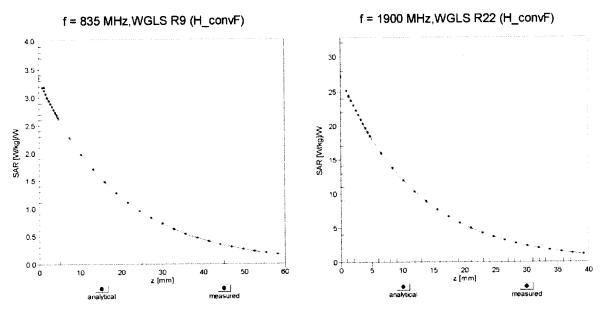
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

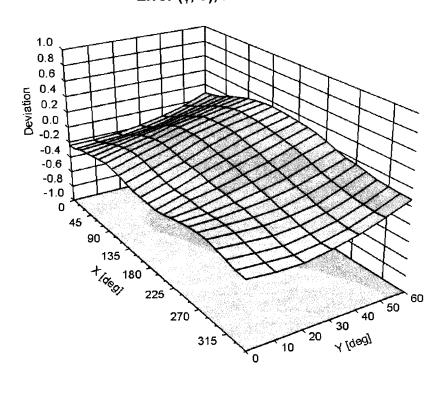

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

EX3DV4- SN:3662 April 15, 2014

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

EX3DV4- SN:3662 April 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3662

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-33.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Report Number: SAR.20141107

Appendix E – Dipole Calibration Data Sheets

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Certificate No: D2450V2-829_Dec12

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 829

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

December 04, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	82 411
			vey major
Approved by:	Katja Pokovic	Technical Manager	.702 111
			John Ray

Issued: December 4, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-829_Dec12

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-829_Dec12 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	<u> </u>

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.7 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	24.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-829_Dec12

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 4.2 jΩ
Return Loss	- 25.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.7 Ω + 5.1 jΩ
Return Loss	- 25.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.158 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 11, 2008

D2450V2 SN: 829 - Body				
Date of Return Loss $\Delta\%$ Impedance $\Delta\Omega$				
12/4/2012	-25.9		49.7	
12/5/2013	-26.2	1.2	48.5	-1.2

D2450V2 SN: 829 - Head				
Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
12/4/2012	-25.9		53.1	
12/5/2013	-26.5	2.3	52.6	-0.5

Page 4 of 8

Certificate No: D2450V2-829_Dec12

Date: 04.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ mho/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

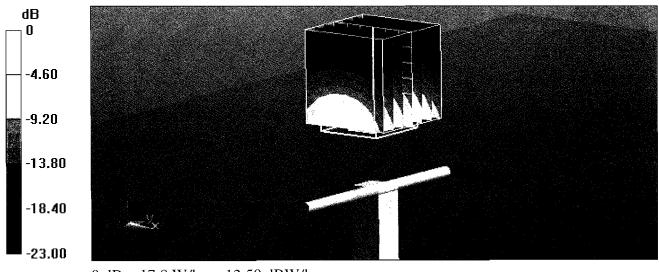
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

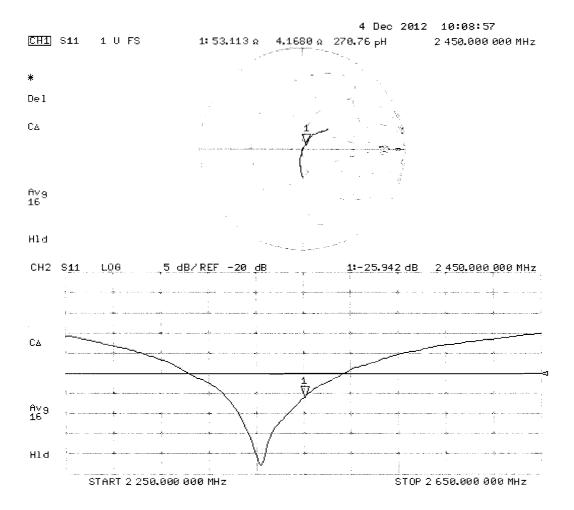
• DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 28.3 W/kg


SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

0 dB = 17.8 W/kg = 12.50 dBW/kg

Impedance Measurement Plot for Head TSL

Date: 04.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 829

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

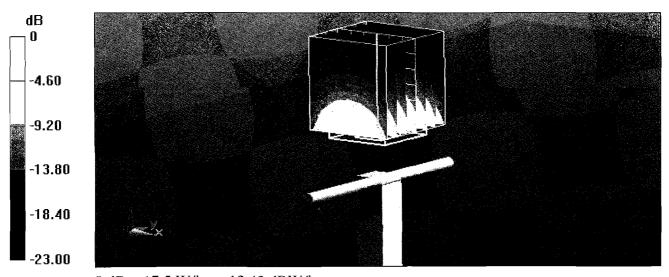
• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

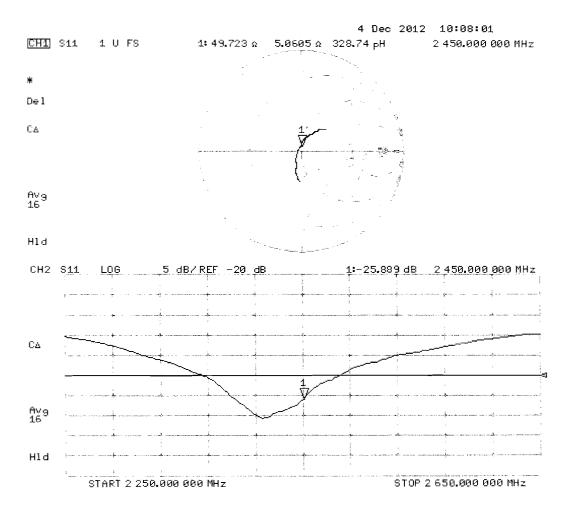
• DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.1 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 27.4 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF Exposure Lab

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1085_Dec12

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1085

Calibration procedure(s)

QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

December 11, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Drimany Standarda	ID#	Cal Data (Cartificate No.)	Cabadulad Calibratian
Primary Standards		Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	30-Dec-11 (No. EX3-3503_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Israu El-Daoue
Approved by:	Katja Pokovic	Technical Manager	Jal III

Issued: December 11, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1085_Dec12

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1085_Dec12 Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.3
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.3 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.7 ± 6 %	4.63 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.9 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1085_Dec12

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	86.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.0 ± 6 %	5.15 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1085_Dec12 Page 4 of 14

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.35 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.41 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.7 ± 6 %	5.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	73.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Page 5 of 14 Certificate No: D5GHzV2-1085_Dec12

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.86 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.13 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.36 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	72.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1085_Dec12 Page 6 of 14

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.9 Ω - 9.9 jΩ
Return Loss	- 20.2 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 5.6 jΩ
Return Loss	- 24.7 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.1 Ω - 4.4 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω - 4.6 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.0 Ω - 9.5 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	49.7 Ω - 5.0 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.5 Ω - 3.4 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.5 Ω - 4.7 jΩ		
Return Loss	- 25.0 dB		

Certificate No: D5GHzV2-1085_Dec12 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.207 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	December 21, 2009		

D5GHzV2 SN: 1085 - Head					
Date of Measurement	Frequency	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
12/11/2012		-20.2		50.9	
12/11/2013	5200 MHz	-21.3	5.4	51.2	0.3
12/11/2012		-24.7		48.7	
12/11/2013	5300 MHz	-24.3	-1.6	47.9	-0.8
12/11/2012		-23.0		56.1	
12/11/2013	5600 MHz	-23.9	3.9	55.0	-1.1
12/11/2012		-26.2		51.9	
12/11/2013	5800 MHz	-25.6	-2.3	53.1	1.2

D5GHzV2 SN: 1085 - Body					
Date of Measurement	Frequency	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
12/11/2012		-20.5		50.0	
12/11/2013	5200 MHz	-21.3	3.9	51.2	1.2
12/11/2012		-26.0	·	49.7	
12/11/2013	5300 MHz	-25.3	-2.7	51.3	1.6
12/11/2012		-23.2		56.5	
12/11/2013	5600 MHz	-22.6	-2.6	55.9	-0.6
12/11/2012		-25.0		53.5	
12/11/2013	5800 MHz	-23.9	-4.4	52.6	-0.9

Date: 11.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz,

Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; σ = 4.53 mho/m; ϵ_r = 34.8; ρ = 1000 kg/m 3 , Medium parameters used: f = 5300 MHz; σ = 4.63 mho/m; ϵ_r = 34.7; ρ = 1000 kg/m 3 , Medium parameters used: f = 5600 MHz; σ = 4.93 mho/m; ϵ_r = 34.2; ρ = 1000 kg/m 3 , Medium parameters used: f = 5800 MHz; σ = 5.15 mho/m; ϵ_r = 34; ρ = 1000 kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(5.1, 5.1, 5.1);
 Calibrated: 30.12.2011, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81);
 Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.782 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 8.2 W/kg; SAR(10 g) = 2.35 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.947 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.3 W/kg

SAR(1 g) = 8.35 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.857 V/m; Power Drift = 0.05 dB

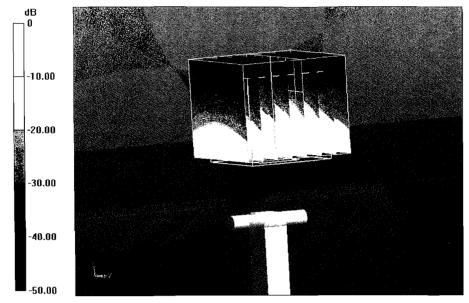
Peak SAR (extrapolated) = 34.4 W/kg

SAR(1 g) = 8.69 W/kg; SAR(10 g) = 2.48 W/kg

Maximum value of SAR (measured) = 20.8 W/kg

Certificate No: D5GHzV2-1085_Dec12

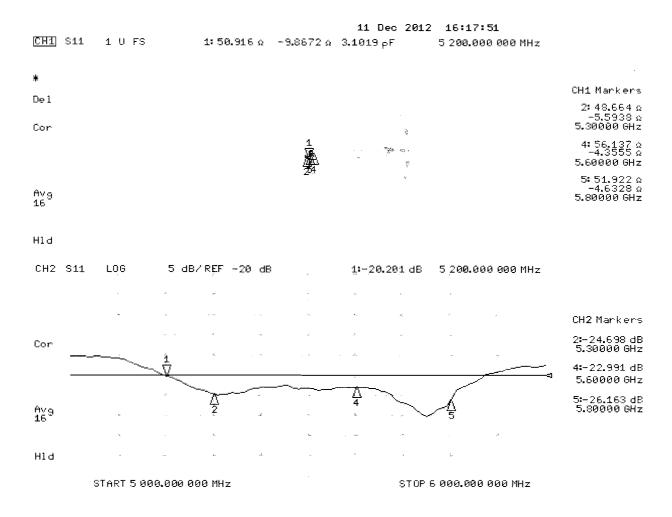
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.816 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg


Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

Certificate No: D5GHzV2-1085_Dec12 Page 10 of 14

Impedance Measurement Plot for Head TSL

Date: 10.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1085

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz,

Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.35$ mho/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5300 MHz; $\sigma = 5.47$ mho/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5600 MHz; $\sigma = 5.86$ mho/m; $\epsilon_r = 46.2$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800 MHz; $\sigma = 6.13$ mho/m; $\epsilon_r = 45.9$; $\rho = 1000$ kg/m 3

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.67, 4.67, 4.67); Calibrated: 30.12.2011, ConvF(4.22, 4.22, 4.22); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.435 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 57.938 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.43 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.467 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 35.4 W/kg

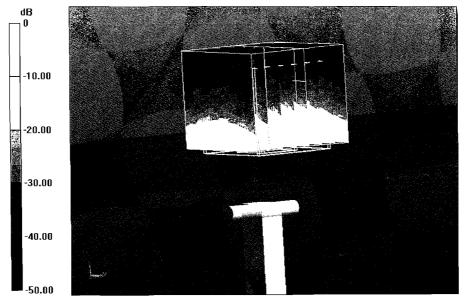
SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

Certificate No: D5GHzV2-1085_Dec12

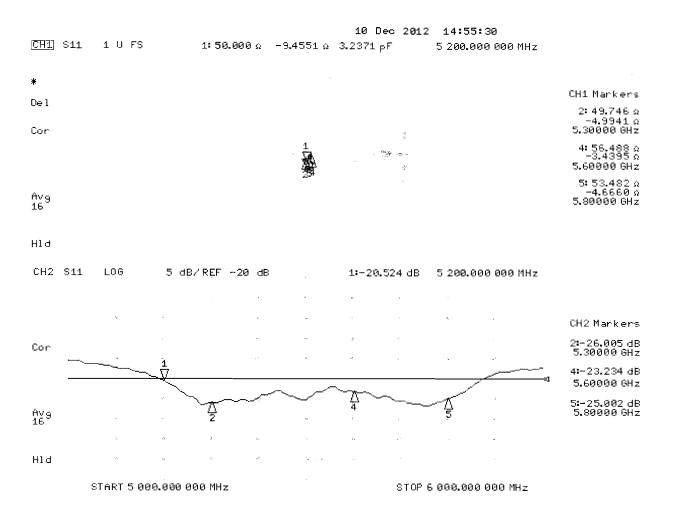
Page 12 of 14

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,


dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 54.901 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.6 W/kg


SAR(1 g) = 7.36 W/kg; SAR(10 g) = 2.04 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

0 dB = 18.3 W/kg = 12.62 dBW/kg

Impedance Measurement Plot for Body TSL

Report Number: SAR.20141107

Appendix F – Phantom Calibration Data Sheets

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 4.0
Type No	QD OVA 001 B
Series No	1003 and higher
Manufacturer	Untersee Composites
	Knebelstrasse 8
	CH-8268 Mannenbach, Switzerland

Tests

Complete tests were made on the prototype units QD OVA 001 AA 1001, QD OVA 001 AB 1002, pre-series units QD OVA 001 BA 1003-1005 as well as on the series units QD OVA 001 BB, 1006 ff.

Test	Requirement	Details	Units tested
Material	Compliant with the standard	Bottom plate:	all
thickness	requirements	2.0mm +/- 0.2mm	
Material	Dielectric parameters for required	< 6 GHz: Rel. permittivity = 4	Material
parameters	frequencies	+/-1, Loss tangent ≤ 0.05	sample
Material	The material has been tested to be	DGBE based simulating	Equivalent
resistivity	compatible with the liquids defined in	liquids.	phantoms,
	the standards if handled and cleaned	Observe Technical Note for	Material
	according to the instructions.	material compatibility.	sample
Shape	Thickness of bottom material,	Bottom elliptical 600 x 400 mm	Prototypes,
	Internal dimensions,	Depth 190 mm,	Sample
	Sagging	Shape is within tolerance for	testing
	compatible with standards from	filling height up to 155 mm,	
	minimum frequency	Eventual sagging is reduced or	
		eliminated by support via DUT	

Standards

- [1] CENELEC EN 50361-2001, « Basic standard for the measurement of the Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) », July 2001
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209 1, "Specific Absorption Rate (SAR) in the frequency range of 300 MHz to 3 GHz Measurement Procedure, Part 1: Hand-held mobile wireless communication devices", February 2005
- [4] IEC 62209 2, Draft, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices Human models, Instrumentation and Procedures Part 2: Procedure to determine the Specific Absorption Rate (SAR) in the head and body for 30 MHz to 6 GHz Handheld and Body-Mounted Devices used in close proximity to the Body.", February 2005
- [5] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition January 2001

Based on the tests above, we certify that this item is in compliance with the standards [1] to [5] if operated according to the specific requirements and considering the thickness. The dimensions are fully compliant with [4] from 30 MHz to 6 GHz. For the other standards, the minimum lower frequency limit is limited due to the dimensional requirements ([1]: 450 MHz, [2]: 300 MHz, [3]: 800 MHz, [5]: 375 MHz) and possibly further by the dimensions of the DUT.

Date

28.4.2008

Signature / Stamp

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9709, Fax+41,44 245 9779 info@speag.com; http://www.speag.com