

RF EXPOSURE EVALUATION REPORT

APPLICANT: YINUOLINK CO.,LTD

PRODUCT NAME: AC1200 Wi-Fi Nano Router

MODEL NAME : Y7

BRAND NAME: YINUO-LINK

FCC ID : 2A66J-Y7

STANDARD(S) : 47 CFR Part 2(2.1091)

RECEIPT DATE : 2024-04-11

TEST DATE : 2024-04-19 to 2024-08-29

ISSUE DATE : 2024-11-11

Edited by:

Zeng Xi**ag**ying (Rappo**f**leui

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

ShenzhenMorlab Communications Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Http://www.morlab.cn

Fax: 86-755-36698525

E-mail: service@morlab.cn

DIRECTORY

1. Technical Information	3
1.1 Applicant and Manufacturer Information	3
1.2 Equipment under Test (EUT) Description	3
1.3 Applied Reference Documents	ļ
2. Device Category and RF Exposure Limit	5
3. Maximum Average Power Summary	ō
4. RF Exposure Assessment	7
Annex A Testing Laboratory Information)

Change History					
Version Date Reason for change					
1.0	2024-11-11	First edition			

1. Technical Information

Note: Provide by applicant.

1.1 Applicant and Manufacturer Information

Applicant:	YINUOLINK CO.,LTD			
Applicant Address	301,Bldg 6, Gaoxinjian Industrial Park, Fuyuan 1st Road, Heping,			
Applicant Address:	Fuhai, Bao'an, Shenzhen, China			
Manufacturer:	YINUOLINK CO.,LTD			
Manufactures Address	301,Bldg 6, Gaoxinjian Industrial Park, Fuyuan 1st Road, Heping,			
Manufacturer Address:	Fuhai, Bao'an, Shenzhen, China			

1.2 Equipment under Test (EUT) Description

Product Name:	AC1200 Wi-Fi N	AC1200 Wi-Fi Nano Router		
Sample No.:	1#			
Hardware Version:	1.1			
Software Version:	Y7EN301024CV	/1.02		
Francisco Danda	WLAN 2.4GHz	2412MHz-2472MHz		
Frequency Bands:	WLAN 5GHz	5180MHz-5240MHz; 5745MHz-5825MHz		
Madulation Mada	WLAN 2.4GHz	DSSS, OFDM		
Modulation Mode:	WLAN 5GHz OFDM			
	WLAN 2.4GHz			
	Antenna Type:	ANT1: PCB Antenna; ANT2: FPC Antenna		
Antenna	Antenna Gain:	ANT1: 3.24dBi; ANT2: 2.67dBi		
Information:	WLAN 5GHz			
	Antenna Type:	ANT1: PCB Antenna; ANT2: FPC Antenna		
	Antenna Gain:	ANT1: 3.12dBi; ANT2: 4.72dBi		

1.3 Applied Reference Documents

Leading reference documents for testing:

Identity	Document Title	Method Determination /Remark
47 CFR Part 2(2.1091)	Radio Frequency Radiation Exposure Assessment: mobile devices	No deviation
KDB 447498 D01v06	General RF Exposure Guidance	No deviation

Note 1: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.

Note 2: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

2. Device Category and RF Exposure Limit

Per user manual, based on 47 CFR 2.1091, this device belongs to mobile device category with General Population/Uncontrolled exposure.

Mobile Devices:

47 CFR 2.1091(b)

For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons. In this context, the term "fixed location" means that the device is physically secured at one location and is not able to be easily moved to another location. Transmitting devices designed to be used by consumers or workers that can be easily re-located. such as wireless devices associated with a personal computer, are considered to be mobile devices if they meet the 20 centimeter separation requirement.

General Population/Uncontrolled Exposure:

The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Warning labels placed on low-power consumer devices such as cellular telephones are not considered sufficient to allow the device to be considered under the occupational/controlled category, and the general population/uncontrolled exposure limits apply to these devices.

Table 1Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(1	B) Limits for Gener	al Population/Unco	ntrolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	-	-	f/1500	30
1500-100,000	-	-	1.0	30

f = frequency in MHz* = Plane-wave equivalent power density

ShenzhenMorlab Communications Technology Co., Ltd.

FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road,

Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

3. Maximum Average Power Summary

Maximum Average Power for Antenna 1

Wireless Mode	Channel	Frequency (MHz)	Max. Average Power (dBm)	Tune-up Limit (dBm)
WLAN 2.4GHz	CH 13	2472	15.63	16.00
WLAN 5GHz	CH 149	5745	16.75	17.00

Maximum Average Power for Antenna 2

_					
	Wireless Mode	Channel	Frequency (MHz)	Max. Average Power (dBm)	Tune-up Limit (dBm)
	WLAN 2.4GHz	CH 11	2462	15.79	16.00
	WLAN 5GHz	CH 144	5825	16.91	17.50

Maximum Average Power for MIMO

Wireless Mode	Channel	Frequency (MHz)	Max. Average Power (dBm)	Tune-up Limit (dBm)
WLAN 2.4GHz	CH 3	2422	17.95	18.00
WLAN 5GHz	CH 44	5220	18.37	18.50

Note 1: According to KDB 447498, MPE assessment is based on source-based time-averaged maximum conducted output power of the RF channel requiring assessment, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Note 2: The maximum average power refers to report (Report No.: SZ240040140W01/W02).

ShenzhenMorlab Communications Technology Co., Ltd.

4. RF Exposure Assessment

> Standalone Transmission Assessment

<Standalone Antenna Transmission Assessment>

Bands	Frequency (MHz)	Tune-up Power(dBm)	Antenna Gain(dBi)	E.I.R.P. (mW)	Power Density (mW/cm²)	Limit for MPE (mW/cm²)
WLAN 2.4GHz ANT1	2472	16.00	3.24	83.95	0.017	1.0
WLAN 2.4GHz ANT2	2462	16.00	2.67	73.62	0.015	1.0
WLAN 5GHz ANT1	5745	17.00	3.12	102.80	0.020	1.0
WLAN 5GHz ANT2	5825	17.50	4.72	166.72	0.033	1.0

<MIMO Transmission Assessment>

Bands	Frequency (MHz)	Tune-up Power(dBm)	Directional Gain(dBi)	E.I.R.P. (mW)	Power Density (mW/cm²)	Limit for MPE (mW/cm²)
WLAN 2.4GHz	2422	18.00	5.97	249.46	0.050	1.0
WLAN 5GHz	5220	18.50	6.97	352.37	0.070	1.0

Note 1: The WLAN 2.4GHz directional gain = $10\log(10^{G1/20}+10^{G2/20})^2/2 = 5.68dBi$; WLAN 5GHz directional gain = $10\log(10^{G1/20}+10^{G2/20})^2/2 = 7.73dBi$.

Note 2: For 2.4G/5G WLAN, only the worst case will be used for calculating the power density.

Note 3: MPE calculate method

$S = PG/4\pi R^2$

Where: S= Power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune-up power (in appropriate units, e.g. dBm)

G = numeric gain of the antenna (in appropriate units, e.g. dBi)

R = Separation distance to the centre of radiation of the antenna (20cm)

> Simultaneous Transmission Assessment:

Multi-Band Simultaneous Transmission Consideration

	Position	Applicable Combination
Simultaneous Transmission		WLAN 2.4GHz MIMO
Consideration	Body	WLAN 5GHz MIMO
		WLAN 2.4GHz MIMO + WLAN 5GHz MIMO

Note 1: This device contains transmitters that may operate simultaneously, therefore simultaneous transmission analysis is required as below.

Applicable Combination	Transmission Bands	Power Density (mW/cm²)	Limit (mW/cm²)	Simultaneous Transmission Result
WLAN 2.4GHz MIMO + WLAN 5GHz MIMO	WLAN 2.4GHz MIMO	0.050	1.0	0.120
	WLAN 5GHz MIMO	0.070	1.0	

Note 1: Formula for result=Power density₁/ limit₁ + Power density₂/ limit₂ \leq 1.

Note 2: The highlight applicable combination is the worst condition.

> Conclusion:

According to 47 CFR 2.1091, this device complies with human exposure basic restrictions.

Annex A Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	FL.1-3, Building A, FeiYang Science Park, No.8		
Laboratory Address:	LongChang Road, Block 67, BaoAn District, ShenZhen,		
	GuangDong Province, P. R. China		
Telephone:	+86 755 36698555		
Facsimile:	+86 755 36698525		

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.		
	FL.1-3, Building A, FeiYang Science Park, No.8		
Address:	LongChang Road, Block 67, BaoAn District, ShenZhen,		
	GuangDong Province, P. R. China		

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

END OF REPORT	

ShenzhenMorlab Communications Technology Co., Ltd.