

Report No.: EED32Q80692401 Page 1 of 38

TEST REPORT

Product Infrared Thermometer

Trade mark N/A

Model/Type reference : IRT3575

Serial Number N/A

Report Number : EED32Q80692401

FCC ID : 2ABRGIRT3575

Date of Issue : Aug. 30, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result **PASS**

Prepared for:

KAZ USA INC

400 Donald Lynch Blvd, Suite 300, Marlborough, MA 01752, USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Keven Tan avon M

Date:

Frazer Li Aug. 30, 2024

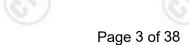
Aaron Ma

Check No.: 9641220524

Page 2 of 38 Report No.: EED32Q80692401

Content

1 COVER PAGE	••••••	•••••	
2 CONTENT			
3 VERSION			
4 TEST SUMMARY			
5 GENERAL INFORMATION	•••••		
5.1 CLIENT INFORMATION	/ELS, K=2)		
6 EQUIPMENT LIST			9
7 TEST RESULTS AND MEASUREMENT DATA			12
7.1 ANTENNA REQUIREMENT 7.2 MAXIMUM CONDUCTED OUTPUT POWER 7.3 DTS BANDWIDTH 7.4 MAXIMUM POWER SPECTRAL DENSITY 7.5 BAND EDGE MEASUREMENTS AND CONDUCTED SPURI 7.6 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	IOUS EMISSION		
8 APPENDIX BLUETOOTH LE			28
9 PHOTOGRAPHS OF TEST SETUP			29
10 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DET	AILS	·*)	31

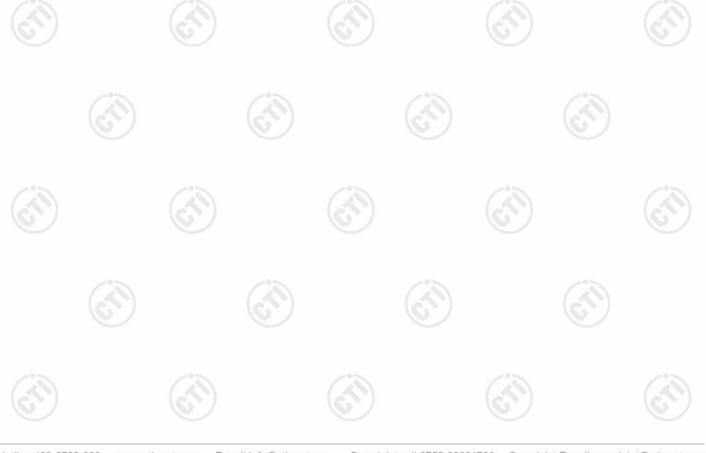


Report No.: EED32Q80692401

Version

Version No.	Date		Description	
00	Aug. 30, 2024	45	Original	
((2)	(1)	(2/1)	(61)

Report No. : EED32Q80692401 Page 4 of 38


4 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	N/A
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS

Remark:

N/A: The product has no charging port and does not need to be tested.

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Report No. : EED32Q80692401 Page 5 of 38

5 General Information

5.1 Client Information

Applicant:	KAZ USA INC	
Address of Applicant:	400 Donald Lynch Blvd, Suite 300, Marlborough, MA 01752, USA	
Manufacturer:	Famidoc Technology Co., Ltd.	100
Address of Manufacturer:	No. 212 Yilong Road, Changan Town, Dongguan, Guangdong Province, 523853, P.R. China.	(1)
Factory:	Famidoc Technology Co., Ltd.	
Address of Factory:	No. 212 Yilong Road, Changan Town, Dongguan, Guangdong Province, 523853, P.R. China.	

5.2 General Description of EUT

Product Name:	Infrared Ther	mometer			
Model No.:	IRT3575				
Trade mark:	N/A	· -	C'		(*)
Product Type:	☐ Mobile	⊠ Portable	☐ Fix Location		(6/17)
Operation Frequency:	2402MHz~24	80MHz			
Modulation Type:	GFSK				
Transfer Rate:	⊠1Mbps □	2Mbps	-05	-05	
Number of Channel:	40		(21)	(41)	
Antenna Type:	PCB Antenna	l			
Antenna Gain:	-8.82dBi				
Power Supply:	Battery:	DC 3V			
Test Voltage:	DC 3V				
Sample Received Date:	May 23, 2024	(6.)	(0)		6
Sample tested Date:	Jun. 13, 2024	to Jun. 17, 20	024		

Page 6 of 38 Report No.: EED32Q80692401

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software Settings:					
Test Software:	N/A	(6	(7)	(25)	
EUT Power Grade:	Power Grade: Default (Power level is built-in set parameters and cannot be changed a selected)				
Use test software to transmitting of the E	set the lowest frequency UT.	, the middle freque	ncy and the highest	frequency keep	
Test Mode	Modulation	Rate	Channel	Frequency(MHz)	
Mode a	GFSK	1Mbps	CH0	2402	
Mode b	GFSK	1Mbps	CH19	2440	
Mode c	GFSK	1Mbps	CH39	2480	

5.4 Test Environment

	Operating Environment	::					
	Radiated Spurious Emi	ssions:					
19	Temperature:	22~25.0 °C	(2)		(41)		(1)
	Humidity:	50~55 % RH	0		(0)		6
	Atmospheric Pressure:	1010mbar					
	Conducted Emissions:						
	Temperature:	22~25.0 °C		(2)		(20)	
	Humidity:	50~55 % RH		(0,)		(0,)	
	Atmospheric Pressure:	1010mbar					
	RF Conducted:						
	Temperature:	22~25.0 °C	(3)		C:		
(3)	Humidity:	50~55 % RH	(6,2,2)		(6,7,2)		(62)
	Atmospheric Pressure:	1010mbar					

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

5.6 Test Location

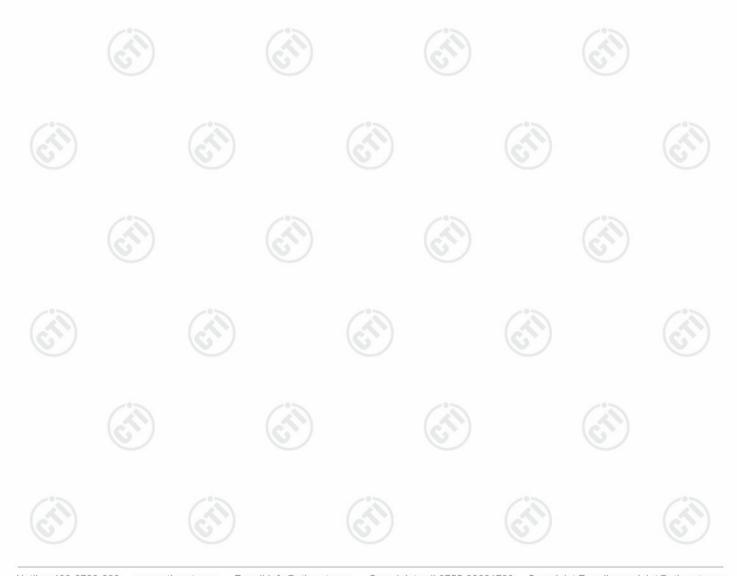
All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

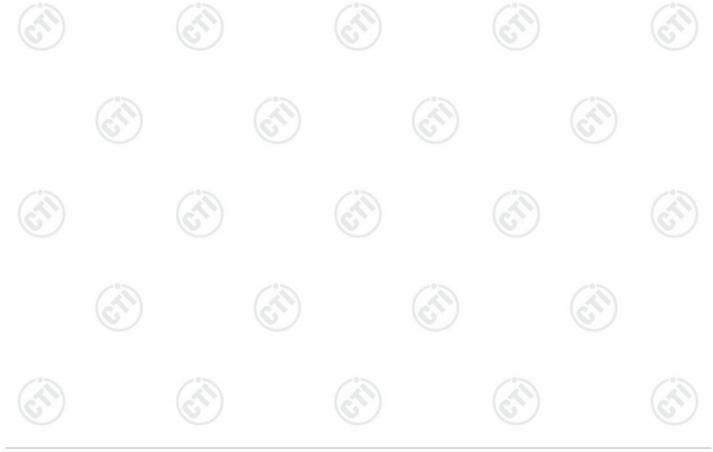


5.7 Measurement Uncertainty (95% confidence levels, k=2)

		(C. N.) 1(C. N.)		
No.	ltem	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DE newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-40GHz)		
	6	3.3dB (9kHz-30MHz)		
3	Dedicted Spurious emission test	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
an		3.4dB (18GHz-40GHz)		
(C)	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Report No. : EED32Q80692401 Page 9 of 38

6 Equipment List


		RF te	st system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Communication test set	R&S	CMW500	107929	06-28-2023	06-27-2024
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(<u>5</u>)
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025

Report No.: EED32Q80692401 Page 10 of 38

	3M Semi-an	echoic Chamber (2)-	Radiated disturb	oance Test	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Multi device Controller	maturo	NCD/070/10711112			(
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023 06/13/2024	06/19/2024 06/12/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		V

Report No. : EED32Q80692401 Page 11 of 38

		20		/	100
		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		- 6
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024
Temperature/	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(D)
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	Ci n	- 0
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	(C)	©
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	/	(5)
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		D
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001		Ca

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

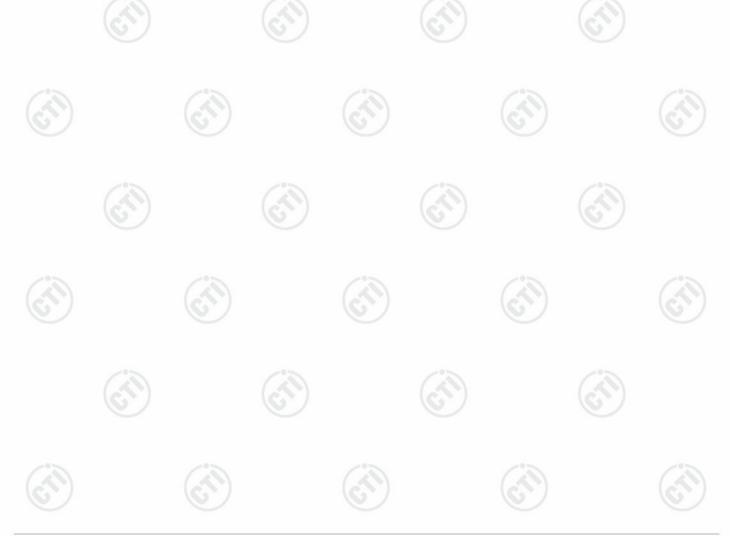
Report No. : EED32Q80692401 Page 12 of 38

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

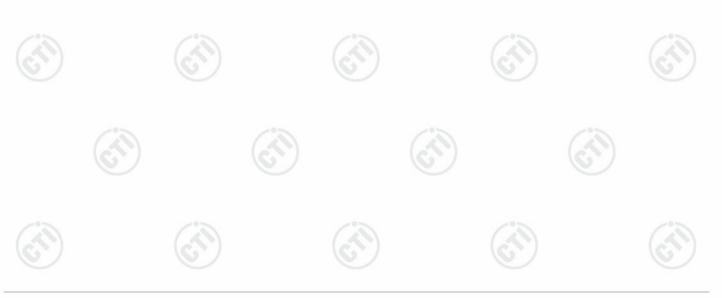
The antenna is PCB antenna. The best case gain of the antenna is -8.82dBi.

7.2 Maximum Conducted Output Power

1.00.00		
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10 2013	
Test Setup:		(in)
	Control Computer Power port Attenuator Instrument Table RF test System System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW 	(C.)
	d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.	
Limit:	30dBm	/°>
Test Mode:	Refer to clause 5.3	(2)
Test Results:	Refer to Appendix Bluetooth LE	

7.3 DTS Bandwidth

Test Requirement: Test Method: ANSI C63.10 2013 Test Setup: RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW].	
Test Setup: RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set RBW = 100 kHz.	
RF test System Supply Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set RBW = 100 kHz.	
RF test System Fower ports) Remark: Offset=Cable loss+ attenuation factor. Test Procedure: a) Set RBW = 100 kHz.	
Test Procedure: a) Set RBW = 100 kHz.	
c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained frequencies associated with the two outermost amplitude points (upplower frequencies) that are attenuated by 6 dB relative to the maximum measured in the fundamental emission.	er and
Limit: ≥ 500 kHz	(1)
Test Mode: Refer to clause 5.3	
Test Results: Refer to Appendix Bluetooth LE	

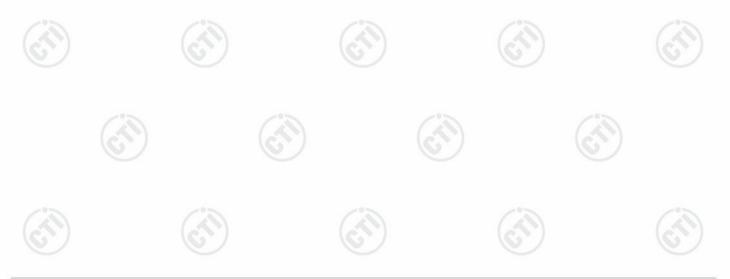


7.4 Maximum Power Spectral Density

Test R	equirement:	47 CFR Part 15C Section 15.247	(e)	
Test M	lethod:	ANSI C63.10 2013		
Test S	etup:			
		Control Computer Power Supply TEMPERATURE CABNET Table	RF test System or Instrument	
10		Remark: Offset=Cable loss+ atte	nuation factor.	
Test P	rocedure:	a) Set analyzer center frequency b) Set the span to 1.5 times the E c) Set the RBW to 3 kHz ≤ RBW d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function within the RBW. j) If measured value exceeds rethan 3 kHz) and repeat.	ots bandwidth. √ ≤ 100 kHz. to determine the max	ximum amplitude level
Limit:		≤8.00dBm/3kHz		
Test M	lode:	Refer to clause 5.3	The same of the sa	-05
Test R	esults:	Refer to Appendix Bluetooth LE	(1)	

7.5 Band Edge measurements and Conducted Spurious Emission

16.	
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2013
Test Setup:	Control Computer Power Supply Attenuator Control System Fower Supply Table RF test System System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE



7.6 Radiated Spurious Emission & Restricted bands

ACC	163		160			163	7			
Test Requirement:	47 CFR Part 15C Sec	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver Setup:	Frequency	(0)	Detector	r RB	W VBW		Remark			
	0.009MHz-0.090M	Hz	Peak	10k	Hz	30kHz	Peak			
	0.009MHz-0.090M	Hz	Average	e 10k	Hz	30kHz	Average			
	0.090MHz-0.110M	Hz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak			
	0.110MHz-0.490M	Hz	Peak	10k	Hz	30kHz	Peak			
	0.110MHz-0.490M	Hz	Average	10k	Hz	30kHz	Average			
	0.490MHz -30MH	lz	Quasi-pea	ak 10k	Hz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-pea	ak 100	kHz	300kHz	Quasi-peak			
	Above 1GHz		Peak	1MI	Hz	3MHz	Peak			
			Peak	1MI	Hz	10kHz	Average			
Limit:	Frequency	Frequency (micro		Limit (dBuV/m)	R	emark	Measurement distance (m)			
	0.009MHz-0.490MHz	240	00/F(kHz)	-	- /0		300			
	0.490MHz-1.705MHz	240	00/F(kHz)	-	- (3		30			
	1.705MHz-30MHz		30	-		- (6)	30			
	30MHz-88MHz		100	40.0	Quasi-peak		3			
	88MHz-216MHz		150	43.5	Quasi-peak		3			
	216MHz-960MHz		200	46.0	Qua	asi-peak	3			
	960MHz-1GHz		500	54.0	Qua	asi-peak	3			
	Above 1GHz		500	54.0	A۱	verage	3			
	Note: 15.35(b), frequency emissions limit applicable to the peak emission level ra	dB above the oment under	e maximui r test. This	m pe	rmitted av	erage emissior				

Report No.: EED32Q80692401 Page 18 of 38

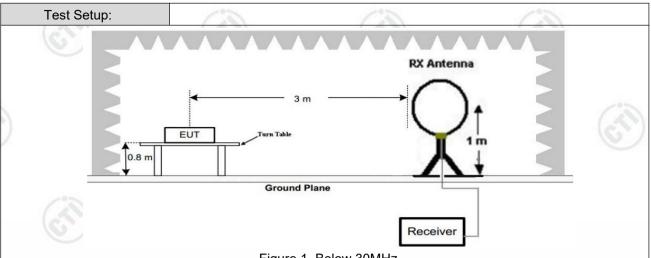
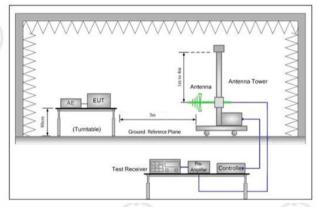



Figure 1. Below 30MHz

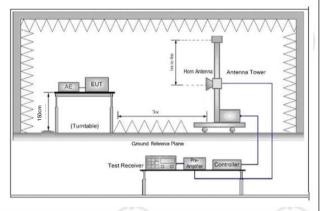


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

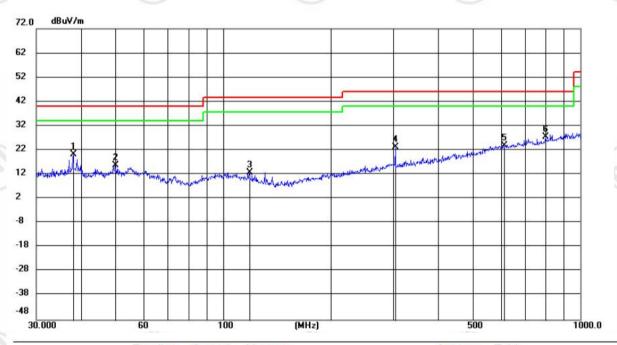
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32Q80692401 Page 19 of 38

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channe (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



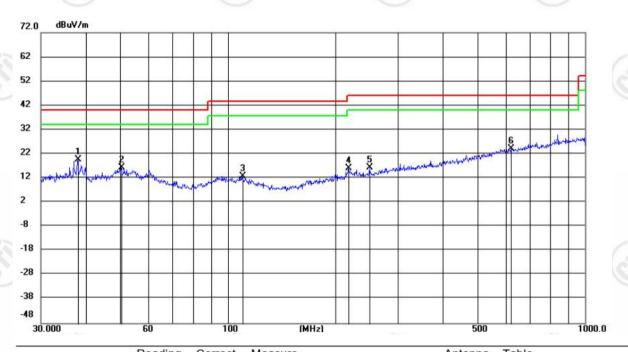
Report No.: EED32Q80692401 Page 20 of 38

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.0982	6.56	13.74	20.30	40.00	-19.70	QP	100	253	
2		50.0127	1.47	14.17	15.64	40.00	-24.36	QP	200	17	
3		118.2691	0.67	12.03	12.70	43.50	-30.80	QP	100	7	
4		304.2363	6.35	16.75	23.10	46.00	-22.90	QP	200	88	
5		610.5636	0.17	23.59	23.76	46.00	-22.24	QP	100	201	
6	*	801.5052	1.62	25.84	27.46	46.00	-18.54	QP	200	242	



Report No.: EED32Q80692401 Page 21 of 38

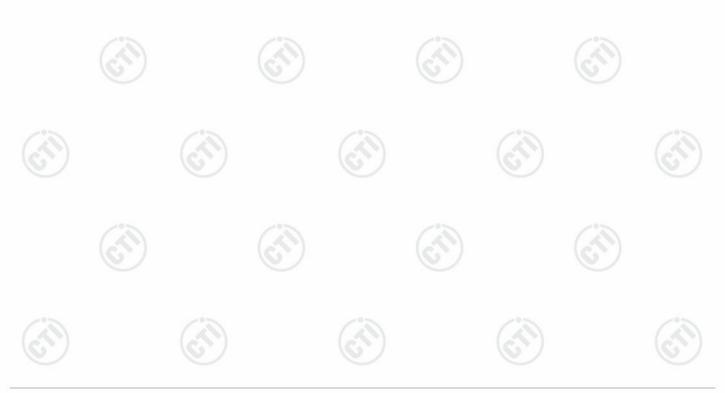
Vertical:

Mk.	Freq.	Level	Factor	Measure- ment	Limit	Margin		Height	Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	38.1183	5.76	13.75	19.51	40.00	-20.49	QP	100	95	
	50.3471	2.24	14.14	16.38	40.00	-23.62	QP	100	0	
8	109.9886	-0.21	13.07	12.86	43.50	-30.64	QP	200	177	
	218.1172	2.55	13.43	15.98	46.00	-30.02	QP	200	270	
	249.9942	1.64	14.69	16.33	46.00	-29.67	QP	100	22	
1000	622.8900	0.40	23.67	24.07	46.00	-21.93	QP	200	352	
	*	MHz * 38.1183 50.3471	Mk. Freq. Level MHz dBuV * 38.1183 5.76 50.3471 2.24 109.9886 -0.21 218.1172 2.55 249.9942 1.64	Mk. Freq. Level Factor MHz dBuV dB * 38.1183 5.76 13.75 50.3471 2.24 14.14 109.9886 -0.21 13.07 218.1172 2.55 13.43 249.9942 1.64 14.69	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 38.1183 5.76 13.75 19.51 50.3471 2.24 14.14 16.38 109.9886 -0.21 13.07 12.86 218.1172 2.55 13.43 15.98 249.9942 1.64 14.69 16.33	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 38.1183 5.76 13.75 19.51 40.00 50.3471 2.24 14.14 16.38 40.00 109.9886 -0.21 13.07 12.86 43.50 218.1172 2.55 13.43 15.98 46.00 249.9942 1.64 14.69 16.33 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dBuV/m dB * 38.1183 5.76 13.75 19.51 40.00 -20.49 50.3471 2.24 14.14 16.38 40.00 -23.62 109.9886 -0.21 13.07 12.86 43.50 -30.64 218.1172 2.55 13.43 15.98 46.00 -30.02 249.9942 1.64 14.69 16.33 46.00 -29.67	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector * 38.1183 5.76 13.75 19.51 40.00 -20.49 QP 50.3471 2.24 14.14 16.38 40.00 -23.62 QP 109.9886 -0.21 13.07 12.86 43.50 -30.64 QP 218.1172 2.55 13.43 15.98 46.00 -30.02 QP 249.9942 1.64 14.69 16.33 46.00 -29.67 QP	Mk. Freq. Level Factor ment Limit Margin Height * dBuV dB dBuV/m dBuV/m dB Detector cm * 38.1183 5.76 13.75 19.51 40.00 -20.49 QP 100 50.3471 2.24 14.14 16.38 40.00 -23.62 QP 100 109.9886 -0.21 13.07 12.86 43.50 -30.64 QP 200 218.1172 2.55 13.43 15.98 46.00 -30.02 QP 200 249.9942 1.64 14.69 16.33 46.00 -29.67 QP 100	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 38.1183 5.76 13.75 19.51 40.00 -20.49 QP 100 95 50.3471 2.24 14.14 16.38 40.00 -23.62 QP 100 0 109.9886 -0.21 13.07 12.86 43.50 -30.64 QP 200 177 218.1172 2.55 13.43 15.98 46.00 -30.02 QP 200 270 249.9942 1.64 14.69 16.33 46.00 -29.67 QP 100 22

Radiated Spurious Emission above 1GHz:

Mode:			Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	2402 MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	1620.462	8.11	36.96	45.07	74.00	28.93	Pass	Н	PK			
2	4248.0832	-15.45	50.97	35.52	74.00	38.48	Pass	Н	PK			
3	7205.2804	-7.82	62.52	54.70	74.00	19.30	Pass	Н	PK			
4	7207.2805	-7.80	55.16	47.36	54.00	6.64	Pass	Н	AV			
5	9609.4406	-1.90	45.96	44.06	74.00	29.94	Pass	Н	PK			
6	12009.6006	-0.21	51.96	51.75	74.00	22.25	Pass	Н	PK			
7	15268.8179	7.15	39.72	46.87	74.00	27.13	Pass	Н	PK			
8	1390.6391	8.19	36.89	45.08	74.00	28.92	Pass	V	PK			
9	3735.049	-17.50	52.12	34.62	74.00	39.38	Pass	V	PK			
10	4804.1203	-13.44	53.25	39.81	74.00	34.19	Pass	V	PK			
11	7207.2805	-7.80	68.26	60.46	74.00	13.54	Pass	V	PK			
12	7207.2805	-7.80	55.55	47.75	54.00	6.25	Pass	V	AV			
13	12011.6008	-0.20	52.70	52.50	74.00	21.50	Pass	V	PK			
14	14354.757	6.23	41.44	47.67	74.00	26.33	Pass	V	PK			

	100		193 /		10.2	//	10	9 /	
Mode	: :	1	Bluetooth LE G	FSK Transmi	tting	Channel:		2440 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1610.8611	8.06	37.55	45.61	74.00	28.39	Pass	Н	PK
2	4880.1253	-13.46	51.21	37.75	74.00	36.25	Pass	Н	PK
3	7319.288	-6.72	61.49	54.77	74.00	19.23	Pass	Н	PK
4	7321.2881	-6.72	54.42	47.70	54.00	6.30	Pass	Н	AV
5	9761.4508	-3.42	47.83	44.41	74.00	29.59	Pass	Н	PK
6	12201.6134	0.79	50.05	50.84	74.00	23.16	Pass	Н	PK
7	14285.7524	6.48	40.90	47.38	74.00	26.62	Pass	Н	PK
8	1439.4439	8.08	38.06	46.14	74.00	27.86	Pass	V	PK
9	4514.1009	-14.57	50.00	35.43	74.00	38.57	Pass	V	PK
10	7319.288	-6.72	60.55	53.83	74.00	20.17	Pass	V	PK
11	9759.4506	-3.41	46.22	42.81	74.00	31.19	Pass	V	PK
12	12201.6134	0.79	49.50	50.29	74.00	23.71	Pass	V	PK
13	13676.7118	5.36	42.46	47.82	74.00	26.18	Pass	V	PK

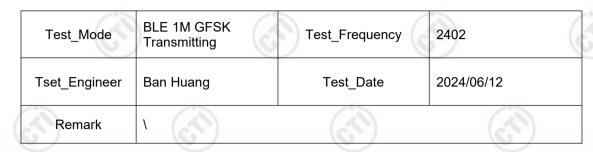


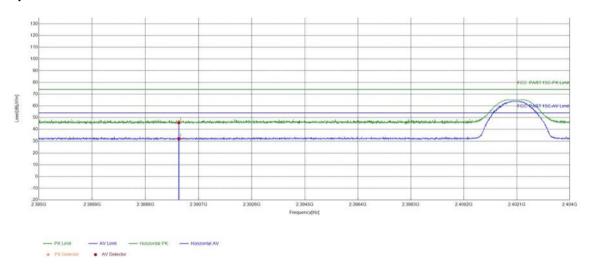
Report No.: EED32Q80692401 Page 23 of 38

	20%		200		20%			050	
Mode	Mode:		Bluetooth LE GFSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1497.0497	7.86	36.86	44.72	74.00	29.28	Pass	Н	PK
2	4960.1307	-13.35	51.71	38.36	74.00	35.64	Pass	Н	PK
3	7439.296	-6.30	54.88	48.58	74.00	25.42	Pass	Н	PK
4	9920.4614	-1.45	47.81	46.36	74.00	27.64	Pass	Н	PK
5	12401.6268	0.12	48.12	48.24	74.00	25.76	Pass	Н	PK
6	14219.748	6.98	40.69	47.67	74.00	26.33	Pass	Н	PK
7	1420.042	8.15	37.84	45.99	74.00	28.01	Pass	V	PK
8	3812.0541	-17.26	51.98	34.72	74.00	39.28	Pass	V	PK
9	4960.1307	-13.35	54.11	40.76	74.00	33.24	Pass	V	PK
10	7439.296	-6.30	51.97	45.67	74.00	28.33	Pass	V	PK
11	9921.4614	-1.43	47.21	45.78	74.00	28.22	Pass	V	PK
12	12399.6266	0.13	48.81	48.94	74.00	25.06	Pass	V	PK

Remark:

- The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

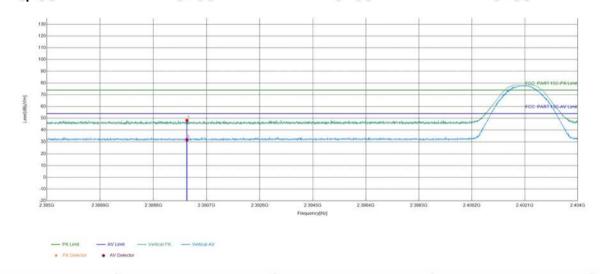


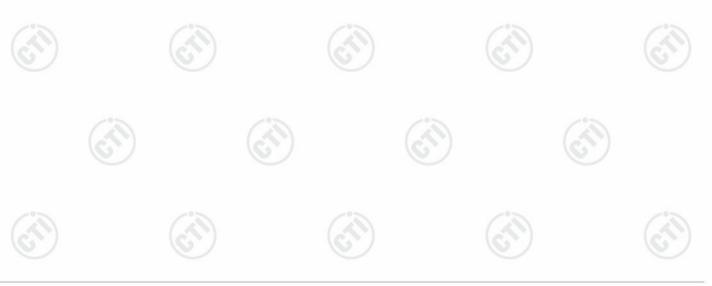


Restricted bands:

Test plot as follows:

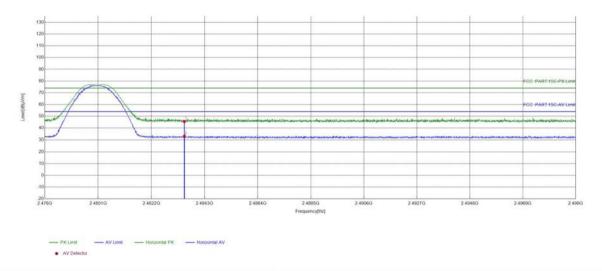
Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	9.96	35.69	45.65	74.00	28.35	PASS	Horizontal	PK	
2	2390	9.96	22.09	32.05	54.00	21.95	PASS	Horizontal	AV	

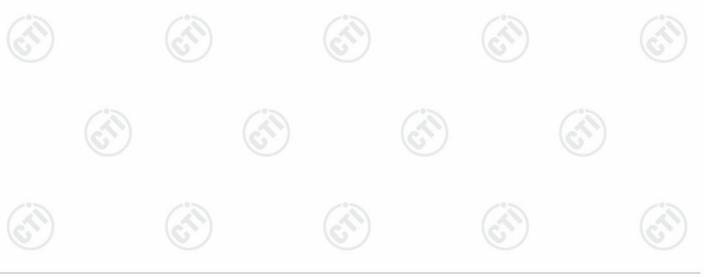




Report No.: EED32Q80692401 Page 25 of 38

C	(0.00)	(C)	16.7	
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402 2024/06/12	
Tset_Engineer	Ban Huang	Test_Date		
Remark	1			

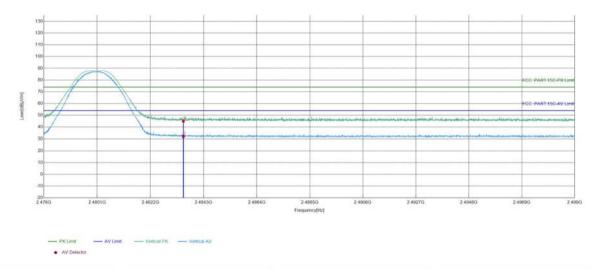

Suspected List										
-	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	38.29	48.25	74.00	25.75	PASS	Vertical	PK
	2	2390	9.96	21.81	31.77	54.00	22.23	PASS	Vertical	AV



Page 26 of 38 Report No.: EED32Q80692401

6.71	(6.5)	(6.4)	163
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	Ban Huang	Test_Date	2024/06/12
Remark	\		

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	35.27	45.65	74.00	28.35	PASS	Horizontal	PK
	2	2483.5	10.38	22.52	32.90	54.00	21.10	PASS	Horizontal	AV



Report No.: EED32Q80692401 Page 27 of 38

6.71	(6.5)	(6.4)	163
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	Ban Huang	Test_Date	2024/06/12
Remark	\		

Test Graph

Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	34.69	45.07	74.00	28.93	PASS	Vertical	PK
	2	2483.5	10.38	21.86	32.24	54.00	21.76	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix Bluetooth LE

Refer to Appendix: Bluetooth LE of EED32Q80692401

