Measurements Report

The measurement report shows compliance information against the pertinent technical standards. Each parameter is measured generally at the low end, middle, and at the high end of the applicable frequency band. Each section of the report contains either verbiage or graphs which show compliance to applicable standards as required, explains testing method used, and indicates what the applicable specification is.

A list of test equipment for and a certification signoff page are included at the end of the measurement report.

SUBMITTED MEASURED DATA – INDEX

EXHIBIT DESCRIPTION

- E1-1 RF Output-Data
- E1-2 Occupied Bandwidth, Digital Emissions: Setup, Specifications, and Index
- E1-2.1, 2, 3 DQPSK Modulation (TETRA)
- E1-2.4, 5, 6 64-QAM Modulation (TEDS)
- E1-3 Adjacent Channel Power, Digital Emissions: Setup, Specifications, and Index
- E1-3.1 MTS 4 ACP, DQPSK Modulation (TETRA)
- E1-3.2 MTS 4 ACP, 64-QAM Modulation (TEDS)
- E1-3.3 MTS 2 ACP, DQPSK Modulation (TETRA)
- E1-3.4 MTS 2 ACP, 64-QAM Modulation (TEDS)

E1-4 Conducted Spurious Emissions: Setup, Specifications, and Index

- E1-4.1 MTS 4 Conducted Spurious Harmonic Emissions, Power 25 Watts (Average), DQPSK
- E1-4.2 MTS 4 Conducted Spurious Harmonic Emissions, Power 4 Watts (Average), DQPSK
- E1-4.3 MTS 4 Conducted Spurious Harmonic Emissions, Power 10 Watts (Average), 64-QAM
- E1-4.4 MTS 4 Conducted Spurious Harmonic Emissions, Power 2.5 Watts (Average), 64-QAM
- E1-4.5 MTS 2 Conducted Spurious Harmonic Emissions, Power 25 Watts (Average), DQPSK
- E1-4.6 MTS 2 Conducted Spurious Harmonic Emissions, Power 4 Watts (Average), DQPSK
- E1-4.7 MTS 2 Conducted Spurious Harmonic Emissions, Power 10 Watts (Average), 64-QAM
- E1-4.8 MTS 2 Conducted Spurious Harmonic Emissions, Power 2.5 Watts (Average), 64-QAM
- E1-4.9, 10, 11 MTS 4 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 25 Watts, DQPSK
- E1-4.12, 13, 14 MTS 4 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 10 Watts, 64-QAM
- E1-4.15, 16, 17 MTS 2 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 25 Watts, DQPSK
- E1-4.18, 19, 20 MTS 2 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 10 Watts, 64-QAM
- E1-5 Radiated Spurious Emissions: Setup, Specifications, and Index
- E1-5.1 Radiated Spurious Harmonic Emissions, Power 25 Watts (Average), DQPSK
- E1-5.2 Radiated Spurious Harmonic Emissions, Power 4 Watts (Average), DQPSK
- E1-5.3 Radiated Spurious Harmonic Emissions, Power 10 Watts (Average), 64-QAM
- E1-5.4 Radiated Spurious Harmonic Emissions, Power 2.5 Watts (Average), 64-QAM
- E1-6 Frequency Stability: Setup, Specifications, and Index
- E1-6.1 Frequency Stability Vs Temperature
- E1-6.2 Frequency Stability Vs Voltage
- E1-11 Test Equipment Used
- E1-12 Statement of Certification

RF Power Output Data

The RF power output was measured with the indicated voltage applied to and current into the final RF amplifying device. The DC current indicated is the total for the final RF amplifier stage, consisting of three parallel power transistors.

MTS 4 - DQPSK (TETRA) Modulation Mode: Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage Minimum Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s)	851 MHz 24.3 28.0 8.3 232 48.0 3.9 28.0 3.7 104	860 MHz 25.1 28.0 8.3 232 48.0 4.0 28.0 3.7 104	869 MHz 25.4 28.0 224 48.0 3.9 28.0 3.6 101	Watts, Average Volts Amperes Watts Volts AC Watts, Average Volts Amperes Watts
Primary Radio Input Supply Voltage MTS 4 - 64-QAM (TEDS) Modulation Mode: Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	<u>48.0</u> <u>9.7</u> <u>28.0</u> <u>5.5</u> <u>154</u> <u>48.0</u>	<u>48.0</u> 860 MHz <u>10.0</u> 28.0 5.3 148 48.0	<u>48.0</u> 869 MHz 9.9 28.0 5.3 148 48.0	Volts AC Watts, Average Volts Amperes Watts Volts AC
Minimum Measured RF output DC Voltage, final RF amplifier stage/stages Normal DC Current Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	2.5 28.0 3.2 90 48.0	2.5 28.0 3.2 <u>90</u> 48.0	2.5 28.0 3.2 90 48.0	Watts, Average Volts Amperes Watts Volts AC
MTS 2 - DQPSK (TETRA) Modulation Mode: Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	851 MHz 25.6 28.5 7.9 225 48.0	860 MHz 25.0 28.5 7.9 225 48.0	869 MHz 26.1 28.5 7.9 225 48.0	Watts, Average Volts Amperes Watts Volts AC
Minimum Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	4.0 28.5 3.6 103 48.0	<u>4.0</u> 28.5 <u>3.6</u> 103 48.0	<u>4.1</u> <u>28.5</u> <u>3.5</u> <u>100</u> <u>48.0</u>	Watts, Average Volts Amperes Watts Volts AC
MTS 2 - 64-QAM (TEDS) Modulation Mode: Measured RF output DC Voltage, final RF amplifier stage/stages DC Current, final RF amplifier stage/stages Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	851 MHz <u>10.9</u> <u>28.5</u> <u>5.2</u> <u>148</u> <u>48.0</u>	860 MHz 10.0 28.5 5.2 148 48.0	869 MHz 11.2 28.5 5.2 148 48.0	Watts, Average Volts Amperes Watts Volts AC
Minimum Measured RF output DC Voltage, final RF amplifier stage/stages Normal DC Current Input power for final RF amplifying device(s) Primary Radio Input Supply Voltage	2.8 28.6 2.9 83 48.0	2.5 28.6 2.9 83 48.0	3.0 28.6 2.9 83 48.0	Watts, Average Volts Amperes Watts Volts AC

Occupied Bandwidth –DQPSK (TETRA) Modulation and 64-QAM (TEDS) Modulation, 25 kHz Channel Spacing The following exhibits show the occupied bandwidth performance for two linear digital modulations. The type of modulation used is determined by system configuration and is based upon channel usage as described in Exhibit B. The occupied bandwidth charts reference the following specification requirements and setup.

Specification Requirement IC RSS-119 per section 5.5.8 Table 3 and section 5.8.10 - Emission Limits – "Y-Mask": Equipment with a 25 kHz channel spacing and an occupied bandwidth greater than 20 kHz shall have the power of any emission attenuated below the transmitter output power P (dBW) as specified in the following table:

Displacement Frequency, fd (kHz)	Minimum Attenuation (dB)	Resolution Bandwidth
12.375 < fd ≤ 13.975	whichever is the lesser attenuation: 30 + 16.67(fd–12.375) dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)
fd > 13.975	whichever is the lesser attenuation: 57 dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)

Modulation Type:	DQPSK Digital Modulation (TETRA)	64-QAM Digital Modulation (TEDS)
Emission Designator:	22K0D7D, 22K0D7E, 22K0D7W	22K0D7D
Channelization:	25 kHz	25 kHz
Power Setting:	25 Watts (Average)	10 Watts (Average)

Necessary Bandwidth Calculation:

TEDS: The necessary bandwidth of the modulation types are not directly calculable per the composite modulation formulas defined in TRC-43 section 8 or 47 CFR §2.202(g). QAM is not covered in TRC-43. An excerpt from 2.202: 64 QAM used to send 135 Mbps has the same necessary bandwidth as 64-PSK used to send 135 Mbps. TEDS is composed of eight QAM subcarriers spaced on 2.7 kHz center frequencies. The occupied bandwidth is represented by the lower half of the 1st subcarrier plus 7 times the subcarrier, and the resulting spectrum is digitally mixed to be centered around DC at baseband, then up-converted and centered at the RF carrier frequency. The Occupied bandwidth of a subcarrier band limiting filter is computed to derive a value of K that is applied to the basic QAM described in 2.202.

Gross Bit Rate Bit Rate per subcarrie (8QAM subcarriers sp	<u>64-QAM</u> 115,200 r, R= 14,400 baced on 2700 Hz cente	<u>16-QAM</u> 76,800 9,600 r frequencies)	<u>4-QAM</u> 38,400 4,800		
# of Symbols, S= $B_n = 2RK/ \log_2(s)$ $B = R/log_2(s)$	64	16	4		
= = K= 0.645 B _n = 2*4800*0.65 B _n = 3096	14400 / log₂(64) 4800	9600 / log₂(16) 4800	4800 / log ₂ (4) 4800		
Occ BW = ½*B _n (subcarrier) + 7*subcarrier spacing + ½*B _n (subcarrier) = ½*3096 + 7*2700 + ½*3096 Hz = 21996 Hz = (Rounded to) 22.0 kHz or 22K0					

(Continued Next Page)

Occupied Bandwidth (Con't)

TETRA: The necessary bandwidth of the modulation signal is not directly calculable per the composite modulation formulas defined in TRC-43 section 8 or 47 CFR §2.202(g). TETRA modulation (π /4-DQPSK) is eight states with a raw bit rate of 36,000 bps.

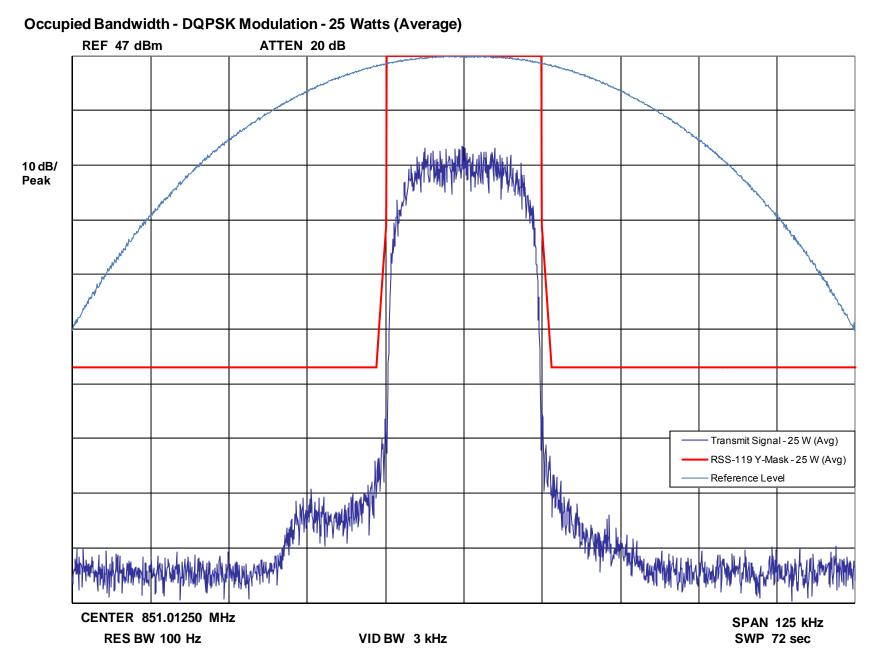
π/4 differential phase shift keying is used to modulate a carrier with a digital bit stream Data Rate: R = 36000 bps Bits per Symbol: S=8 B_n = 2BK B = R / log₂(s) = 36000 / log₂(8) = 12000 K= 0.915

 $\begin{array}{l} B_n = 2BK = 2 \ ^* \ 12000 \ ^* \ 0.915 \\ B_n = 21960 \ Hz \\ B_n = (Rounded \ to) \ 22.0 \ kHz \ or \ 22K0 \end{array}$

Measurement Procedure and Instrument Settings:

Emission Measurement Analyzer Settings			Ref Settings	Measurement Settings
Horizontal:	12.5 kHz per Division	Resolution BW:	30 kHz ⁻	100 Hz
Vertical:	10 dB per Division	Video BW:	30 kHz	3 kHz
Sweep Time:	72 Seconds (<2 kHz/Sec)	Span:	125 kHz	125 kHz
Detector:	Peak			

Measured Occupied Bandwidth


Resolution BW:	300 Hz	Span:	75 kHz
Video BW:	10 kHz	Sweep Time	72 sec (1601 pts)
Detector:	Peak		

Test Procedure:

- 1) Adjust the spectrum analyzer per the values specified in the Emission Measurement Analyzer Settings and Ref Settings (above).
- 2) Modulate the transmitter with the appropriate modulation and signaling pattern, (pseudorandom data) and key the transmitter at the full power rating. Allow the analyzer to sweep fully and store the sweep.
- Adjust the spectrum analyzer per the values specified in the Measurement Settings, allow the analyzer to sweep fully and store the sweep. Use the carrier power value from the previous step to generate the emission mask limit.
- 4) Plot the resulting analyzer traces and the emission mask limit; add text and labeling as appropriate.
- 5) Adjust the signal analyzer resolution BW and span as indicated above, use the Occupied Bandwidth function of the analyzer to record the occupied bandwidth value.

EXHIBIT	DESCRIPTION	Measured Occ BW
E1-2.1	Occupied Bandwidth, DQPSK Modulation, 25 kHz Channels, Low End of Band	21.07 kHz
E1-2.2	Occupied Bandwidth, DQPSK Modulation, 25 kHz Channels, Middle of Band	21.01 kHz
E1-2.3	Occupied Bandwidth, DQPSK Modulation, 25 kHz Channels, High End of Band	20.98 kHz
E1-2.4 E1-2.5 E1-2.6	Occupied Bandwidth, 64-QAM Modulation, 25 kHz Channels, Low End of Band Occupied Bandwidth, 64-QAM Modulation, 25 kHz Channels, Middle of Band Occupied Bandwidth, 64-QAM Modulation, 25 kHz Channels, High End of Band	21.19 kHz 21.19 kHz 21.15 kHz

Report on Test Measurements Occupied Bandwidth – DQPSK Modulation – Emission Designator: 22K0D7D, 22K0D7E, 22K0D7W – Low End of Band

Report on Test Measurements Occupied Bandwidth – DQPSK Modulation – Emission Designator: 22K0D7D, 22K0D7E, 22K0D7W – Middle of Band

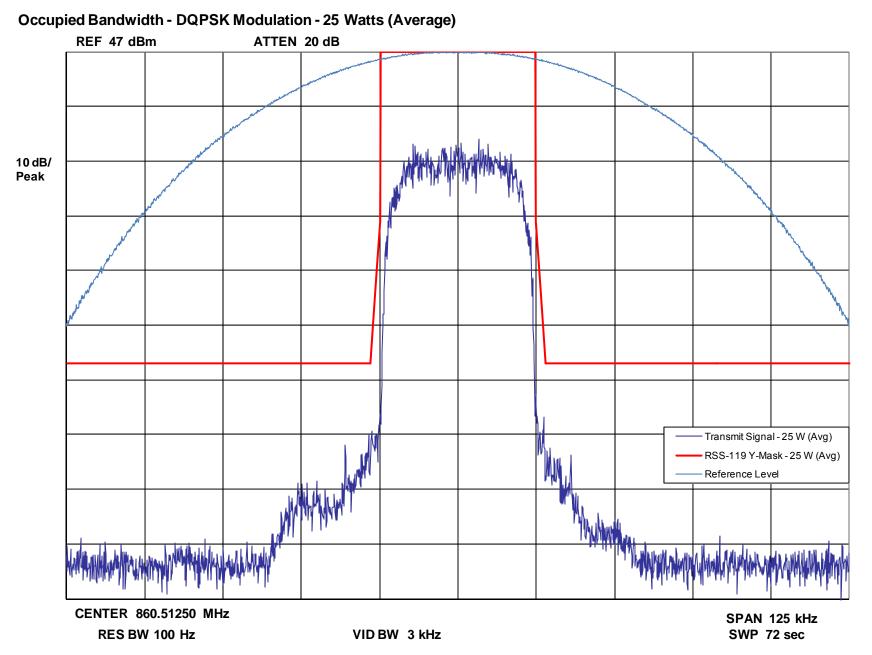
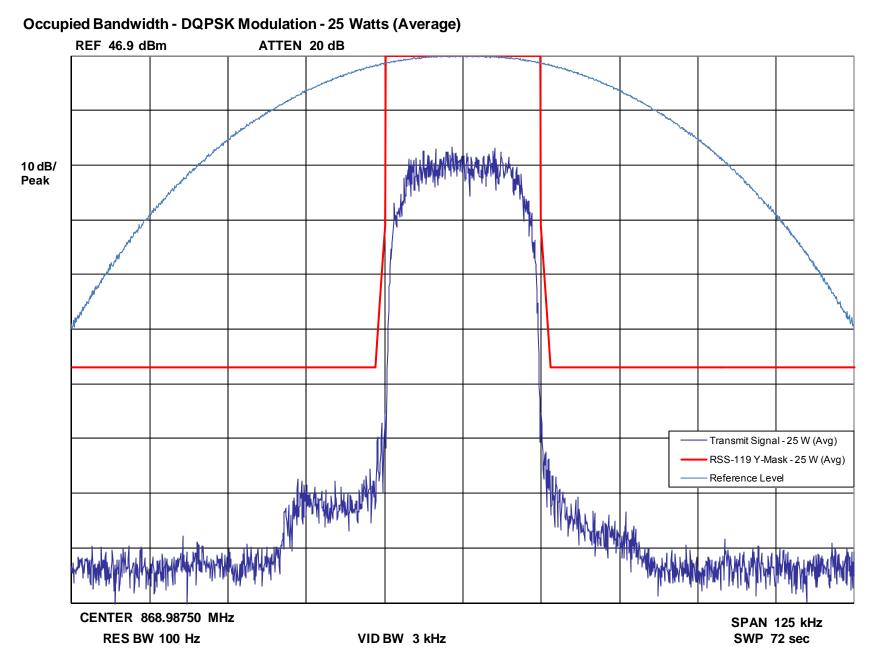
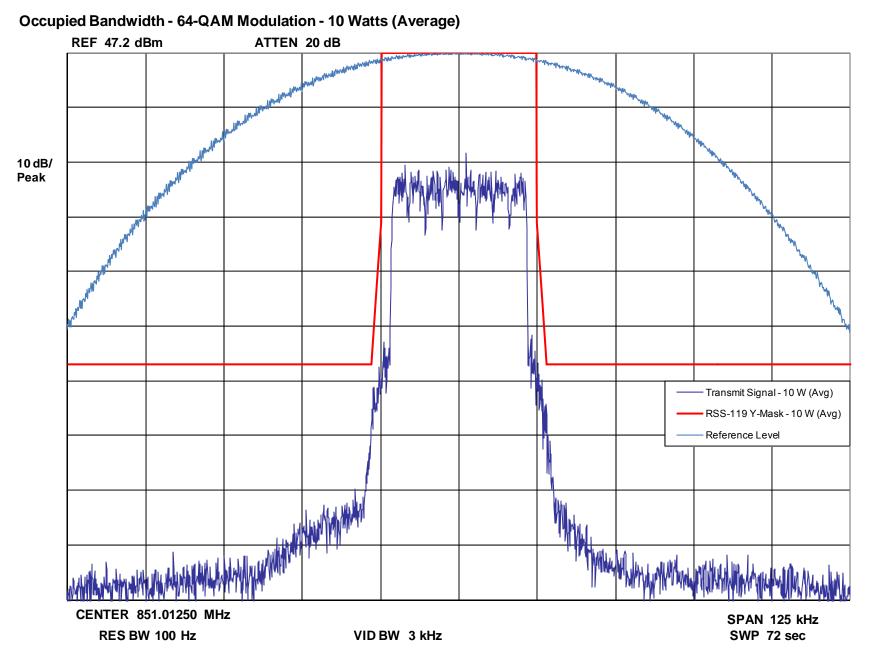
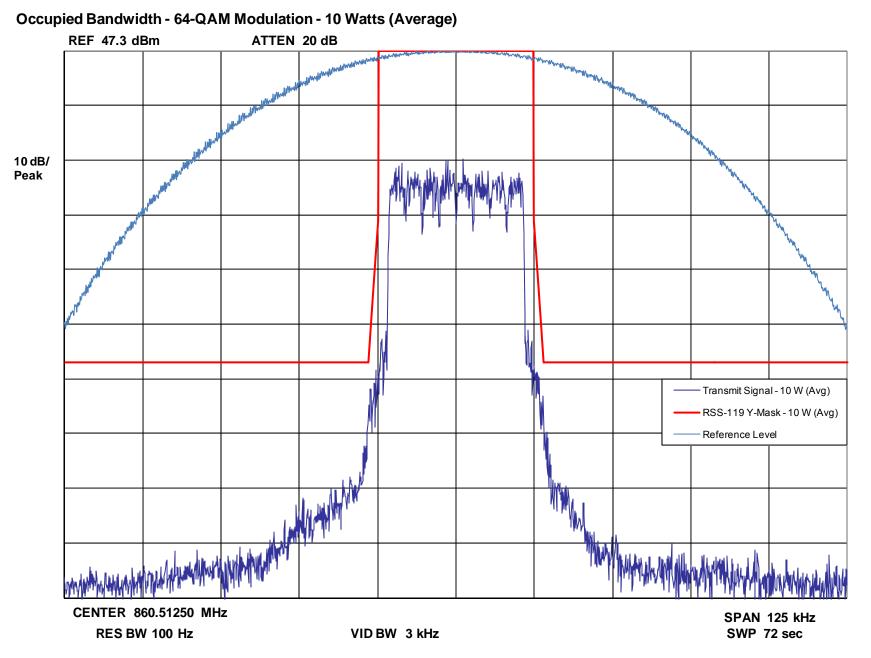
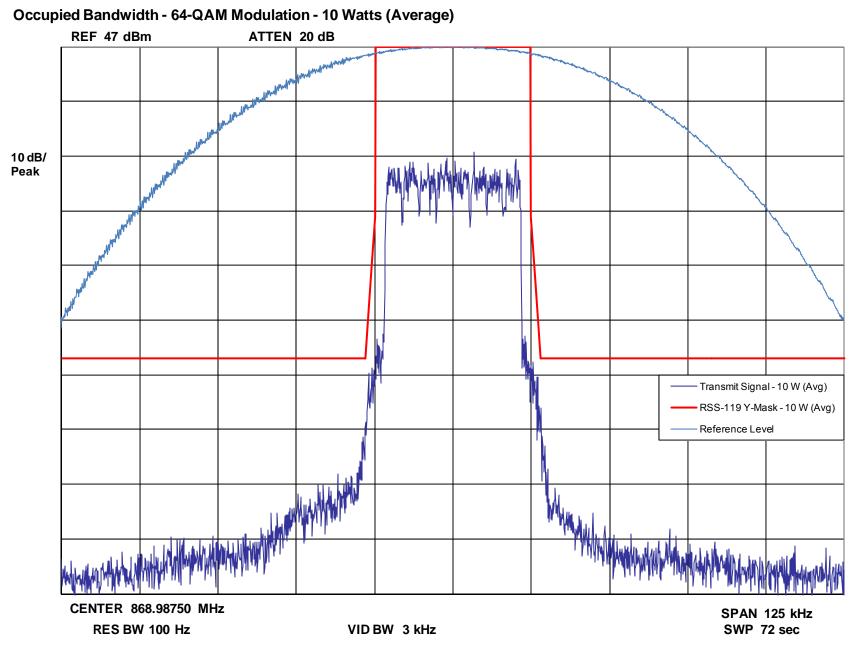




EXHIBIT E1-2.2


Report on Test Measurements Occupied Bandwidth – DQPSK Modulation – Emission Designator: 22K0D7D, 22K0D7E, 22K0D7W – High End of Band


Report on Test Measurements Occupied Bandwidth – 64-QAM Modulation – Emission Designator: 22K0D7D – Low End of Band

Report on Test Measurements Occupied Bandwidth – 64-QAM Modulation – Emission Designator: 22K0D7D – Middle of Band

Report on Test Measurements Occupied Bandwidth – 64-QAM Modulation – Emission Designator: 22K0D7D – High End of Band

Adjacent Channel Power –DQPSK (TETRA) Modulation and 64-QAM (TEDS) Modulation, 25 kHz Channels The following exhibits show the adjacent channel power (ACP) performance for two linear digital modulations. The type of modulation used is determined by system configuration and is based upon channel usage as described in Exhibit B. The following ACP data references the following setup and specification requirements.

Specification Requirement 47 CFR §90.221 – Adjacent Channel Power Limits:

(a) For the frequency bands indicated below, operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the adjacent channel power (ACP) limits below. The table specifies a value for the ACP as a function of the displacement from the channel center frequency and a measurement bandwidth of 18 kHz.

(c)(1) Maximum adjacent power levels for frequencies in the 809-824 / 854-869 MHz band:

Frequency offset	Maximum ACP (dBc) for devices less than 15 Watts	Maximum ACP (dBc) for devices 15 Watts and above
25 kHz	−55 dBc	−55 dBc
50 kHz	-65 dBc	−65 dBc
75 kHz	-65 dBc	−70 dBc

(2) In any case, no requirement in excess of -36 dBm shall apply.

(d) On any frequency removed from the assigned frequency by more than 75 kHz, the attenuation of any emission must be at least 43 + 10 log (P_{watts}) dB.

Modulation Types:	DQPSK Digital Modulation	64-QAM Digital Modulation
Emission Designator:	22K0D7D, 22K0D7E, 22K0D7W	22K0D7D
Channelization:	25 kHz	25 kHz
Power Setting:	25 Watts (Average)	10 Watts (Average)

Carrier Frequency: The unit was measured at a carrier frequency in the middle of the band, 860.5125 MHz. This is representative of performance over the full operating band.

<u>Necessary Bandwidth Calculation:</u> 47CFR90.221 sets forth an alternate method of establishing compliance with out of band emission (OOBE) limits. An Adjacent Channel Power mask and associated limits replace the standard OOBE mask sets. These are measured and recorded per 47CFR90.221.

Measurement Procedure and Instrument Settings:

Emission Measureme	ent Analyzer Settings:		
Horizontal:	20 kHz per Division	Resolution Bandwidth:	300 Hz
Vertical:	10 dB per Division	Video Bandwidth:	10 kHz
Sweep Time:	110 Seconds (<2000 Hz / Second)	Span:	200 kHz
Detector Mode:	RMS Power, 99%		

(continued next page)

Adjacent Channel Power (continued)

Test Procedure:

1) Adjust the spectrum analyzer per the values specified in the Measurement Procedure and Instrument Settings.

2) Modulate the transmitter with the appropriate signaling pattern (pseudorandom data) and key the transmitter at the desired power rating. Use the analyzer controls to set this signal to maximize dynamic range of the instrument and include noise floor into the plotted data. The spectrum analyzer then automatically presents the corrected (actual) power. Next, allow the analyzer to sweep fully and store the sweep; allow the analyzer to calculate channel power and ACP values.

3) Sweep the carrier and utilize the band power marker function of the spectrum analyzer to measure the power of the carrier in a 22 kHz bandwidth utilizing an 18 kHz filter criteria for ACP as stated in 90.221.

4) Use the carrier power value from the previous step to generate the ACP reference.

5) Store the resulting analyzer trace; add text and labeling as appropriate.

Test Results Summary:

The adjacent channel power test results for the DQPSK and 64-QAM modulated transmitted signals are summarized below:

			(Spec -55 dBc)	(Spec -55 dBc)	(Spec -65 dBc)	(Spec -65 dBc)	(Spec - 70 dBc)	(Spec -70 dBc)
		Avg Power	ACP @ -25 kHz	ACP @ +25 kHz	ACP @ -50 kHz	ACP @ +50 kHz	ACP @ -75 kHz	ACP @ +75 kH:
Config	Modulation	(Watts)	(dBc)	(dBc)	(dBc)	(dBc)	(dBc)	(dBc)
MTS4	DQPSK	25	-61.38	-65.77	-75.70	-74.74	-82.51	-82.18
		4	-68.19	-70.07	-80.54	-80.80	-82.22	-82.02
	64-QAM	10	-60.64	-64.09	-74.21	-74.36	-80.25	-80.60
		2.5	-65.20	-67.06	-79.26	-79.34	-81.31	-81.02
MTS2	DQPSK	25	-64.71	-67.68	-74.35	-73.53	-81.61	-81.43
		4	-70.27	-71.20	-80.49	-80.32	-81.62	-81.81
	64-QAM	10	-62.50	-64.22	-69.83	-69.39	-77.42	-77.31
		2.5	-68.05	-67.84	-78.85	-78.65	-80.08	-80.07
NI			l I- for nouvor lov					

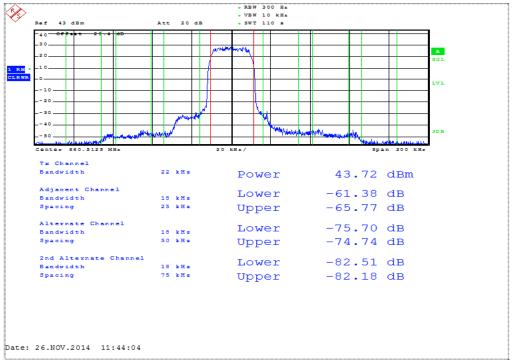
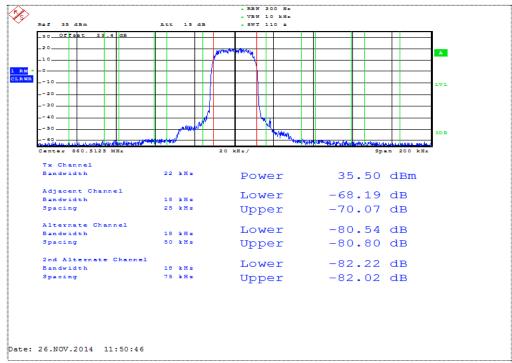
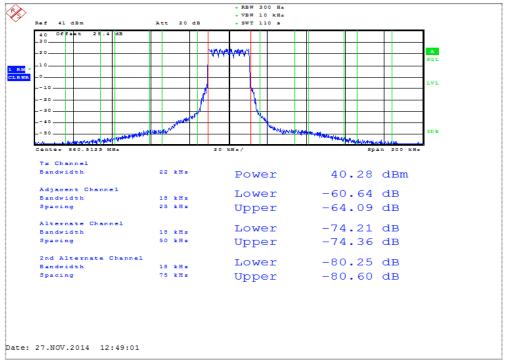

Note: The specification at +/- 75 kHz for power levels below 15 Watts is -65 dBc

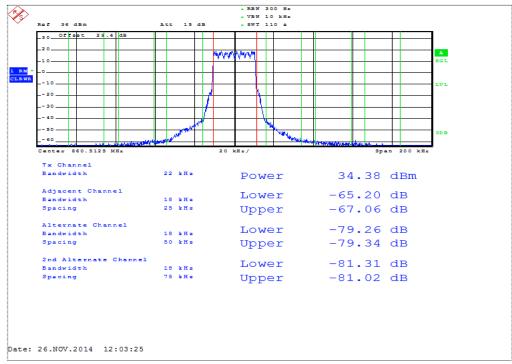
EXHIBIT DESCRIPTION


E1-3.1	MTS 4, DQPSK Modulation, 25 kHz Channels, 25 Watts (Average), 4 Watts (Average)
E1-3.2	MTS 4, 64-QAM Modulation, 25 kHz Channels, 10 Watts (Average), 2.5 Watts (Average)
E1-3.3	MTS 2, DQPSK Modulation, 25 kHz Channels, 25 Watts (Average), 4 Watts (Average)
E1-3.4	MTS 2, 64-QAM Modulation, 25 kHz Channels, 10 Watts (Average), 2.5 Watts (Average)

Adjacent Channel Power – DQPSK (TETRA) Modulation 25 kHz Channels – MTS 4

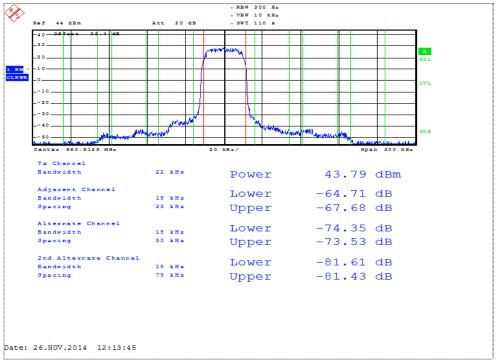
The following shows the adjacent channel power (ACP) performance for DQPSK digital modulation. The charts show ACP performance at the high rated power and low rated power settings.

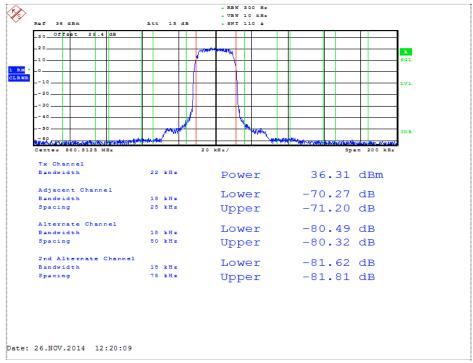

DQPSK, 860.5125 MHz, 25 Watts (Average) – MTS 4


DQPSK, 860.5125 MHz, 4 Watts (Average) – MTS 4

Adjacent Channel Power –64-QAM (TEDS) Modulation 25 kHz Channels – MTS 4

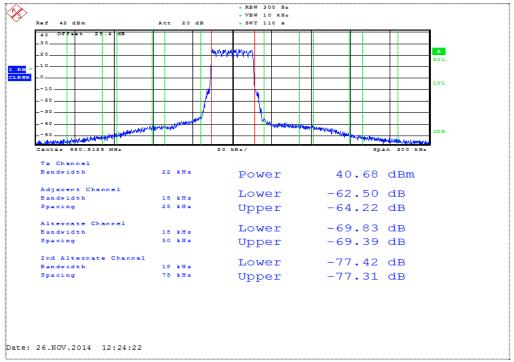
The following shows the adjacent channel power (ACP) performance for 64-QAM digital modulation. The charts show ACP performance at the high rated power and low rated power settings.

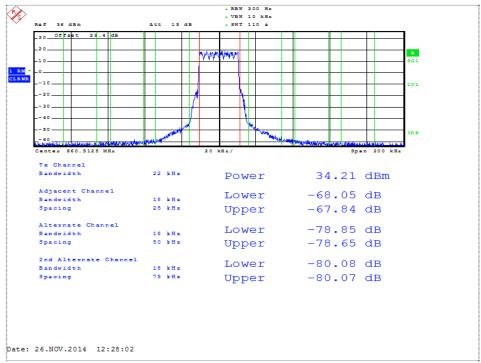

64-QAM, 860.5125 MHz, 10 Watts (Average) - MTS 4


64-QAM, 860.5125 MHz, 2.5 Watts (Average) - MTS 4

Adjacent Channel Power – DQPSK (TETRA) Modulation 25 kHz Channels – MTS 2

The following shows the adjacent channel power (ACP) performance for DQPSK digital modulation. The charts show ACP performance at the high rated power and low rated power settings.


DQPSK, 860.5125 MHz, 25 Watts (Average) – MTS 2


DQPSK, 860.5125 MHz, 4 Watts (Average) – MTS 2

Adjacent Channel Power –64-QAM (TEDS) Modulation 25 kHz Channels – MTS 2

The following shows the adjacent channel power (ACP) performance for 64-QAM digital modulation. The charts show ACP performance at the high rated power and low rated power settings.

64-QAM, 860.5125 MHz, 10 Watts (Average) – MTS 2

64-QAM, 860.5125 MHz, 2.5 Watts (Average) - MTS 2

Conducted Spurious Emissions – Harmonics and Emission Spectrum

Specification Requirement IC RSS-119 per section 5.5.8 Table 3 and section 5.8.10 - Emission Limits – "Y-Mask": Equipment with a 25 kHz channel spacing and an occupied bandwidth greater than 20 kHz shall have the power of any emission attenuated below the transmitter output power P (dBW) as specified in the following table:

Displacement Frequency, fd (kHz)	Minimum Attenuation (dB)	Resolution Bandwidth
12.375 < fd ≤ 13.975	whichever is the lesser attenuation: 30 + 16.67(fd–12.375) dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)
fd > 13.975	whichever is the lesser attenuation: 57 dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)

Specification Requirement 47 CFR §90.221 – Adjacent Channel Power Limits:

(a) For the frequency bands indicated below, operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the adjacent channel power (ACP) limits below. The table specifies a value for the ACP as a function of the displacement from the channel center frequency and a measurement bandwidth of 18 kHz.

(c)(1) Maximum adjacent power levels for frequencies in the 809-824 / 854-869 MHz band:

Frequency offset	Maximum ACP (dBc) for devices less than 15 Watts	Maximum ACP (dBc) for devices 15 Watts and above
25 kHz	−55 dBc	−55 dBc
50 kHz	−65 dBc	-65 dBc
75 kHz	−65 dBc	-70 dBc

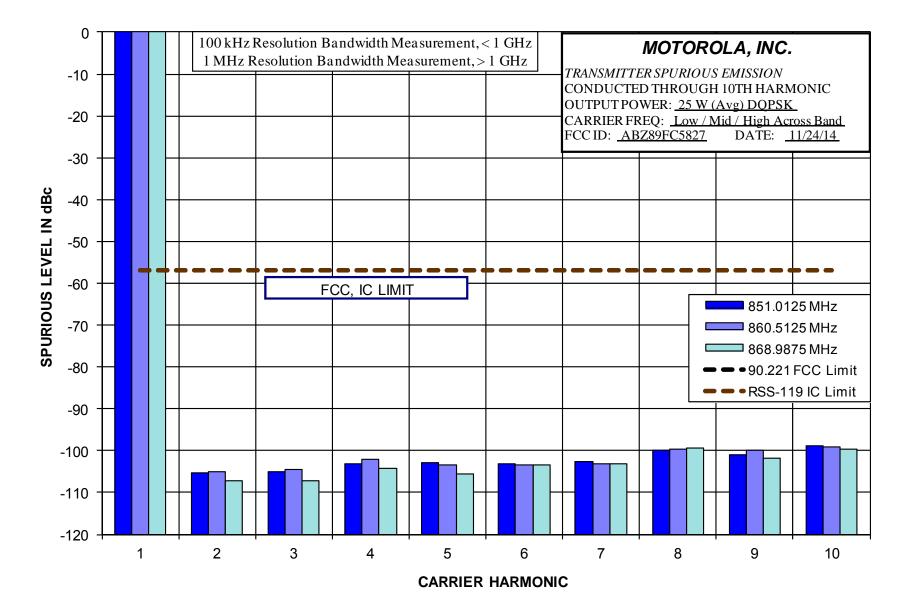
(2) In any case, no requirement in excess of -36 dBm shall apply.

(d) On any frequency removed from the assigned frequency by more than 75 kHz, the attenuation of any emission must be at least 43 + 10 log (P_{watts}) dB.

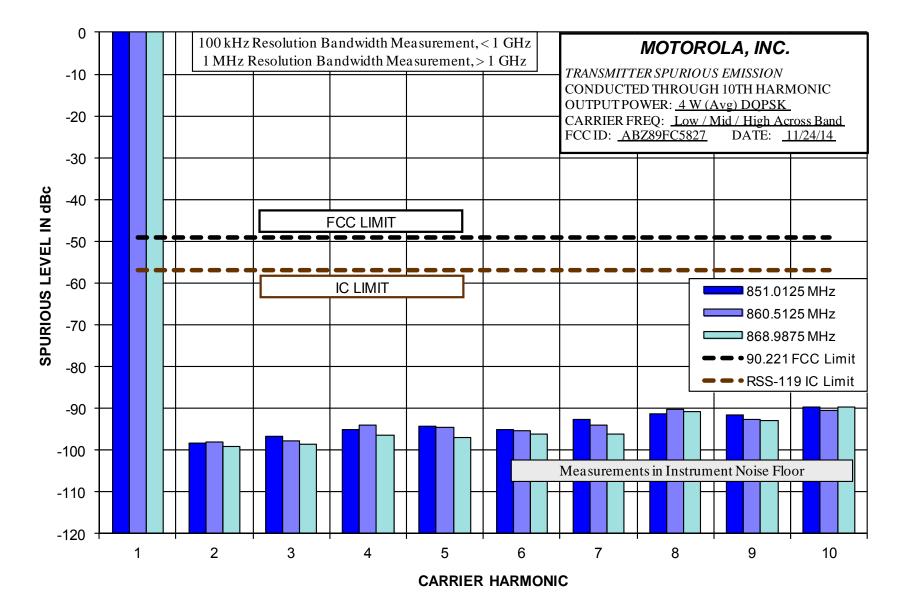
For emissions beyond 50 kHz from the edge of the authorized bandwidth, the spectrum analyzer bandwidth shall be 100 kHz for frequencies below 1 GHz, and 1 MHz for frequencies above 1 GHz.

Modulation: DQPSK Modulation and 64-QAM Modulation as indicated

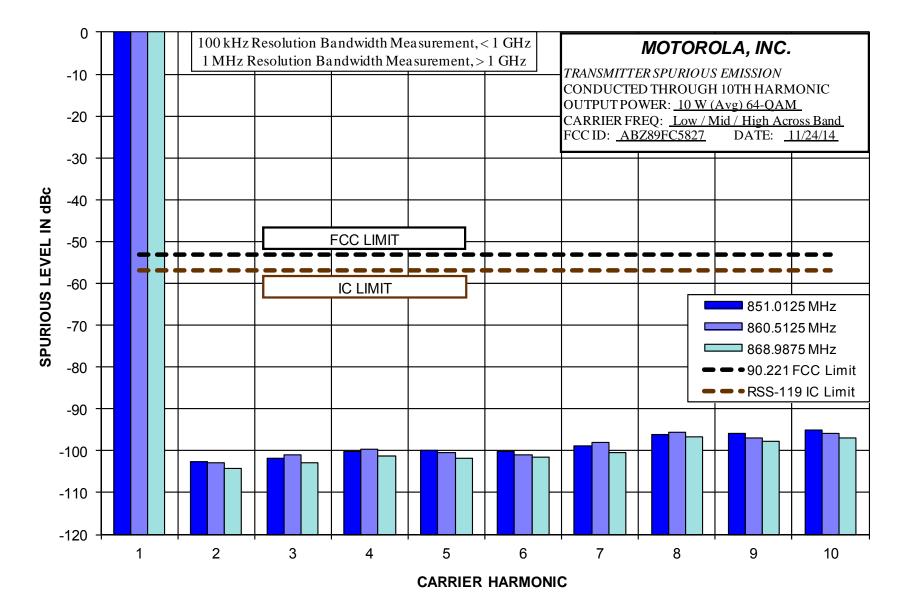
Carrier Frequencies: The unit was measured at carrier frequencies of 851.0125, 860.5125, and 868.9875 MHz for radiated emissions. These frequencies represent the low end, center, and high end of the 851-869 MHz band, and are representative of the full operating band.

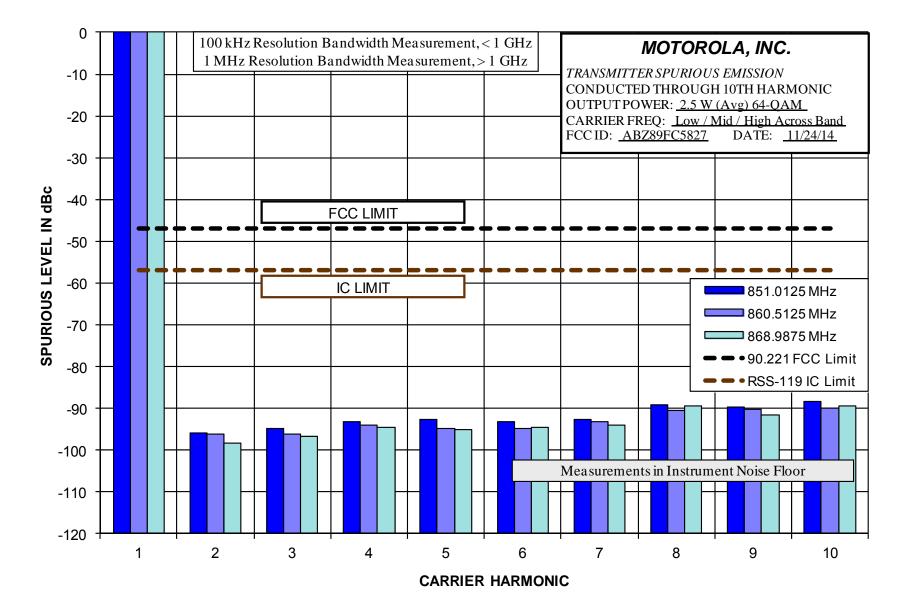

Specification: The limit functions above produce the following spurious emission limits away from carrier, either both specifications are noted on the following exhibits or the most stringent is shown:

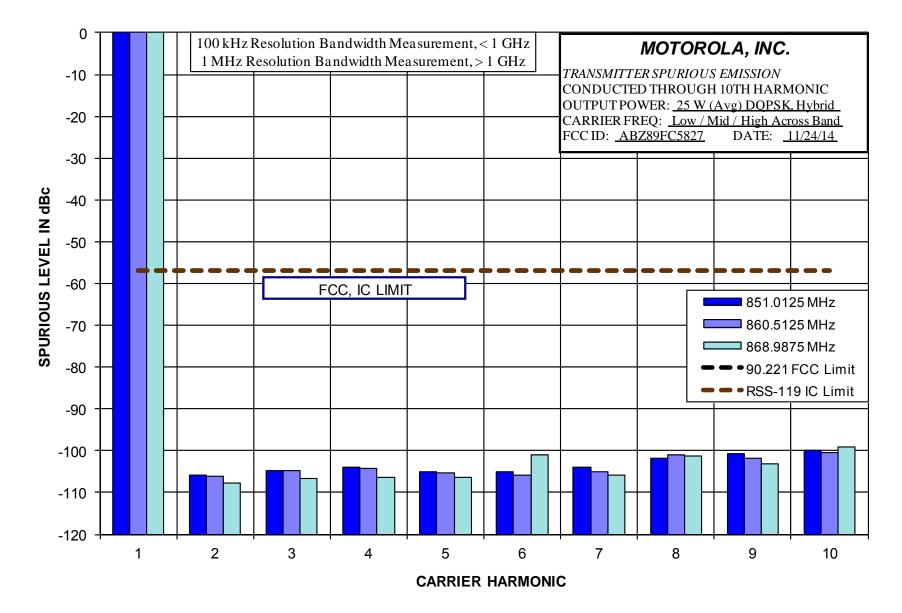
DQPSK Modulation		64-QAM Modulation			
Power	FCC	IC	Power	FCC	IC
25 W	-57 dBc	-57 dBc	10 W	-53 dBc	-57 dBc
4 W	-49 dBc	-57 dBc	2.5 W	-47 dBc	-57 dBc

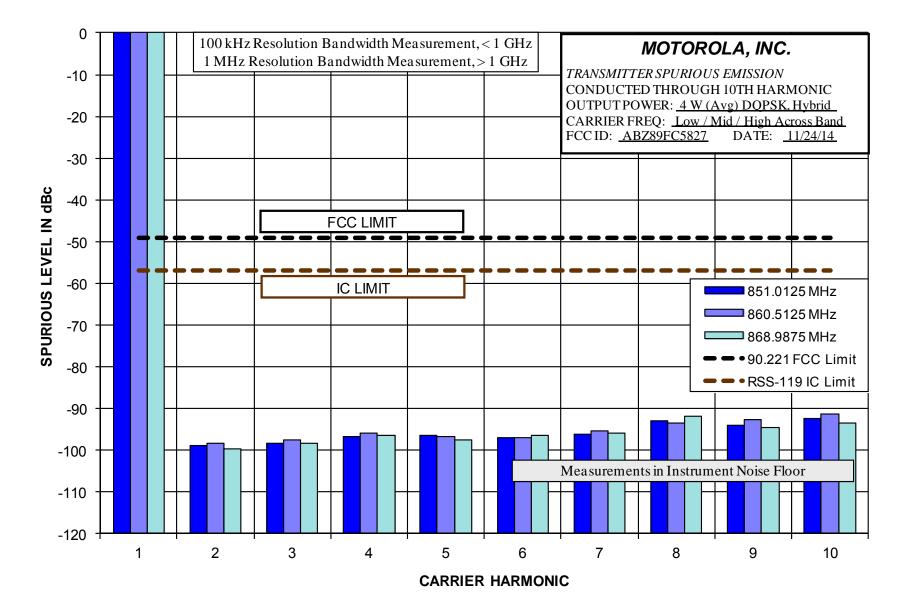

EXHIBIT DESCRIPTION

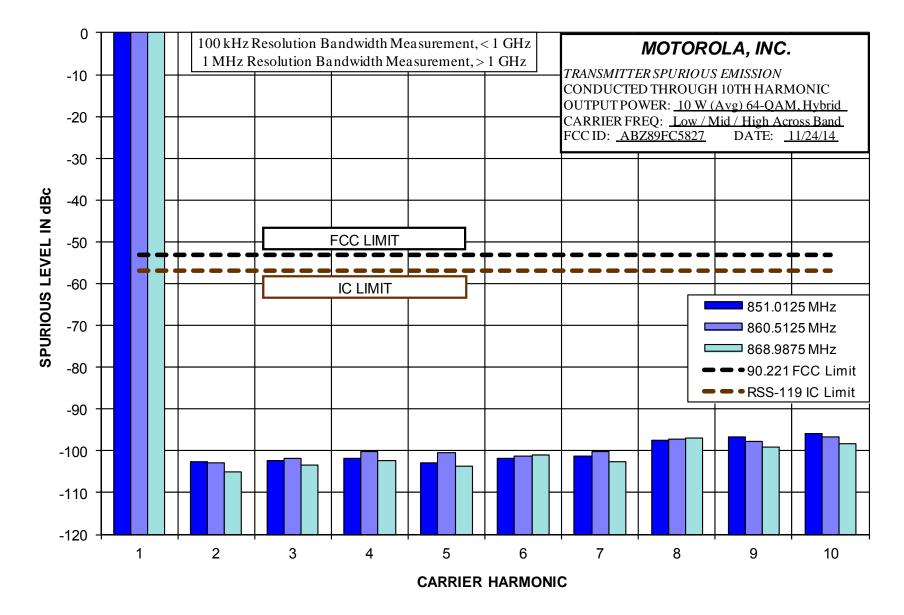
E1-4.1	MTS 4 Conducted Spurious Harmonic Emissions, Power Output 25 Watts (Average), DQPSK
E1-4.2	MTS 4 Conducted Spurious Harmonic Emissions, Power Output 4 Watts (Average), DQPSK
E1-4.3	MTS 4 Conducted Spurious Harmonic Emissions, Power Output 10 Watts (Average), 64-QAM
E1-4.4	MTS 4 Conducted Spurious Harmonic Emissions, Power Output 2.5 Watts (Average), 64-QAM
E1-4.5	MTS 2 Conducted Spurious Harmonic Emissions, Power Output 25 Watts (Average), DQPSK
E1-4.6	MTS 2 Conducted Spurious Harmonic Emissions, Power Output 4 Watts (Average), DQPSK
E1-4.7	MTS 2 Conducted Spurious Harmonic Emissions, Power Output 10 Watts (Average), 64-QAM
E1-4.8	MTS 2 Conducted Spurious Harmonic Emissions, Power Output 2.5 Watts (Average), 64-QAM
E1-4.9, 10, 11	MTS 4 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 25 Watts (Avg), DQPSK
E1-4.12, 13, 14	MTS 4 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 10 Watts (Avg), 64-QAM
E1-4.15, 16, 17	MTS 2 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 25 Watts (Avg), DQPSK
E1-4.18, 19, 20	MTS 2 Conducted Spurious Emission Spectrum, 200 MHz Span, Power 10 Watts (Avg), 64-QAM

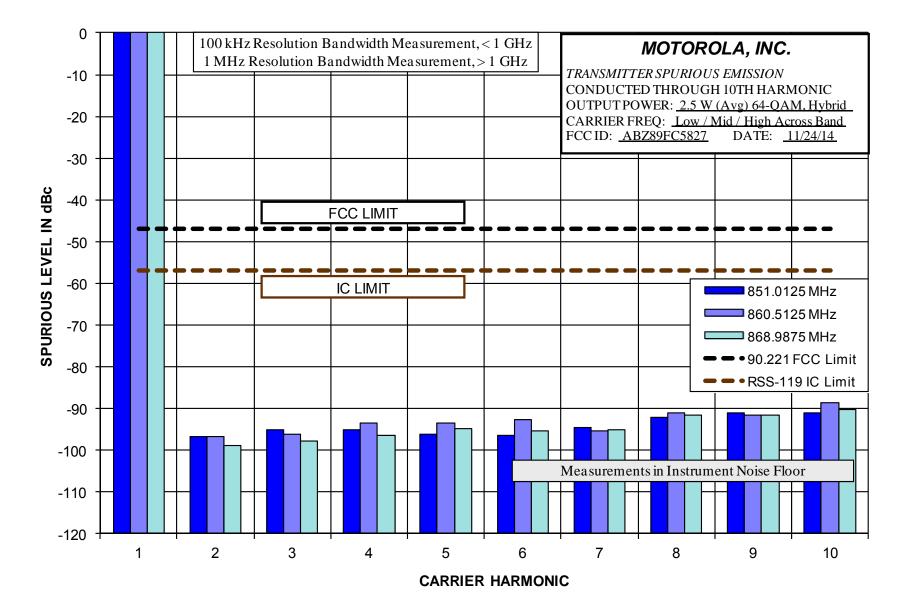

MTS 4 Conducted Spurious Harmonic Emissions – 25 Watts (Average), DQPSK

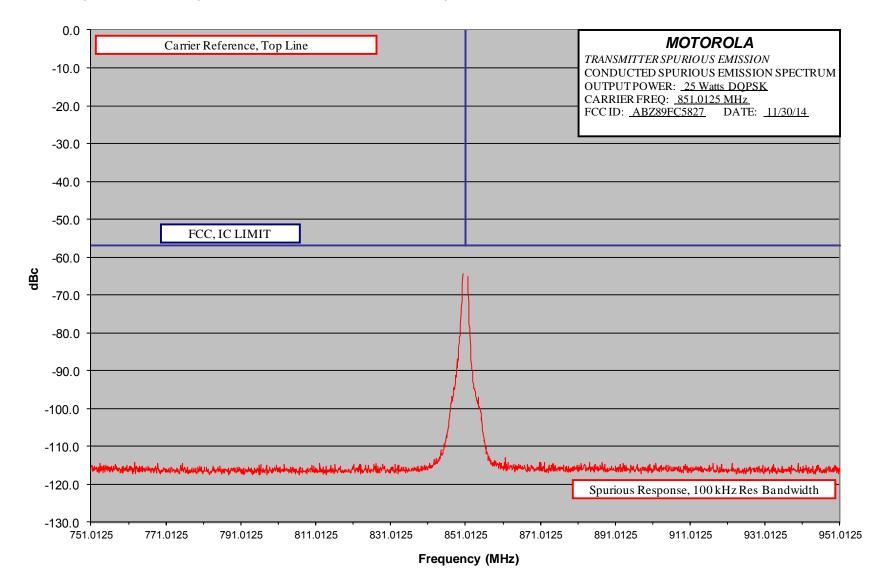

MTS 4 Conducted Spurious Harmonic Emissions – 4 Watts (Average), DQPSK

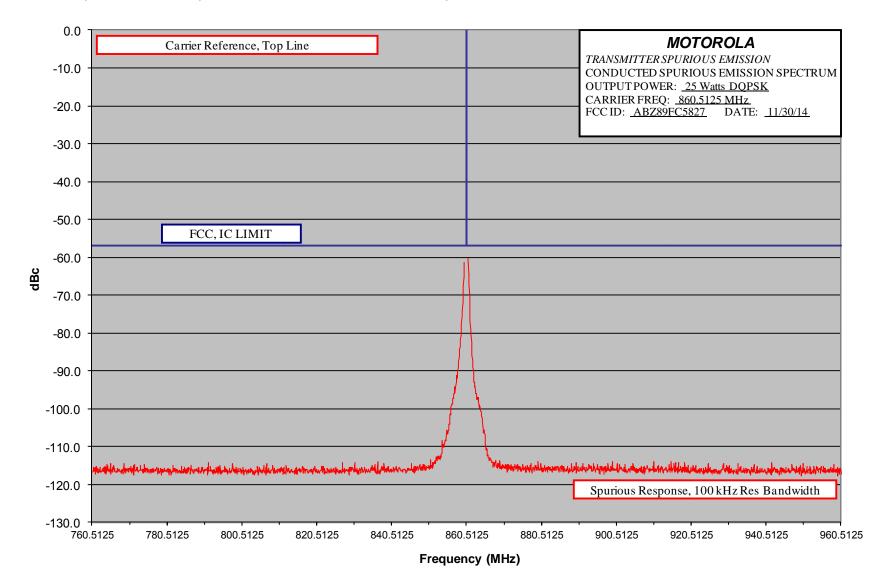

MTS 4 Conducted Spurious Harmonic Emissions - 10 Watts (Average), 64-QAM

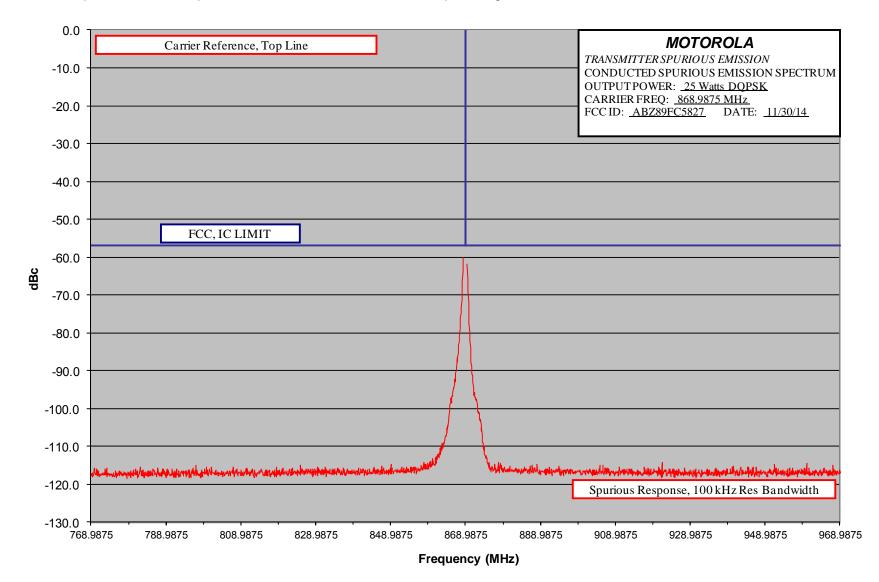

MTS 4 Conducted Spurious Harmonic Emissions – 2.5 Watts (Average), 64-QAM

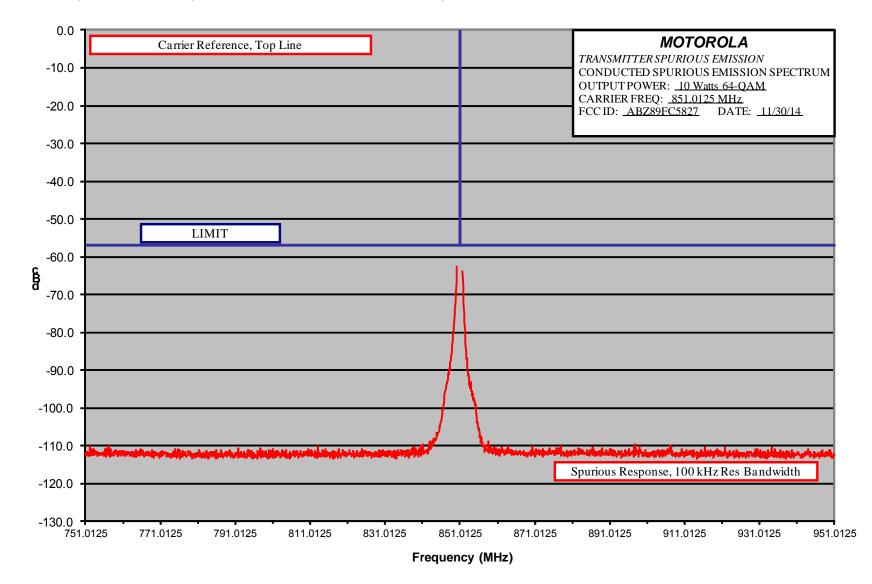

MTS 2 Conducted Spurious Harmonic Emissions – 25 Watts (Average), DQPSK

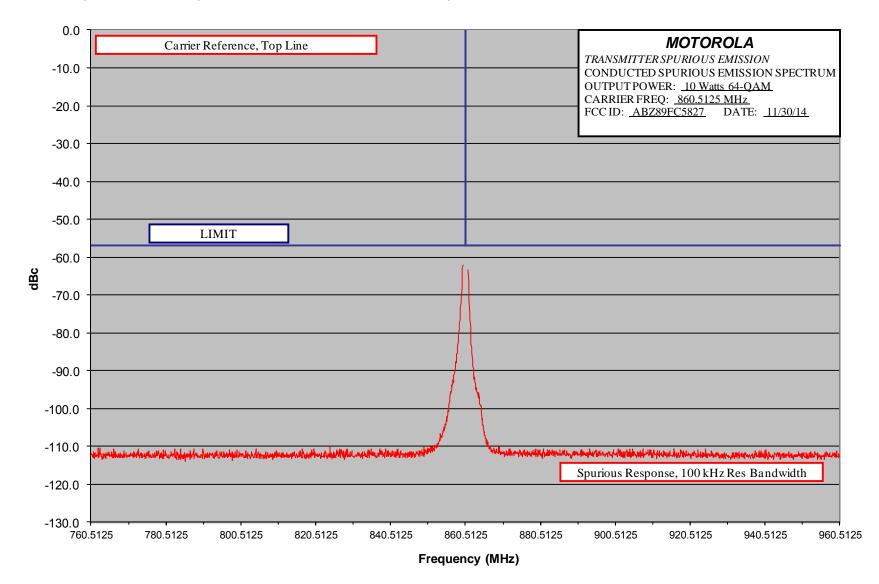

MTS 2 Conducted Spurious Harmonic Emissions – 4 Watts (Average), DQPSK


MTS 2 Conducted Spurious Harmonic Emissions - 10 Watts (Average), 64-QAM


MTS 2 Conducted Spurious Harmonic Emissions – 2.5 Watts (Average), 64-QAM

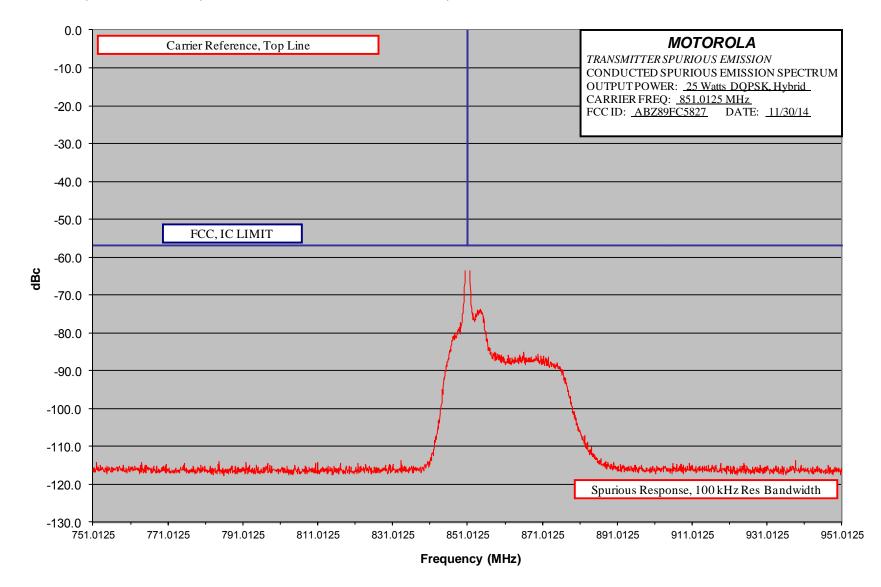

MTS 4 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – Low End of Band


MTS 4 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – Middle of Band

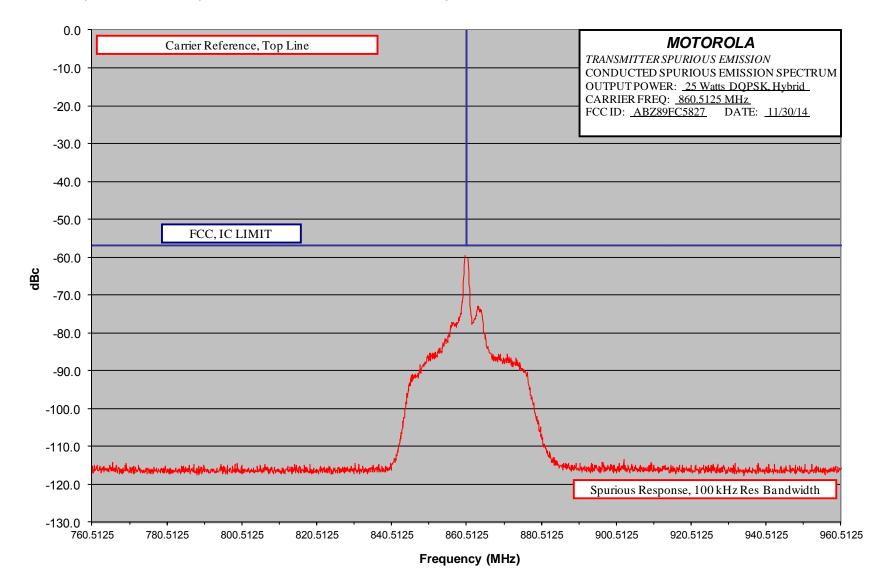

MTS 4 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – High End of Band

MTS 4 Conducted Spurious Emission Spectrum – 10 Watts 64-QAM – 200 MHz Span – Low End of Band

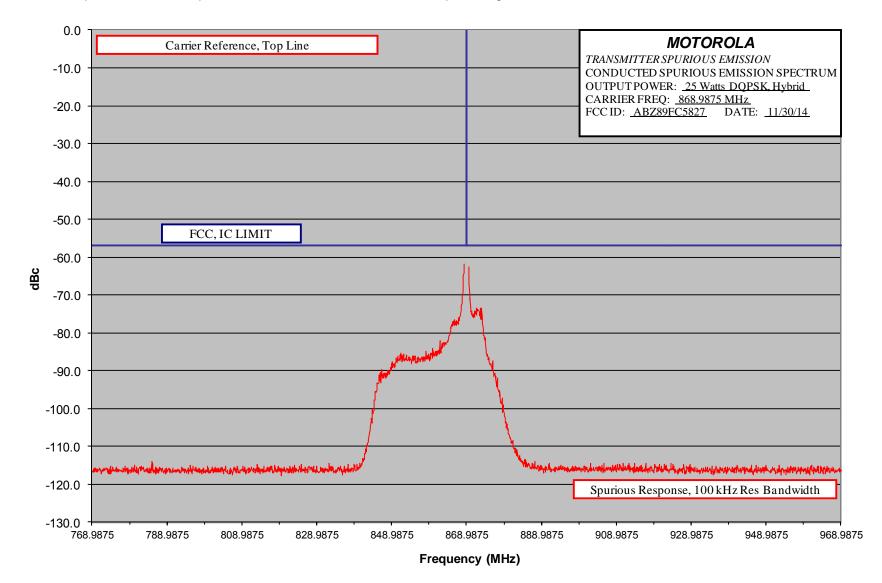
MTS 4 Conducted Spurious Emission Spectrum - 10 Watts 64-QAM - 200 MHz Span - Middle of Band

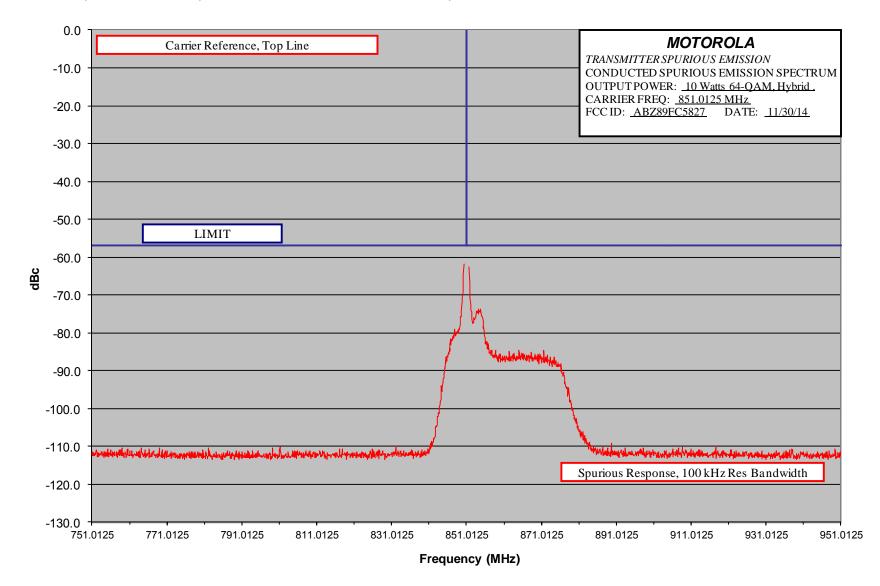


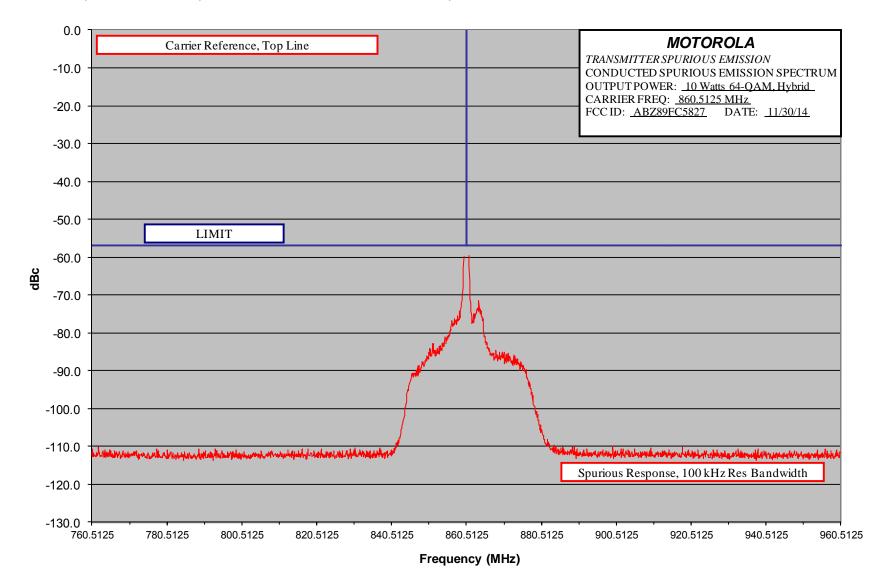
MTS 4 Conducted Spurious Emission Spectrum – 10 Watts 64-QAM – 200 MHz Span – High End of Band

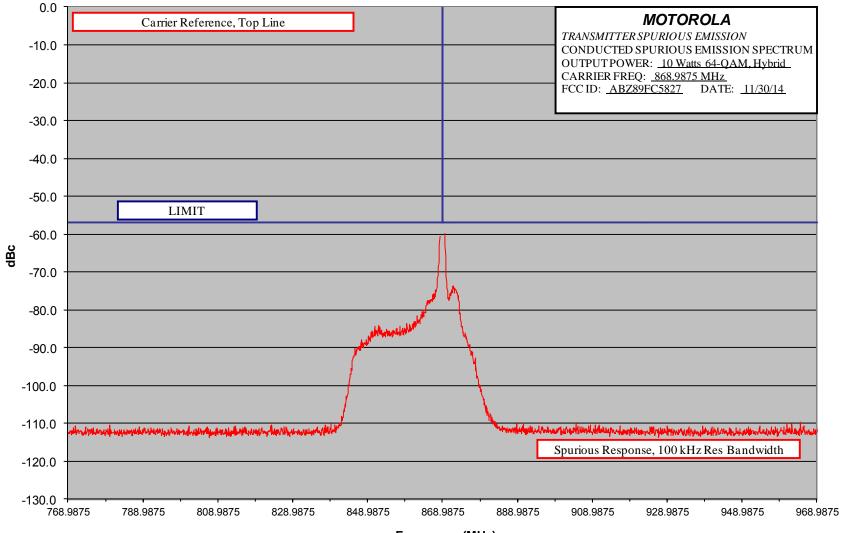


Frequency (MHz)


MTS 2 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – Low End of Band


MTS 2 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – Middle of Band


MTS 2 Conducted Spurious Emission Spectrum – 25 Watts DQPSK – 200 MHz Span – High End of Band


MTS 2 Conducted Spurious Emission Spectrum - 10 Watts 64-QAM - 200 MHz Span - Low End of Band

MTS 2 Conducted Spurious Emission Spectrum - 10 Watts 64-QAM - 200 MHz Span - Middle of Band

MTS 2 Conducted Spurious Emission Spectrum – 10 Watts 64-QAM – 200 MHz Span – High End of Band

Frequency (MHz)

Radiated Spurious Emissions, Harmonics

<u>Specification Requirement IC RSS-119 per section 5.5.8 Table 3 and section 5.8.10 - Emission Limits – "Y-Mask":</u> Equipment with a 25 kHz channel spacing and an occupied bandwidth greater than 20 kHz shall have the power of any emission attenuated below the transmitter output power P (dBW) as specified in the following table:

Displacement Frequency, fd (kHz)	Minimum Attenuation (dB)	Resolution Bandwidth
12.375 < fd ≤ 13.975	whichever is the lesser attenuation: 30 + 16.67(fd–12.375) dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)
fd > 13.975	whichever is the lesser attenuation: 57 dB, or 55 + 10 log10(P) dB	100 Hz (Specified in Section 4.2.2)

Specification Requirement 47 CFR §90.221 – Adjacent Channel Power Limits:

(a) For the frequency bands indicated below, operations using equipment designed to operate with a 25 kHz channel bandwidth may be authorized up to a 22 kHz bandwidth if the equipment meets the adjacent channel power (ACP) limits below. The table specifies a value for the ACP as a function of the displacement from the channel center frequency and a measurement bandwidth of 18 kHz.

(c)(1) Maximum adjacent power levels for frequencies in the 809-824 / 854-869 MHz band:

Frequency offset	Maximum ACP (dBc) for devices less than 15 Watts	Maximum ACP (dBc) for devices 15 Watts and above				
25 kHz	-55 dBc	-55 dBc				
50 kHz	-65 dBc -65 dBc					
75 kHz	-65 dBc	-70 dBc				

(2) In any case, no requirement in excess of -36 dBm shall apply.

(d) On any frequency removed from the assigned frequency by more than 75 kHz, the attenuation of any emission must be at least 43 + 10 log (P_{watts}) dB.

For emissions beyond 50 kHz from the edge of the authorized bandwidth, the spectrum analyzer bandwidth shall be 100 kHz for frequencies below 1 GHz, and 1 MHz for frequencies above 1 GHz.

Modulation: DQPSK Modulation and 64-QAM Modulation as indicated

Carrier Frequencies: The unit was measured at carrier frequencies of 851.0125, 860.5125, and 868.9875 MHz for radiated emissions. These frequencies represent the low end, center, and high end of the 851-869 MHz band, and are representative of the full operating band.

Specification: The limit functions above produce the following spurious emission limits away from carrier, the report showing the most stringent specification is shown in the following exhibits:

DQ	PSK Modu	lation		64-QAM Modulation				
Power	FCC	IC	IC Powe			IC		
25 W	-57 dBc	-57 dBc		10 W	-53 dBc	-57 dBc		
4 W	-49 dBc	-57 dBc		2.5 W	-47 dBc	-57 dBc		

EXHIBIT DESCRIPTION

E1-5.1	Radiated Spurious Harmonic Emissions, Power Output 25 Watts (Average), DQPSK The specification limit is -57.0 dBc (-13 dBm) for both FCC and Industry Canada
E1-5.2	Radiated Spurious Harmonic Emissions, Power Output 4 Watts (Average), DQPSK The specification limit is -49.0 dBc (-13 dBm) for FCC, -57 dBc (-21 dBm) for Industry Canada
E1-5.3	Radiated Spurious Harmonic Emissions, Power Output 10 Watts (Average), 64-QAM The specification limit is -53.0 dBc (-13 dBm) for FCC, -57 dBc (-17 dBm) for Industry Canada
E1-5.4	Radiated Spurious Harmonic Emissions, Power Output 2.5 Watts (Average), 64-QAM The specification limit is -47.0 dBc (-13 dBm) for FCC, -57 dBc (-23 dBm) for Industry Canada

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	DEL #: MTS4 55-EMC-00005				Tetra_25W (DQPSK)						
	51.0125 MHz		25 kHz		25 Watt(s)/Max Power S/N: 895GQG0099					5GQG0099	
	Frequency FCC Falling (MHz) Limit				Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)				Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
	1702.0250		-13		ł						
	2553.0375		-13					+			
	3404.0500		-13							••	
	4255.0625		-13								
	5106.0750		-13								
	5957.0875		-13			••					
	6808.1000		-13								
	7659.1125		-13								
	8510.1250		-13								
		_						+			
L											
-	0			RADIA	TED SPURI	OUS EMISS	IONS			Horizontal Measured Emission	
a (dBm	-20 -	-	-	-	-	-	-	-	-	Equiv Pwr Into Ideal Dipole (dBm)	
on Leve	-60 - -80 -									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	
niss.	100 - S	375	8	12	20	575	8	22	92	-FCC Falling	
Ξ.	1702.0250	2553.0375	3404.0500	4255.0625	5106.0750	5957.0875	6808.1000	7659.1125	8510.1250	Limit	
	170	18	ž	24			680	166	22		
					Frequen	cy (MHz)					

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827

Industry Canada: 109AK Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients. November 18, 2014

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Falled Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

MODEL #: MTS4 02255-EMC-00005				Tetra_25W (DQPSK)						
860.5125 MHz		25 kHz		25 Watt(s)/Max Power S/N: 895GQG0099					95GQG0099	
Frequency (MHz)		FCC Fallin Limit	g	Horizontal Measured Equiv Pwr Into Ideal D			Verti	Vertical Measured Emiss Pwr Into Ideal Dipole		
1721.0250	-	-13								
2581.5375		-13								
3442.0500		-13			••					
4302.5625		-13			••					
5163.0750		-13			••					
6023.5875		-13			••					
6884.1000		-13								
7744.6125		-13								
8605.1250		-13								
			RADIA	TED SPURIC	US EMISS	IONS			Horizontal Measured	
Ē -20 -	-	-	-	-	-	-	-	-	Emission Equiv Pwr Into Ideal Dipole	
9 -40 -									(mBb)	
02560 - 100 - 101									EVertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	
si -100 - S	22	8	13	8	22	8	12	8		
- E	2581,5375	50	3	202	25	19	5	5.12	 FCC Failing Limit 	
Emis	23	3442.0500	4302.5625	5163.0750	6023.5875	6884.1000	7744,6125	8605.1250		
-				Frequen		-				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 18, 2014

Pursualit to GLIX 47 Part 2.103	n (c), enneelone attenuateu nio	le chan 20 GD below di	ie permissible minicale nocreported	
			Temp (Deg): 22.5 Hum (%RH):	70.0

			Tomp (Dog): 22.0 Hum (Netting: 70.0
Remarks:	Passed Results	Marginal Results	Falled Results
			•

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

MODEL #: MTS4 02255-EMC-00005				Tetra_25W (DQPSK)					
868.9875 MHz		25 kHz		25 Watt(s)/Max Power S/N: 895GQG0099					5GQG0099
Frequency (MHz)		FCC Fallin Limit	ng			d Emission Dipole (dBm)	Verti F	Vertical Measured Emissio Pwr Into Ideal Dipole (
1737.9750	-	-13		·					
2606.9625		-13					+		
3475.9500		-13							
4344.9375		-13							
5213.9250		-13							
6082.9125		-13							
6951.9000		-13							
7820.8875		-13							
8689.8750		-13							
	_								
	_								
	_						-		
	_								
	_								
	_								
	_						+		
	_								
	_								
							-		
	_						+		
	_						+		
							+		
	_						+		
	_						+		
							+		
							-		
<u>ل</u>									
ê 0			KADIA	TED SPURK	JUS EMISS	IONS			Emission Equiv Pwr
<u> </u>	-	-	-	-	-	-	-	-	into Ideal Dipole (dBm)
ຣັ -60 - ຮ -80 -									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
-100 - S	12	8	22	8	12	8	75	8	-FCC Falling
Emis 1737.9750	2606.9625	3475.9500	4344.9375	6213.9250	6082.9125	6951.9000	7820.8875	8689.8750	Linit
131	092	111	10	22	108	1982	78.20	10.00	
-			-		cy (MHz)				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK November 18, 2014

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Falled Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	IODEL #: MTS4 255-EMC-0000				Tetra_4W (DQPSK)						
	851.0125 MHz		25 kHz		4 W	att(s)/Max	Power	S/N: 895GQG0099			
	Frequency (MHz)		IC Failin Limit	9	Horizontal Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			Vert	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
	1702.0250		-21								
	2553.0375		-21			**					
	3404.0500		-21							11	
	4255.0625		-21								
	5106.0750		-21			**					
	5957.0875		-21			**				11	
	6808.1000		-21								
	7659.1125		-21			**					
	8510.1250		-21			**					
								_			
								_			
								_			
								_			
								_			
								-			
<u> </u>											
<u> </u>											
								-			
		•		RADIA		OUS EMISS	IONS	•			
e	0						10/10			Horizontal Measured Emission	
vel (dBm	-20 - -40 -	-	-	-	_	-	-	-	-	Equiv Pwr Into Ideal Dipole (dBm)	
Emission Level (dBm)	-60 - -80 - -100 -									Evertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)	
nis	8	. 375	8	13	. 8	. 228	8 '	22	. 8	- FCC Falling	
ш	1702.0250	2553.0375	3404.0500	4255.0625	5106.0750	5957.0875	6808.1000	7659.1125	8510.1250	Limit	
	170	22	2	424			89	765	2		
					Frequer	ncy (MHz)					

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris FCC Registration: ABZ89FC5827 Industry Canada: 109AK Net

November 18, 2014

			Temp (Deg): 22.5 Hum (%RH): 70.0	
Remarks:	Passed Results	Marginal Results	Failed Results	

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	ODEL #: MTS4 255-EMC-00005						Tetra_4	W (DQF	PSK)			
8	860.5125 MHz		25 kHz		4 Wa	tt(s)/Max	Power		S/N: 89	5GQG0099		
	Frequency (MHz)		IC Failin Limit	9	Horizonta	al Measure	d Emission Dipole (dBm)	Verti F	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
	1721.0250		-21									
	2581.5375		-21									
	3442.0500		-21									
	4302.5625		-21									
	5163.0750		-21									
	6023.5875		-21									
	6884.1000		-21									
	7744.6125		-21			**						
	8605.1250		-21									
				RADIA	TED SPURIO		IONS					
2	0					a cinida				Horizontal Measured Emission Equiv Pwr		
el (dBm)	-20 -	-	-	-	-	-	-	-	-	Into Ideal Dipole (dBm)		
Emission Level (d	-60 - -80 - -100									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
Emiss	1121.0250	2581.5375	3442.050.0	4302.562.5	5163.0750	6023.5875	6884.100.0	7744.6125	8605.1250	-FCC Failing		
-	1721	1997	3442	4302	Frequen		6004	7744	8605.	Limit		
					•							

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 18, 2014

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	#: MTS4 MC-00005						Tetra_4	W (DQF	°SK)			
868.98	75 MHz		25 kHz		4 Watt	(s)/Max F	ower		S/N: 89	5GQG0099		
Freq (M	uency Hz)		IC Failin Limit	g	Horizontal Equiv Pwr In	Measured	Emission	Verti P	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
1737	.9750		-21			**						
	.9625		-21									
3475	.9500		-21			11		<u> </u>				
4344	.9375	<u> </u>	-21			11		<u> </u>				
5213	.9250		-21			11						
6082	.9125		-21									
6951	.9000		-21			**						
	.8875		-21			**						
8689	.8750		-21			11						
								<u> </u>				
								<u> </u>				
								<u> </u>				
								<u> </u>				
								<u> </u>				
								<u> </u>				
		_						-				
								+				
								<u> </u>				
								<u> </u>				
۲ <u>ــــــ</u>												
€ 0-				RADIA	TED SPURIOU	S EMISSI	ONS			Horizontal Measured Emission Equiv Pwr		
up -20 - 10 -40 -	-	-	-	-	-	-	-	-	-	Into Ideal Dipole (dBm)		
Emission Level (dBm) - 05- - 08- - 00- - 01- - 00-										EVertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
-100 -	8	23	8	75	8	22	8	22	8	FCC Falling		
5	16	3	8	193	38	5	8	88	187	Limit		
	1737.9750	2606.9625	3475.9500	4344.9375	Frequency	(MHz)	0006-1589	7820.8875	8689.8750			
L												

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 18, 2014

		Temp (Deg): 22.5 Hum (%RH): 70.0	
0.000	Manning Deputy	Exiled Decelle	

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	ODEL #: MTS4 255-EMC-00005				TEDS_10W QAM 64							
	851.0125 MHz		25 kHz		10 W	/att(s)/Max	Power		S/N: 89	5GQG0099		
	Frequency (MHz)		IC Failin Limit	g	Horizont	al Measure	d Emission Dipole (dBm	Vert	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
	1702.0250		-17									
	2553.0375		-17					+				
	3404.0500		-17			**						
	4255.0625		-17									
	5106.0750		-17			**						
	5957.0875		-17			**						
	6808.1000		-17			**						
	7659.1125		-17			11						
	8510.1250		-17			**						
				RADIA	TED SPURI	OUS EMISS	IONS			Horizontal		
(mBh)	-20 -	-	-	-	-	-	-	-	-	Measured Emission Equiv Pwr Into Ideal		
vel (d	-40 - -60 -									Dipole (dBm)		
Emission Level (-80 -									Emission Equiv Pwr Into Ideal Dipole (dBm)		
iss	-100 +	22	8	13	8	22	8	12	8			
5	1702.0250	2553.0375	3404.0500	4255.0625	5106.0750	5957.0875	6804.1000	7659.1125	8510.1250	 FCC Failing Limit 		
	102	392	20	20	5	382		1655	210	-		
	+				Frequen	cy (MHz)	-		~			

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

MODEL 02255-EN							TEDS_1	OW QAI	M 64			
860.51	25 MHz		25 kHz		10 W	att(s)/Max	Power		S/N: 89	5GQG0099		
Frequ (M	Jency Hz)		IC Failin Limit	9	Horizonta	al Measured	d Emission)ipole (dBm)	Verti P	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
1721.	0250		-17			**						
2581			-17			**						
3442	0500		-17			**						
4302	5625		-17			**						
5163.	0750		-17			11						
6023.	5875		-17			**						
6884.	1000		-17			**						
7744.	6125		-17			**						
8605.	1250		-17			**						
-				RADIA	TED SPURIC	US EMISS	IONS			Horizontal Measured		
E -20	_	_	_	_	-	_	-	-	_	Emission Equiv Pwr Into Ideal Dipole		
BD) 1-20 1-20 1-20 -20										(dBm)		
60+ 60- 01- 01- 01-	<u> </u>			-						Emission Equiv Pwr Into Ideal Dipole (dBm)		
Ē	1721.0250	2581.5375	3442.0500	4302.562.5	5163.0750	6023.5875	6884.1000	7744.6125	8605.1250	-FCC Falling		
-	21.6	1	12	02.6	23	23.4	3	4	8	Limit		
	42	2	2	4	ភ្លី Frequen		8	11	8			
L												

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

		-	Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

MODEL #: MTS4 02255-EMC-00005				TEDS_10W QAM 64							
868.9875 MHz		25 kHz		10 W	att(s)/Max	Power		S/N: 89	5GQG0099		
Frequency (MHz)		IC Failin Limit	g	Horizont	al Measure	d Emission Dipole (dBm)	Vert	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)			
1737.9750		-17			**						
2606.9625		-17									
3475.9500		-17									
4344.9375		-17			18		+				
5213.9250		-17			11		+				
6082.9125		-17					-		11		
6951.9000		-17			11		+				
7820.8875		-17			**		+				
8689.8750		-17			**		+				
							+				
							+				
							<u> </u>				
	_						-				
	<u> </u>						+				
	<u> </u>						+				
	_						+				
	_						+				
	_						+				
	_						+				
	_						+				
	_						+				
	_										
	_						+				
	_										
	_						<u> </u>				
							_				
							-				
							_				
			RADIA	TED SPURIO		IONS					
€ 0 					500 Emida				Horizontal Measured Emission Equiv Pwr		
mep -20	-	-	-	-	-	-	-	-	Into Ideal Dipole (dBm)		
ма -60 - цо -80 -									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
3 -100	22	8	20	8	22	8	2	8	-FCC Failing		
Emis 1737.9750	2606.9625	3475.9500	4344,9375	5213.9250	6082.9125	6951.9000	7820.8875	8689.8750	Limit		
131	8	418	2	533	082	2	820				
-	2	-	-		cy (MHz)		-	•			
				riequen	-) ()						

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris

FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

		-	Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	NODEL #: MTS4 2255-EMC-00005				TEDS_2.5W QAM 64						
	851.0125 MHz		25 kHz	z	2.5 W	Vatt(s)/Max	Power		S/N: 89	5GQG0099	
	Frequency (MHz)		IC Failin Limit	g	Horizont Equiv Pwr	tal Measure r Into Ideal I	d Emission Dipole (dBm) Vert	Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)		
	1702.0250		-23					-			
	2553.0375		-23			**		+			
	3404.0500		-23			**		-			
	4255.0625		-23			**					
	5106.0750		-23								
	5957.0875		-23			11					
	6808.1000		-23			11					
	7659.1125		-23			**					
	8510.1250		-23								
								_			
								—			
								—			
<u> </u>								_			
								_			
—											
<u> </u>								_			
								_			
<u> </u>								+			
—								+			
—											
								+			
								+			
								+			
								<u> </u>			
								+			
								+			
								-			
								-			
				RADIA	TED SPURI	OUS EMISS	IONS			- Herberghal	
Ê	0									Horizontal Measured Emission	
el (dBm)	-20 - -40 -	-	-	-	-	-	-	-	-	Equiv Pwr Into Ideal Dipole (dBm)	
Emission Level (d	-60 - -80 -									Emission Equiv Pwr Into Ideal Dipole	
15.5	-100	2	8	12	2	<u>ي</u>	8	12	2	(dBm)	
5	1702.0250	2553.0375	3404.0500	4255.0625	5106.0750	5957.0875	5808.1000	7659.1125	8510.1250	FCC Failing Limit	
	702	199	101	582	2	192		199	510	LINK	
	-			-	Frequen	icy (MHz)	-	14			

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

Remarks:** Indicates the spurious emission could not be detected due to noise limitations or ambients.

*Pursuant to CFR 47 Part 2.1057 (c), emissions attenuated more than 20 dB below the permissible limit are not reported

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	.#: MTS4 MC-00005				TEDS_2.5W QAM 64					
860.51	25 MHz		25 kHz		2.5 W	att(s)/Max	Power		S/N: 89	5GQG0099
Freq (N	uency IHz)		IC Failin Limit	9	Horizonta	al Measured		Verti P	cal Measu wr Into Ide	red Emission Equiv al Dipole (dBm)
172	1.0250		-23			**		1		
	1.5375		-23							11
	2.0500		-23			**				
4300	2.5625		-23			**				11
	3.0750		-23			**				11
	3.5875		-23			**				
	4.1000		-23							
	4.6125		-23							
8608	5.1250		-23			**				
		_								
		_								
								-		
÷ 0				RADIA	TED SPURIC	OUS EMISSI	IONS			Horizontal Measured
튭 -20	-	-	-	-	-	-	-	-	-	Emission Equiv Pwr Into Ideal Dipole (dBm)
06- 09- 001- 001- 001-	-									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
ie -100	1721.0250	2581.5375	3442.050.0	4302.5625	5163.0750	6023.5875	6884.1000	7744.6125	250	-FCC Falling
	21.0	1	112.0	02.6	63.6	123.4	2	144.0	8605.1250	Limit
	17	22	2	4	5 Frequen		8	F	8	
L										

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

			Temp (Deg): 22.5 Hum (%RH): 70.0
Remarks:	Passed Results	Marginal Results	Failed Results

Radiated Spurious Emissions

TRANSMITTER RADIATED SPURIOUS EMISSIONS: MTS4 806-870MHZ

	ODEL #: MTS4 255-EMC-00005				TEDS_2.5W QAM 64					
	868.9875 MHz		25 kHz	:	2.5 W	/att(s)/Max	Power		S/N: 89	5GQG0099
	Frequency (MHz)		IC Failin Limit	9	Horizont	al Measure	d Emission Dipole (dBm)	Vert F		red Emission Equiv al Dipole (dBm)
	1737.9750		-23					-		
	2606.9625		-23			**		-		
	3475.9500		-23			**		+		
	4344.9375		-23			11		+		
	5213.9250		-23			**		+		
	6082.9125		-23			**		+		
	6951.9000		-23			-				
	7820.8875		-23			11				
	8689.8750		-23			**		+		
								+		
								+		
								+		
								+		
								+		
								+		
								-		
								+		
								+		
								+		
								+		
								+		
<u> </u>								+		
								-		
<u> </u>		_						+		
<u> </u>		_						+		
<u> </u>										
<u> </u>										
L		_						+		
L		_						+		
								_		
-	0			RADIA	TED SPURI	DUS EMISS	IONS			Horizontal Measured Emission Equiv Pwr
(dBm)	-20 -	-	-	-	-	-	-	-	-	Into Ideal Dipole (dBm)
Emission Level (d	-40 - -60 - -80 - -100									Vertical Measured Emission Equiv Pwr Into Ideal Dipole (dBm)
Emiss	-100	2606,9625	3475.9500	4344.9375	Frequen	cy (MHz)	6951.9000	7820.8875	8689.8750	-FCC Failing Limit
					riequen	-) (m #)				

The data presented here was taken using the substitution method as found in the TIA/EIA-603 document. Motorola Penang EMC Lab - Test Performed by: Faris FCC Registration: ABZ89FC5827 Industry Canada: 109AK

November 19, 2014

		-	Temp (Deg): 22.5 Hum (%RH): 70.0	
Remarks:	Passed Results	Marginal Results	Failed Results	

Oscillator Frequency Stability

Manufacturer data for the system site frequency standard was used in generation of the following frequency stability exhibits.

Specification Requirement: Reference RSS-119 Section 5.3

Fixed and Base stations operating at 851-866 MHz and 866-869 MHz must have a frequency stability of better than +/- 0.1 PPM for digital equipment with a channel spacing of 25 kHz and an occupied bandwidth greater than 20 kHz.

Specification Requirement: Reference Part 90.213

Fixed and Base stations operating at 851-854 must have a frequency stability of better than +/- 1.0 PPM. Fixed and Base stations operating at 854-869 must have a frequency stability of better than +/- 1.5 PPM.

Only the more stringent specification limit is shown on the frequency stability exhibits.

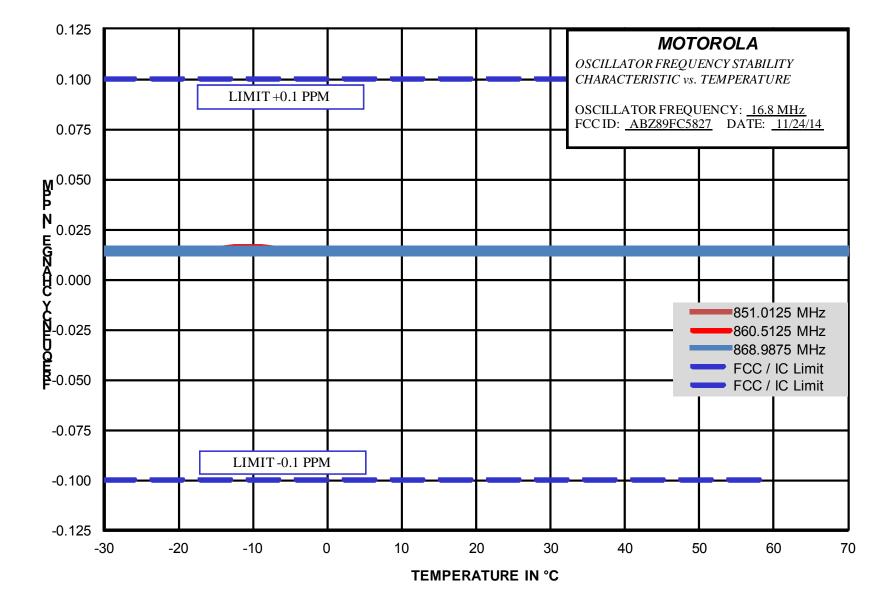
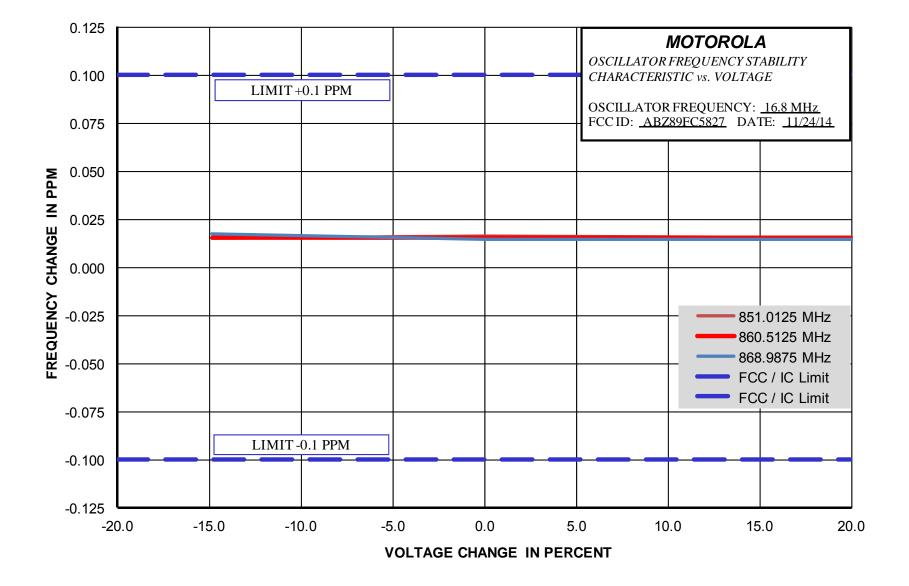

Performance was measured at carrier frequencies at the low end, middle, and high end of the operating band.

EXHIBIT	DESCRIPTION
E1-5.1	Frequency Stability Vs Temperature
E1-5.2	Frequency Stability Vs Voltage

APPLICANT: MOTOROLA SOLUTIONS

Report on Test Measurements


Frequency Stability Vs Temperature

APPLICANT: MOTOROLA SOLUTIONS

Report on Test Measurements

Frequency Stability Vs Voltage

APPLICANT: MOTOROLA SOLUTIONS

Report on Test Measurements

Test Equipment List

Radiated Emission

Model	Manufacturer	Description	Serial No.	Last Cal	Next Cal
SMP04	Rohde & Schwarz	Microwave Generator	100127	23-Jun-14	23-Jun-15
ESIB 40	Rohde & Schwarz	Spectrum Analyzer / ESI Test Rcvr	100264	17-Jun-14	17-Jun-15
CBL6112B	TESEQ	Bilog Antenna, 30 MHz-2 GHz	2863	17-Jul-14	17-Jul-15
CBL6112B	TESEQ	Bilog Antenna, 30 MHz-2 GHz	2964	18-Dec-13	18-Dec-14
SAS-571	A.H Systems	DRG Horn, 700 MHz-18 GHz	720	18-Dec-13	18-Dec-14
SAS-571	A.H Systems	DRG Horn, 700 MHz-18 GHz	1143	10-Jun-14	10-Jun-15
TM 320	Dickson	Temp / Humidity Monitor	12249298	8-Nov-13	8-Nov-14
NA	TDK	3m Semi-anechoic Chamber	888032	14-Mar	15-Mar
MBS-500	Chaintek	Bore sight Antenna mast	NA	no calibration	required
3000	Chaintek	Programming controller	MF780208272	no calibration	required
T-200-S	Chaintek	Turntable. Flush Mount 2M	NA	no calibration	required
PAM-0118	A.H Systems	Pre-amplifier	269	no calibration	required

RF Performance

6674A	Hewlett Packard	Power Supply	3126A-00133	7-Oct-14	7-Oct-15
85092C	Agilent	E-Cal Kit	US01400357	11-Jun-14	11-Jun-15
E5062A	Agilent	ENA Network Analyzer	MY44100902	10-Jun-14	10-Jun-15
E4445A	Agilent	Spectrum Analyzer	MY46181250	13-Oct-14	13-Oct-15
E4416A	Agilent	Power Meter	MY45102699	15-Apr-14	15-Apr-15
FSQ3	Rohde & Schwarz	Signal Analyzer	200144	16-Jun-14	16-Jun-15

Statement of Certification

The technical data supplied with this application, having been taken under my supervision is hereby duly certified. The following is a statement of my qualifications:

College Degree: BSEE, Valparaiso University, Valparaiso, Indiana, USA MSEE, Illinois Institute of Technology, Chicago, Illinois, USA

years of Design and Development experience in the field of two-way radio communication. 32.5

> NAME: Ken Weiss

SIGNATURE:

DATE: December 19, 2014

POSITION: Senior Staff Engineer

I hereby certify that the above application was prepared under my direction and that to the best of my knowledge and belief, the facts set forth in the application and accompanying technical data are true and correct:

> **Bob Sarocka** NAME:

Bb Sanara SIGNATURE:

DATE:

POSITION: **Engineering Section Manager**