

0659

FCC Radio Test Report

FCC ID: QYLWCN3980B41

Report No. : BTL-FCCP-8-2202T096 Equipment : Body Worn Camera

Model Name : BC-4K Brand Name : Getac

Applicant: Getac Technology Corporation

Address : 5F., Building A, No.209, Sec.1, Nangang., Rd., Nangang Dist., Taipei City

11568, Taiwan, R.O.C.

Radio Function : Bluetooth Low Energy (5.0)

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Measurement Procedure(s)

Date of Receipt : 2022/3/23

Date of Test : 2022/3/23 ~ 2022/9/5

Issued Date : 2022/10/3

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Eric Lee, Engineer

^

Jerry Chuang, Superviso

BTL Inc.

Approved by

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2202T096 Page 1 of 62 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2202T096 Page 2 of 62 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 **TEST ENVIRONMENT CONDITIONS** 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 **DESCRIPTION OF EUT** 9 2.1 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 **TEST PROCEDURE** 3.2 14 3.3 **DEVIATION FROM TEST STANDARD** 14 3.4 **TEST SETUP** 15 3.5 TEST RESULT 15 4 RADIATED EMISSIONS TEST 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **DEVIATION FROM TEST STANDARD** 17 4.4 **TEST SETUP** 18 **EUT OPERATING CONDITIONS** 4.5 19 TEST RESULT - BELOW 30 MHZ 19 4.6 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.8 TEST RESULT – ABOVE 1 GHZ 19 5 **BANDWIDTH TEST** 20 APPLIED PROCEDURES / LIMIT 5.1 20 5.2 **TEST PROCEDURE** 20 5.3 **DEVIATION FROM STANDARD** 20 **TEST SETUP** 5.4 20 5.5 **EUT OPERATION CONDITIONS** 20 5.6 **TEST RESULTS** 20 6 **OUTPUT POWER TEST** 21 6.1 APPLIED PROCEDURES / LIMIT 21 **TEST PROCEDURE** 6.2 21 6.3 **DEVIATION FROM STANDARD** 21 6.4 **TEST SETUP** 21 **EUT OPERATION CONDITIONS** 21 6.5 **TEST RESULTS** 21 6.6 POWER SPECTRAL DENSITY TEST 22 7 APPLIED PROCEDURES / LIMIT 7.1 22 7.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 7.3 22 7.4 **TEST SETUP** 22 7.5 **EUT OPERATION CONDITIONS** 22

7.6	TEST	RESULTS	22
8	ANTENN	IA CONDUCTED SPURIOUS EMISSION	23
8.1	APPL	ED PROCEDURES / LIMIT	23
8.2	TEST	PROCEDURE	23
8.3	DEVI	ATION FROM STANDARD	23
8.4	TEST	SETUP	23
8.5	EUT (PERATION CONDITIONS	23
8.6	TEST	RESULTS	23
9	LIST OF	MEASURING EQUIPMENTS	24
10	EUT TES	ST PHOTO	26
11	EUT PHO	OTOS	26
	15.7.4	AC DOMED LINE COMPLICATED EMISSIONS	
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	27
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	32
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	35
APPEND	IX D	BANDWIDTH	52
APPEND	IX E	OUTPUT POWER	55
APPENDIX F		POWER SPECTRAL DENSITY TEST	57
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSION	60

Project No.: 2202T096 Page 4 of 62 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-8-2202T096	R00	Original Report.	2022/10/3	Valid

Project No.: 2202T096 Page 5 of 62 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass	
15.247(a)(2)	Bandwidth	APPENDIX D	Pass	
15.247(b)(3)	Output Power	APPENDIX E	Pass	
15.247(e)	Power Spectral Density	APPENDIX F	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass	
15.203	Antenna Requirement		Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2202T096 Page 6 of 62 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ C06 ⊠ CB21 □ CB22

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB15
 □ CB15
 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CBZT	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

1 1001 .			
Test Item	U,(dB)		
Occupied Bandwidth	0.5334		
Output power	0.3669		
Power Spectral Density	0.6591		
Conducted Spurious emissions	0.5416		
Conducted Band edges	0.5348		

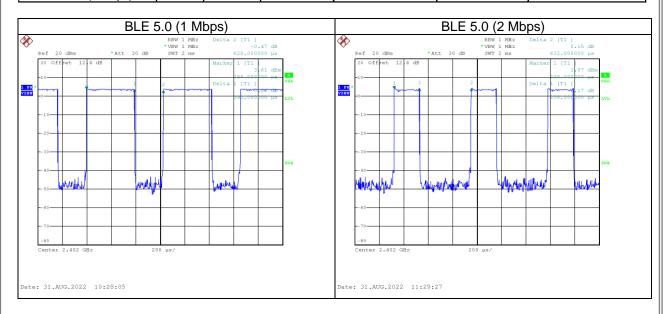
NOTE

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 50 %	AC 120V	Jay Tien
Radiated emissions below 1 GHz	24 °C, 58 %	AC 120V	Eddie Lee
Radiated emissions above 1 GHz	24~26 °C, 58~60 %	AC 120V	Eddie Lee
Bandwidth	24.4°C, 55 %	AC 120V	Paul Shen
Output Power	24.4°C, 55 %	AC 120V	Paul Shen
Power Spectral Density	24.4°C, 55 %	AC 120V	Paul Shen
Antenna conducted Spurious Emission	24.4°C, 55 %	AC 120V	Paul Shen

Project No.: 2202T096 Page 7 of 62 Report Version: R00


1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

Test Software	C	Qualcomm Radio Con	alcomm Radio Control Tool V4.0.00172.0		
Modulation Mode	2402 MHz	2440 MHz	2480 MHz	Data Rate	
BLE 5.0	DEF	DEF	DEF	1 Mbps	
BLE 5.0	DEF	DEF	DEF	2 Mbps	

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Mode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BLE 5.0 (1 Mbps)	0.392	1	0.392	0.628	62.42%	2.05
BLE 5.0 (2 Mbps)	0.208	1	0.208	0.632	32.91%	4.83

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment Body Worn Camera							
Model Name	BC-4K						
Brand Name	Getac						
Model Difference	N/A						
Power Source	` '	(1) From host system or power adapter.					
	(1)						
	BC-4K	Cable type	Input Voltage				
	Pogo pins	Magnetic USB type A to pogo Cable	5V /1.5A				
Power Rating	USB type C	Type C To C cable	5V/3A and 9V/2.2A				
	(2) Getac / BP1S1P5000P: Rated Voltage: 3.63 Vdc Rated capacity: 4750 mAh, 17.24 Wh Typical capacity: 5000 mAh, 18.15 Wh						
Products Covered	1 * Adjustable Pocket Mount 1 * Clip Mount						
Operation Band	2400 MHz ~ 24	483.5 MHz					
Operation Frequency	2402 MHz ~ 24	480 MHz					
Modulation Technology	GFSK						
Transfer Rate	1 Mbps, 2 Mbp	os .					
Output Power Max.	1 Mbps: 5.07 dBm (0.0032 W) 2 Mbps: 5.14 dBm (0.0033 W)						
Test Model BC-4K							
Sample Status Engineering Sample							
EUT Modification(s)	N/A	-					

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2202T096 Page 9 of 62 Report Version: R00

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2442
01	2404	21	2444
02	2406	22	2446
03	2408	23	2448
04	2410	24	2450
05	2412	25	2452
06	2414	26	2454
07	2416	27	2456
08	2418	28	2458
09	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

(3) Table for Filed Antenna:

Ant.	Brand Name	Model Name	Туре	Connector	Frequency (MHz)	Gain (dBi)
-	Getac	BC-4K	IFA	N/A	2400-2500	2.02

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

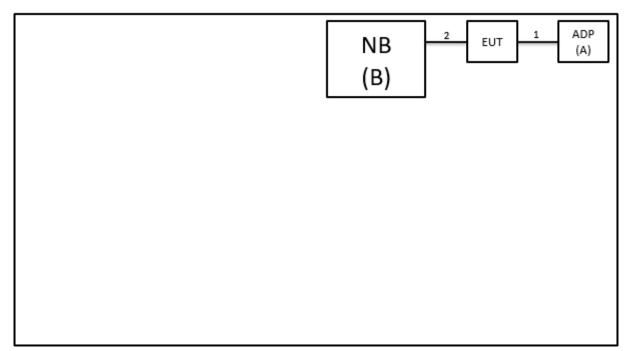
Project No.: 2202T096 Page 10 of 62 Report Version: R00

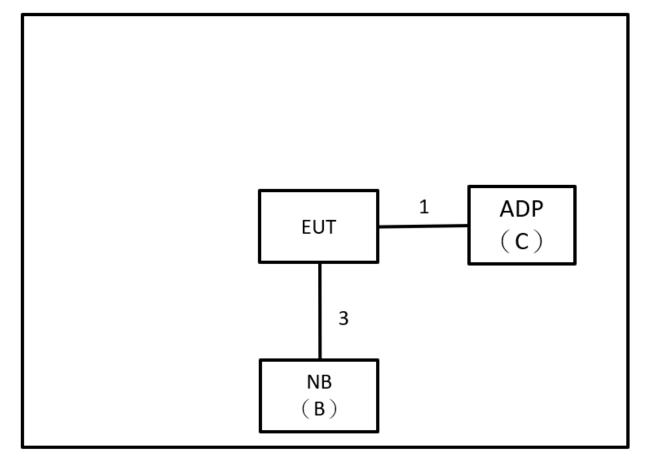
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	00	-
Transmitter Radiated Emissions	1/2 Mbps	00/39	Bandedge
(above 1GHz)	1/2 Mbps	00/19/39	Harmonic
Bandwidth	1/2 Mbps	00/19/39	-
Output Power	1/2 Mbps	00/19/39	-
Power Spectral Density	1/2 Mbps	00/19/39	-
Antenna conducted Spurious Emission	1/2 Mbps	00/19/39	-

NOTE:

(1)	For radiated emission band edge test, bo	oth Vertical and	d Horizontal	are evaluated,	but only the	worst case
	(Vertical) is recorded.					


Project No.: 2202T096 Page 11 of 62 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

Project No.: 2202T096 Page 12 of 62 Report Version: R00

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	SONY	AC-0051-TW	4017W29100317	Furnished by test lab.
В	NB	ASUS	X555LN-0021B4 210U	N/A	Furnished by test lab.
С	Adapter	SAMSUNG	EP-TA12JWS	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
				Magnetic USB	
1	N/A	N/A	1m	typeA to pogo	Supplied by test requester.
				Cable	
2	N/A	N/A	1.2m	USB Cable	Furnished by test lab.
3	N/A	N/A	1m	Type C to USB	Furnished by test lab.

Project No.: 2202T096 Page 13 of 62 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

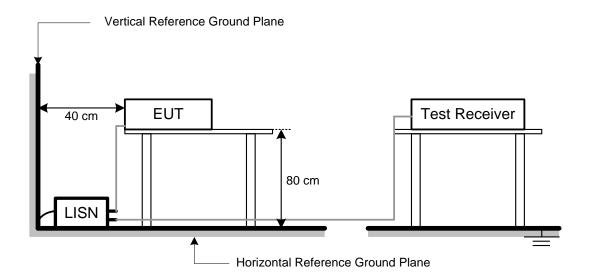
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2202T096 Page 14 of 62 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the **APPENDIX A**.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance (meters)	
(IVII IZ)	Peak Average		(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
41.91	+	-8.36	=	33.55

Measurement Value		Limit Value		Margin Level
33.55	-	43.50	=	-9.95

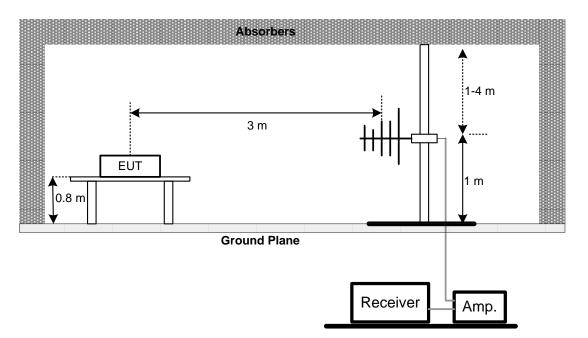
Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RBW / VBW	1MHz / 3MHz for Peak,		
(Emission in restricted band)	1MHz / 1/T for Average		

Spectrum Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector		
Start ~ Stop Frequency	90KHz~110KHz for QP detector		
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector		
Start ~ Stop Frequency	490KHz~30MHz for QP detector		
Start ~ Stop Frequency	30MHz~1000MHz for QP detector		

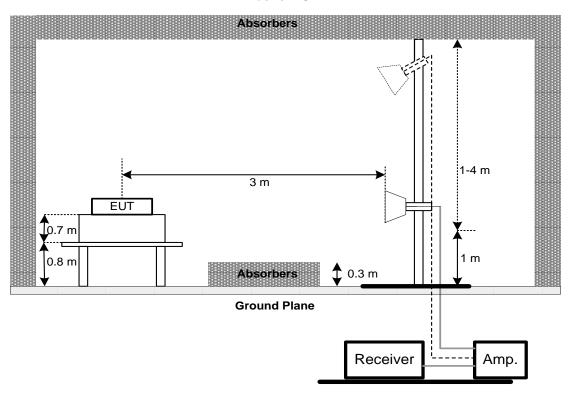
Project No.: 2202T096 Page 16 of 62 Report Version: R00

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (below 1GHz)
- The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)


i.	For the actual test configuration, please refer to the related Item – EUT TEST PHOTO.
4.3	DEVIATION FROM TEST STANDARD
No c	deviation.

Project No.: 2202T096 Page 17 of 62 Report Version: R00



4.4 TEST SETUP

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2202T096 Page 19 of 62 Report Version: R00

5 BANDWIDTH TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz) Result						
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS		

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2202T096 Page 20 of 62 Report Version: R00

6 OUTPUT POWER TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section Test Item Limit Frequency Range (MHz)						
15.247(b)(3)						

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below,
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	Power Meter
	1 5 WEI WICKET

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2202T096 Page 21 of 62 Report Version: R00

7 POWER SPECTRAL DENSITY TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section Test Item Limit Frequency Range (MHz) Result							
15.247(e)	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=3KHz, VBW=10 KHz, Sweep time = auto.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

Project No.: 2202T096 Page 22 of 62 Report Version: R00

8 ANTENNA CONDUCTED SPURIOUS EMISSION

8.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 10 ms.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2202T096 Page 23 of 62 Report Version: R00

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101051	2022/6/15	2023/6/14		
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2022/5/2	2023/5/1		
3	EMI Test Receiver	R&S	ESR 7	101433	2021/11/24	2022/11/23		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Preamplifier	EMCI	EMC330N	980850	2021/9/23	2022/9/22		
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7		
3	Preamplifier	EMCI	EMC001340	980555	2022/4/6	2023/4/5		
4	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14		
5	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14		
6	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14		
7	EXA Signal Analyzer	keysight	N9020A	MY57120120	2022/3/7	2023/3/6		
8	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2022/6/28	2023/6/27		
9	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17		
10	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17		
11	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19		
12	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19		
13	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Bandwidth							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1		

Output Power							
Item Kind of Equipment Manufacturer Type No. Serial No. Calibrated Date Calibrated Until							
1	Power Meter	Keysight	8990B	MY51000517	2022/3/18	2023/3/17	
2	Power Sensor	Keysight	N1923A	MY58310005	2022/3/18	2023/3/17	

	Power Spectral Density											
ItemKind of EquipmentManufacturerType No.Serial No.Calibrated DateCalibrated Until												
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1						

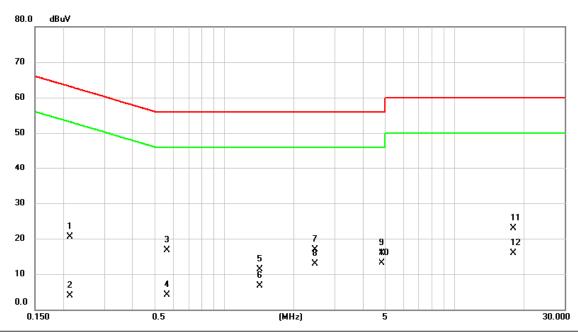
	Antenna conducted Spurious Emission										
ItemKind of EquipmentManufacturerType No.Serial No.Calibrated DateCalibrated Until											
1	Spectrum Analyzer	R&S	FSP38	101139	2022/3/2	2023/3/1					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2202T096 Page 25 of 62 Report Version: R00

40 FUT TEST BUOTO
10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2202T096-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2202T096-3 (APPENDIX-EUT PHOTOS).

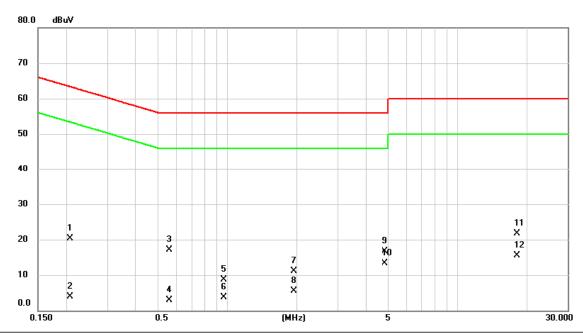
Project No.: 2202T096 Page 26 of 62 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2202T096 Page 27 of 62 Report Version: R00

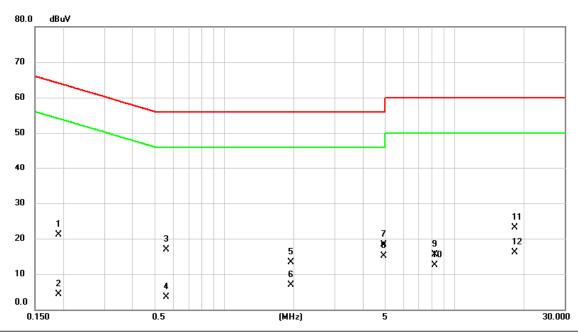
I	Test Mode	Normal	Tested Date	2022/8/5
ı	Test Frequency	-	Phase	Line



No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.2130	10.84	9.63	20.47	63.09	-42.62	QP	
2		0.2130	-5.75	9.63	3.88	53.09	-49.21	AVG	
3		0.5640	7.02	9.62	16.64	56.00	-39.36	QP	
4		0.5640	-5.60	9.62	4.02	46.00	-41.98	AVG	
5		1.4235	1.67	9.67	11.34	56.00	-44.66	QP	
6		1.4235	-2.91	9.67	6.76	46.00	-39.24	AVG	
7		2.4653	7.25	9.70	16.95	56.00	-39.05	QP	
- 8		2.4653	3.14	9.70	12.84	46.00	-33.16	AVG	
9		4.8368	6.25	9.75	16.00	56.00	-40.00	QP	
10	*	4.8368	3.26	9.75	13.01	46.00	-32.99	AVG	
11	,	18.0307	13.00	9.82	22.82	60.00	-37.18	QP	
12	,	18.0307	6.11	9.82	15.93	50.00	-34.07	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

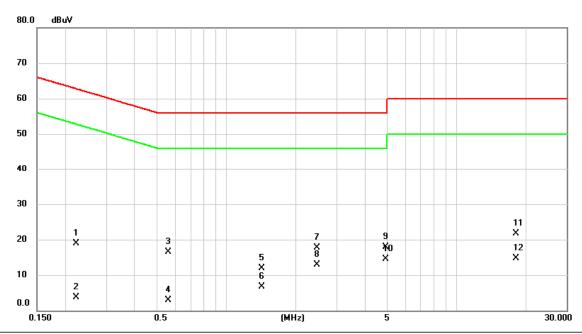
Test Mode	Normal	Tested Date	2022/8/5
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2062	10.64	9.62	20.26	63.36	-43.10	QP	
2		0.2062	-5.64	9.62	3.98	53.36	-49.38	AVG	
3		0.5594	7.44	9.62	17.06	56.00	-38.94	QP	
4		0.5594	-6.70	9.62	2.92	46.00	-43.08	AVG	
5		0.9622	-1.01	9.66	8.65	56.00	-47.35	QP	
6		0.9622	-6.04	9.66	3.62	46.00	-42.38	AVG	
7		1.9387	1.50	9.69	11.19	56.00	-44.81	QP	
8		1.9387	-4.18	9.69	5.51	46.00	-40.49	AVG	
9		4.8345	6.86	9.76	16.62	56.00	-39.38	QP	
10	*	4.8345	3.54	9.76	13.30	46.00	-32.70	AVG	
11		18.1072	11.84	9.92	21.76	60.00	-38.24	QP	
12		18.1072	5.49	9.92	15.41	50.00	-34.59	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test	Mode	Idle	Tested Date	2022/8/5
Test	Frequency	-	Phase	Line



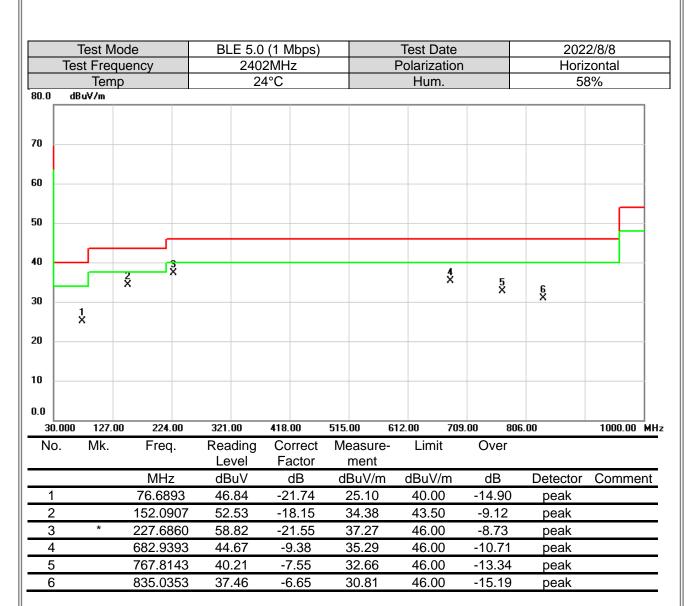
No. M	Лk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	Ν	1Hz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1	894	11.55	9.63	21.18	64.06	-42.88	QР	
2	0.1	894	-5.40	9.63	4.23	54.06	-49.83	AVG	
3	0.5	617	7.20	9.62	16.82	56.00	-39.18	QP	
4	0.5	617	-6.17	9.62	3.45	46.00	-42.55	AVG	
5	1.9	433	3.62	9.69	13.31	56.00	-42.69	QP	
6	1.9	433	-2.80	9.69	6.89	46.00	-39.11	AVG	
7	4.9	290	8.61	9.75	18.36	56.00	-37.64	QP	
8 *	4.9	290	5.39	9.75	15.14	46.00	-30.86	AVG	
9	8.1	780	5.76	9.81	15.57	60.00	-44.43	QP	
10	8.1	780	2.72	9.81	12.53	50.00	-37.47	AVG	
11	18.2	2018	13.27	9.82	23.09	60.00	-36.91	QP	
12	18.2	2018	6.34	9.82	16.16	50.00	-33.84	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2022/8/5
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.2220	9.26	9.62	18.88	62.74	-43.86	QP	
2		0.2220	-5.92	9.62	3.70	52.74	-49.04	AVG	
3		0.5595	6.87	9.62	16.49	56.00	-39.51	QP	
4		0.5595	-6.68	9.62	2.94	46.00	-43.06	AVG	
5		1.4235	2.28	9.67	11.95	56.00	-44.05	QP	
6		1.4235	-3.02	9.67	6.65	46.00	-39.35	AVG	
7		2.4653	7.96	9.70	17.66	56.00	-38.34	QP	
8		2.4653	3.25	9.70	12.95	46.00	-33.05	AVG	
9		4.9312	8.11	9.76	17.87	56.00	-38.13	QP	
10	*	4.9312	4.74	9.76	14.50	46.00	-31.50	AVG	
11		18.1613	11.72	9.92	21.64	60.00	-38.36	QP	
12		18.1613	4.84	9.92	14.76	50.00	-35.24	AVG	

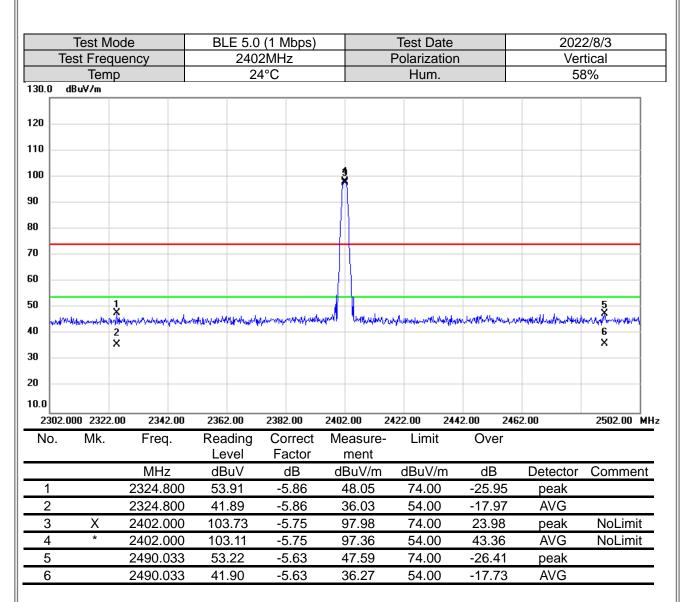
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2202T096 Page 32 of 62 Report Version: R00

Test Mode						BLE 5.0 (1 Mbps)							est Da		2022/8/8			
Test Frequency				2402MHz						Po	olariza	Vertical						
Temp				24°C							Hum		58%					
80.0	dBu	V/m																\neg
70																		
60 _																		-
50 _																		
40 –					4 ×										6 X			
30 ×	ξ 2 X		3 3		×									5 X				
20																		
10																		
0.0																		
30.0		127.0		224.		321.		418.0		515.		612.		709.		5.00	1000.00) MH
No.		Mk.		Fred	ļ.		ding vel	Cor Fac			easure ment	-	Limit	t	Over			
		MHz		<u> </u>	dBuV		dB		dBuV/m		(dBuV/m		dB	Detector	Comm	ent	
1		*	4	2.06			.54	-17			30.88		40.00		-9.12	peak		
2			7	76.7217		47.73		-21.75		25.98			40.00		-14.02	peak		
3			15	53.4810		45.25		-18.16		27.09			43.50		-16.41	peak		
4			23	30.20	080	56	82	-21	-21.43		35.39		46.00		-10.61	peak		
5	5 68		39.60	000	38	38.79		-9.30		29.49		46.00		-16.51	peak			
6	6 758.9227		227	44.22		-7.71		36.51			46.00		-9.49	peak				

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2202T096 Page 35 of 62 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			2/8/3
	est Frequ			0MHz		Polarization	1		tical
130.0	Temp dBuV/m)	2	4°C		Hum.		58	3%
130.0	aguv/m								
120									
110									
100									
90					$ \!$				
80									
70									
60									
50	1 	danger manyakan		a udala	A	wywkanenikakolespen		5 	ahudhah ha ta ta ta
40	2 X	an under in management der Artiferen	a Lebrardous Brasseles est April 1984	o would knowled adding	AMA Advanta	a de deselva e chedita e	Marie de la récebble de la constant	6 ×	ord in treat Leaders and A
30 -									
20									
10.0 2380.	000 2400.0	00 2420.00	2440.00	2460.00	2480.00 2	2500.00 252	20.00 254	10.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.187	52.65	-5.77	46.88	74.00	-27.12	peak	
2		2389.187	42.14	-5.77	36.37	54.00	-17.63	AVG	
3	Χ	2480.000	101.09	-5.65	95.44	74.00	21.44	peak	NoLimit
4	*	2480.000	100.54	-5.65	94.89	54.00	40.89	AVG	NoLimit
5		2549.380	53.15	-5.41	47.74	74.00	-26.26	peak	
6		2549.380	43.31	-5.41	37.90	54.00	-16.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode	BLE	5.0	(2 Mbps)			Tes	t Date		202	2/9/2	
T	est Frequ	uency			2MHz			Pola	rizatio	n		tical	
	Temp)		26	S°C			H	łum.		60)%	
130.0	dBuV/m												_
120													1
110 🖳													4
100						4							1
90						[}						_
BO							Ì						1
70 🗀													7
							1						
60													1
50				į.		-#	l.					5	7
<i>₩\</i> ₩	adlania ana	apatheride habet and the same	Yerryana Napangian dalah	under verbilde	watther an watch	Land M	"Herebert	freedomic .	neceptation	عرامها مراحراه بالمرداد الراجانيا وأنسأ	ynangadhedadedadaa	the digital Promodynia	ΑK
+0				x								×	
30													\dashv
20													
2202	000 2322.0	00 2342.00	2362.0	nn	2382.00	2402	000 1	2422.0	0 24	142.00 246	2.00	2502.00	
No.	Mk.	Freq.	Read		Correct		easure-		imit	Over	2.00	2302.00	mi
140.	IVIIX.	1 104.	Lev		Factor		ment		-111111	OVCI			
		MHz	dBu		dB		BuV/m	dB	uV/m	dB	Detector	Comme	ent
1		2366.600			-5.80		17.26		4.00	-26.74	peak		
2		2366.600			-5.80		36.59		4.00	-17.41	AVG		
3	Χ	2402.000			-5.75		7.54		4.00	23.54	peak	NoLim	nit
4	*	2402.000			-5.75		95.73		4.00	41.73	AVG	NoLim	
5		2490.400	53.5	51	-5.63		17.88	7	4.00	-26.12	peak		
6		2490.400	42.4	16	-5.63	3	36.83	5	4.00	-17.17	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BLE 5.	0 (2 Mbps)		Test Date		202	2/9/2
T	Test Frequ	iency	24	02MHz		Polarizatior)	Ver	tical
	Temp)	:	26°C		Hum.		60	0%
130.0	dBuV/m								
120									
10 —									
100					3				
100					M				
30 <u> </u>					-H				
30									
70									
60 L									
					1				
	1 X	ين الله الله الله الله			*		الاناماء والمسادات	and the second	ار در دورس ما در داد
40 2	2	Whitemakerallenger	different model from soft	ide or projekt all all the		W. m. of histopy and advantage of the second advantage	hainpulus madess, sadralla	uns out and an a story	Madeinalotevologoajo
40 2 ×	2	المال المراجع والمناطق والمراجع والمراع	de français de la française	ikhawywishopelkwayawliph	× × × × × × × × × × × × × × × × × × ×	Wardhala hoogan adaha	hayaran da ayada da	misser in the services	Makhandanaranaka
4U 2	2	white will war	dalphassanshirmsideliptersyndli	identymjep politika		Maridiaka, bransadaha	hayaharadan atalla	om trage and properties.	Madhanhawayayay
40 2 ×	2	Washing and the way of the separate	المعادية والمعادية والمعاد	highwat yang da dhi wang qua da dh		ing-dhalash-assadaha	ragningalandi	om to produce the second	Markan ah dan bayaran sayara
40 2 2 × 30 —	2	who were the world was	dalphossians. Lar. Little freezione	iddinory widoped Wongow dight		his-dhaka, h-aga madaha	hidapahannafaanafaddi	construction of the construction of	Makanah darika sanah
40 2 30 2 20 10.0	2			2460.00	×			0.00	2580.00 MI
40 2 30 2 10.0	×		2440.00 Reading	2460.00 Correct	×				
40 2 30 20 10.0 2380	2 X 0.000 2400.0	0 2420.00 Freq.	2440.00 Reading Level	2460.00 Correct Factor	2480.00 29 Measure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00 Mi
10.0 2380 No.	2 X 0.000 2400.0	0 2420.00 Freq. MHz	2440.00 Reading Level dBuV	2460.00 Correct Factor dB	2480.00 29 Measure- ment dBuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB	0.00 Detector	
10 22 x 380 20 2380 No.	2 X 0.000 2400.0	0 2420.00 Freq. MHz 2384.487	2440.00 Reading Level dBuV 52.69	2460.00 Correct Factor dB -5.78	2480.00 29 Measure- ment dBuV/m 46.91	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -27.09	Detector peak	2580.00 Mi
80 2380. No.	0.000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.487 2384.487	2440.00 Reading Level dBuV 52.69 42.21	2460.00 Correct Factor dB -5.78	2480.00 29 Measurement dBuV/m 46.91 36.43	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -27.09 -17.57	Detector peak AVG	2580.00 MH
80 20 0.0 2380 No.	2 X 0.000 2400.0	MHz 2384.487 2480.000	2440.00 Reading Level dBuV 52.69 42.21 107.27	2460.00 Correct Factor dB -5.78 -5.78 -5.65	2480.00 29 Measurement dBuV/m 46.91 36.43 101.62	500.00 257 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -27.09 -17.57 27.62	Detector peak AVG peak	2580.00 MI
10.0 2380 No.	0.000 2400.0 Mk.	0 2420.00 Freq. MHz 2384.487 2384.487	2440.00 Reading Level dBuV 52.69 42.21 107.27 105.43	2460.00 Correct Factor dB -5.78	2480.00 29 Measurement dBuV/m 46.91 36.43	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -27.09 -17.57	Detector peak AVG	2580.00 MH

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			0 (1 Mbps)		Test Date			2/8/3
	est Frequ			02MHz		Polarizatio	n		tical
130.0	Temp			24°C		Hum.		58	3%
130.0	dBu√/m								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 ×							
30		2 X							
20									
10.0									
	000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	0 38.21	0.65	38.86	74.00	-35.14	peak	
2	*	4804.00	0 29.83	0.65	30.48	54.00	-23.52	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode		BLE	5.0	(1 Mbps)			Te	est Dat	te		202	2/8/3
Te	est Freq			2		2MHz			Ро	larizati	ion			zontal
	Tem	р			24	l°C				Hum.			58	3%
130.0	dBuV/m													
120														
110														
100														
90 -														
30 —														
70														
60 <u> </u>														
50														
40		1 ×												
30		2 X												
		^												
20														
10.0	000 3550.	.00 6100	1 00	8650.00	n	11200.00	1375	0.00	1630	0.00	18850.00	21.4	00.00	26500.00 MH
No.	лии зээи. Mk.	Freq		Readi		Correct		asure-		Limit	Ov		UU.UU	26300.00 MH
140.	IVIIX.	1 169	•	Leve		Factor		nent		Liiiil	3	OI.		
		MHz	<u>-</u>	dBu\	/	dB	dE	BuV/m	C	lBuV/n	n dE	3	Detector	Comment
1		4804.0	000	40.00)	0.65	4	0.65		74.00	-33.	35	peak	
2	*	4804.0	000	30.02	2	0.65	3	0.67		54.00	-23.	33	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			.0 (1 Mbps)		Test Date			2/8/3
Te	est Frequ			40MHz		Polarization	า		tical
	Temp)		24°C		Hum.		58	3%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 X							
30		2 X							
20									
10.0									
1000.0	000 3550.0	00 6100.0	0 8650.00	11200.00			850.00 214	00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	0 40.42	0.92	41.34	74.00	-32.66	peak	
2	*	4880.00	0 30.63	0.92	31.55	54.00	-22.45	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo				0 (1 Mbps)		Test Date			2/8/3
	Test		uency			40MHz		Polarization	n		zontal
30.0	dBu\	Temp)			24°C		Hum.		58	8%
30.0	aBu	7/M									
20											
10											
00											
0											
:o											
o											
.											
0											
0			1 X								
:0			2 X								
o											
0.0											
1000	0.000	3550.0	00 6100	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 214	100.00	26500.00 MH
No.		Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1			4880.0	00	40.54	0.92	41.46	74.00	-32.54	peak	
2		*	4880.0	00	30.12	0.92	31.04	54.00	-22.96	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		E		(1 Mbps)		Test Da			2/8/3
Те	est Frequ				0MHz		Polarizat			rtical
130.0	Temp dBuV/m)		24	4°C		Hum.		58	8%
130.0	aga4/W									
120										
110										
100 -										
90										
80										
70										
60										
50										
40		1 ×								
30		2 X								
20										
10.0										
1000.	000 3550.0	00 6100.0	00 86	50.00	11200.00	13750.00	16300.00		1400.00	26500.00 MH:
No.	Mk.	Freq.		ading evel	Correct Factor	Measure ment	- Limit	Over		
		MHz		BuV	dB	dBuV/m	n dBuV/r	n dB	Detector	Comment
1		4960.00	0 4	0.52	1.18	41.70	74.00	-32.30	peak	
2	*	4960.00	0 3	0.65	1.18	31.83	54.00	-22.17	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	ode		BL	E 5.0	(1 Mbps	s)		1	Test Da	ite		202	2/8/3
Te	est Freq	uency				0MHz			Р	olarizat	tion			zontal
	Tem	р			2	4°C				Hum.			58	8%
30.0 c	BuV/m													
20														
10														
00														
0														
o														
) <u> </u>														
0														
o		1 X												
.		2 X												
.														
0.0														
1000.0	000 3550.	.00 610	0.00	8650	.00	11200.00		750.00		00.00	18850.	00 21	400.00	26500.00 M
No.	Mk.	Fred	ļ	Read Lev		Correct Facto		leasure ment)-	Limit		Over		
		MH	<u>z</u>	dB	uV	dB	(dBuV/m)	dBuV/r	m	dB	Detector	Commen
1		4960.0	000	40.	36	1.18		41.54		74.00	-	32.46	peak	
2	*	4960.0	000	30.	74	1.18		31.92		54.00	-	22.08	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		est Mo			BL		(2 Mb	ps)				Test D					2/9/2	
	lest		uency				2MHz				<u> </u>	Polariza					tical	
30.0	dBu\	Temp)			26	6°C					Hum	۱.			60	0%	
JU.U	ubu.	*/																
120 _																		
10																		
00																		
10																		
:o																		
o																		
0																		
o																		
0			1 X															
0			2 X															
0																		
0.0																		
		3550.0			8650		11200.		1375			300.00		50.00		00.00	26500.00 I	МН
No.		Mk.	Freq	•	Read Lev		Corre Fact			asur nent	e-	Limi	t	Ove	er			
			MHz		dBı	uV	dB		dE	3uV/n	n	dBuV	/m	dB		Detector	Commen	١t
1			4804.0	000	39.	11	0.6	5	3	9.76		74.0	0	-34.2	24	peak		
2		*	4804.0	000	29.	49	0.6	5	3	0.14		54.0	0	-23.8	36	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				(2 Mbps)		Test Date			2/9/2
Te	est Frequ				2MHz		Polarizatio	n		zontal
100.0	Temp)		26	S°C		Hum.		60)%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50										
40		* *								
30		2 X								
20										
10.0										
	000 3550.0			8650.00	11200.00	13750.00			00.00	26500.00 MHz
No.	Mk.	Freq.	ļ	Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1_		4804.00	00	39.97	0.65	40.62	74.00	-33.38	peak	
2	*	4804.00	00	29.19	0.65	29.84	54.00	-24.16	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(2 Mbps)		Test Date			2/9/2
Т	est Frequ			0MHz		Polarization	n		tical
130.0	Temp		2	6°C		Hum.		60)%
130.0	aga4/m								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 X							
30		2 X							
20									
10.0									
	.000 3550.0			11200.00				100.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4880.000	40.67	0.92	41.59	74.00	-32.41	peak	
2	*	4880.000	29.55	0.92	30.47	54.00	-23.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				Bl		(2 Mk					Test Da					2/9/2	
10	est Fred Tem		ncy				<u>0MHz</u> 6°C				<u> </u>	Polariza Hum					zontal 0%	
130.0	dBuV/m	ıρ					6 C					пипп				O	J 70	
																		\neg
120																		4
110																		
'''																		Tj.
100 -															-			\dashv
90																		_
80																		
70																		\exists
60																		
50																		_
40			1 X															
40			2															
30 —			x															+
20																		_
10.0																		
1000.	000 3550	0.00	6100).00	865	0.00	11200	.00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.0)0 MHz
No.	Mk.		Freq			iding vel	Cori			easur ment		Limit	t	Ove	r			
			MHz	<u>-</u>		suV	dl			3uV/r		dBuV/	m	dB		Detector	Comm	ent
1			4880.C	000	40	.42	0.9	92		11.34		74.00		-32.6		peak		
2	*		4880.C	000	29	.48	0.9	92	3	30.40		54.00))	-23.6	0	AVG		

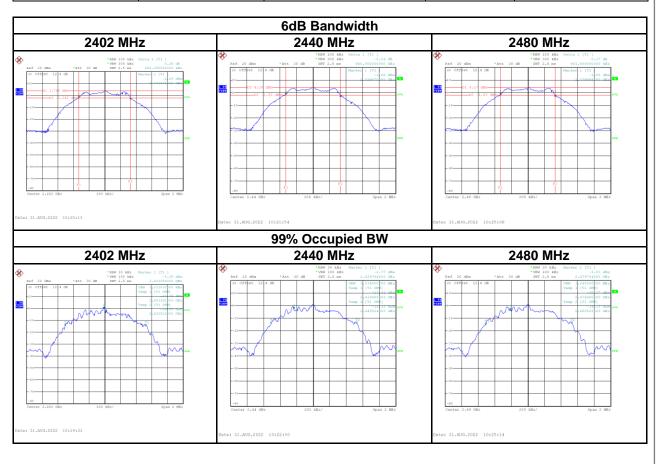
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo) (2 Mbps)		Test Date			2/9/2
Т	est Frequ			80MHz		Polarization	1		tical
130.0	Temp)	2	6°C		Hum.		60)%
130.0	aBAA/W								
120									
110									
100									
90									
80									
70									
60									
50									
40		1 ×							
30		2 X							
20									
10.0									
	.000 3550.0			11200.00				00.00	26500.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	40.94	1.18	42.12	74.00	-31.88	peak	
2	*	4960.000	30.11	1.18	31.29	54.00	-22.71	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

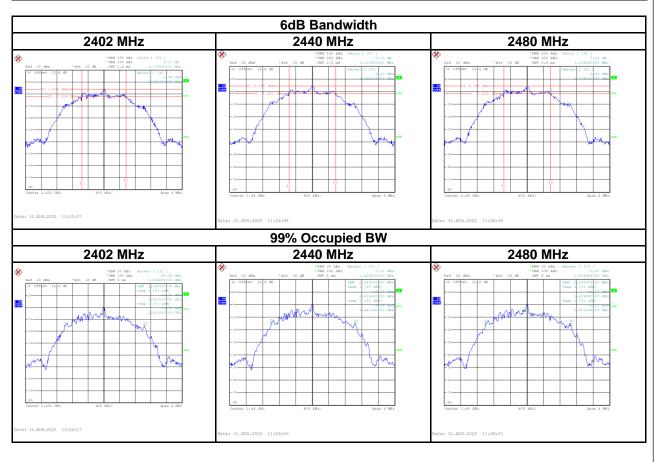
	Test Mo			(2 Mbps)		Test Date			2/9/2		
	Test Frequency			0MHz		Polarization			Horizontal 60%		
130.0	Temp dBuV/m)		6°C		Hum.		60	J%		
	GD GT 7 III										
120											
110											
100											
30											
30											
70 <u> </u>											
io											
50											
		1 ×									
10											
30		2 X									
20											
10.0											
1000	.000 3550.	00 6100.00	8650.00	11200.00	13750.00	16300.00 188	B50.00 21 4	00.00	26500.00 MH		
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over				
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/m	dB	Detector	Comment		
1		4960.000		1.18	41.12	74.00	-32.88	peak	Comment		
2	*	4960.000		1.18	31.09	54.00	-22.91	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX D	BANDWIDTH

Project No.: 2202T096 Page 52 of 62 Report Version: R00

Test Mode: 1Mbps


Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	0.66	1.03	500	Pass
2440	0.66	1.04	500	Pass
2480	0.66	1.04	500	Pass

Test Mode:	2Mbps

Frequency (MHz)	6dB Bandwidth (MHz)	99% Occupied BW (MHz)	Min. Limit (kHz)	Test Result
2402	1.14	2.04	500	Pass
2440	1.13	2.04	500	Pass
2480	1.14	2.05	500	Pass

APPENDIX E	OUTPUT POWER

Project No.: 2202T096 Page 55 of 62 Report Version: R00

Report No.: BTL-FCCP-8-2202T096

Test Mode: 1Mbps Tested Date 2022/8/30	t Mode: 1Mbps	Tested Date 2022/8/30
--	---------------	-----------------------

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.78	0.0030	30.00	1.0000	Pass
2440	5.07	0.0032	30.00	1.0000	Pass
2480	4.93	0.0031	30.00	1.0000	Pass

			,
Test Mode :	2Mbps	Tested Date	2022/8/30

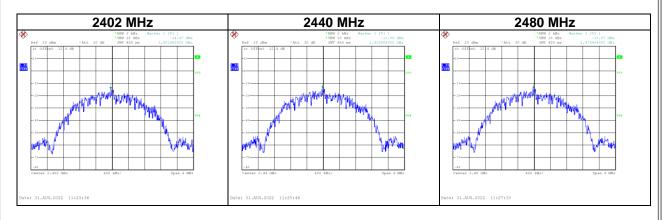
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	4.75	0.0030	30.00	1.0000	Pass
2440	5.14	0.0033	30.00	1.0000	Pass
2480	4.89	0.0031	30.00	1.0000	Pass

Project No.: 2202T096 Page 56 of 62 Report Version: R00


APPENDIX F	POWER SPECTRAL DENSITY TEST		

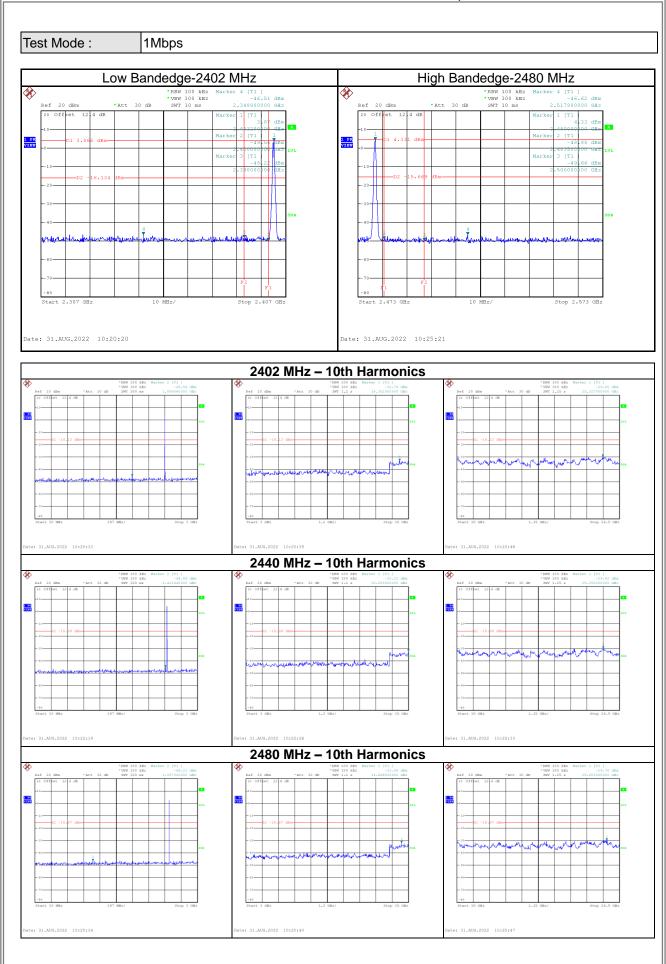
Project No.: 2202T096 Page 57 of 62 Report Version: R00

Test Mode: 1Mbps


Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-11.20	8	Pass
2440	-10.66	8	Pass
2480	-10.95	8	Pass

Test Mode : 2Mbps

Frequency (MHz)	Power Density (dBm/3kHz)	Max. Limit (dBm/3kHz)	Test Result
2402	-14.47	8	Pass
2440	-13.86	8	Pass
2480	-13.97	8	Pass



Project No.: 2202T096 Page 60 of 62 Report Version: R00

