

TEST REPORT

FCC BT LE Test for LCWB-009 Certification

APPLICANT LG Electronics Inc.

REPORT NO. HCT-RF-2411-FC021-R1

DATE OF ISSUE December 16, 2024

> Tested by Kyung Jun Woo

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Bonejai Muh BongJai Huh **I** CEO

F-TP22-03(Rev.06)

1/42 The report shall not be (partly) reproduced except in full without approval of the laboratory. HCT CO., LTD. 2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

HCT CO.,LTD. 2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

T E S T R E P O R T	REPORT NO. HCT-RF-2411-FC021-R1 DATE OF ISSUE December 16, 2024
Applicant	LG Electronics Inc. 170, Seongsan Pachong-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do 51533, Republic of Korea
Product Name Model Name	RF Module LCWB-009
FCC ID	BEJ-LCWB009
Date of Test	October 29, 2024 ~ November 22, 2024
FCC Classification	Digital Transmission System(DTS)
Test Standard Used	FCC Rule Part(s): Part 15.247
Location of Test	■ Permanent Testing Lab □ On Site Testing Lab (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi- do, Republic of Korea)
Brand	LG

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	November 22, 2024	Initial Release
1	December 16, 2024	Revised Conducted Band Edge Limit on page 31.

Notice

Content

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *. Information provided by the applicant is marked **. Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA. (KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

This test report provides test result(s) under the lab's valid Scope of Accreditation by A2LA (American Association for Laboratory Accreditation), signatory of the ILAC-MRA. (A2LA (ISO/IEC 17025) Certificate No. 4114.01)

CONTENTS

1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	24
9. TEST RESULT	25
9.1 DUTY CYCLE	25
9.2 6 dB BANDWIDTH	26
9.3 OUTPUT POWER	28
9.4 POWER SPECTRAL DENSITY	29
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	31
9.6 RADIATED SPURIOUS EMISSIONS	33
9.7 RADIATED RESTRICTED BAND EDGES	36
9.8 POWERLINE CONDUCTED EMISSIONS	38
10. LIST OF TEST EQUIPMENT	40
11. ANNEX A_ TEST SETUP PHOTO	42

1. EUT DESCRIPTION

LCWB-009						
-						
RF Module	RF Module					
DC 3.3 V / 5.0 \	/					
Frequency Range 2 402 MHz – 2 480 MHz						
Peak	1M Bit/s : 8.204 dBm (6.61 mW)					
Average	1M Bit/s : 6.66 dBm (4.63 mW)					
GFSK						
5.2						
40 Channels						
Antenna type: PCB Pattern Antenna						
Peak Gain : -1.05 dBi						
Conducted : B	C2B0232261A					
Radiated : BC2B023222C2						
	- RF Module DC 3.3 V / 5.0 V 2 402 MHz – 2 4 Peak Average GFSK 5.2 40 Channels Antenna type: Peak Gain : -1.0 Conducted : B					

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated March 11, 2024 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

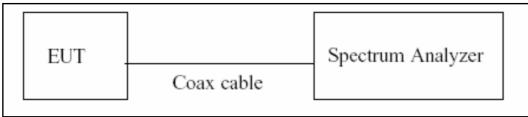
(2) The E.U.T Complies with the requirement of § 15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.


Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

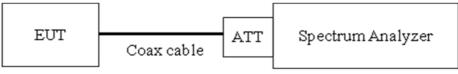
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (\geq RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = T_{on}/T_{total} and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2.6 dB Bandwidth

<u>Limit</u>

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

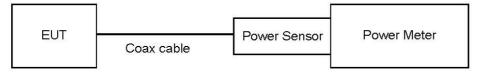
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to (Procedure 8.2 in KDB 558074 v05r02,

Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = Max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

<u>Limit</u>

The maximum permissible conducted output power is 1 Watt.

Test Configuration

Test Procedure

The transmitter output is connected to the Power Meter.

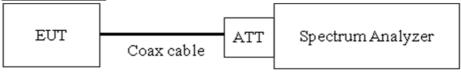
- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.

• Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)

- 1) Measure the duty cycle.
- 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3) Add 10 $\log(1/x)$, where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

<u>Limit</u>

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3 kHz BW.

Test Configuration

Test Procedure

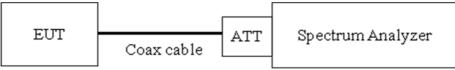
The transmitter output is connected to the Spectrum Analyzer. We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the DTS bandwidth.
- 3) RBW = 3 kHz \leq RBW \leq 100 kHz.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple.
- 6) Detector = Peak.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

<u>Limit</u>

The maximum conducted (Peak) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 20 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Allow trace to fully stabilize.
- 8) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

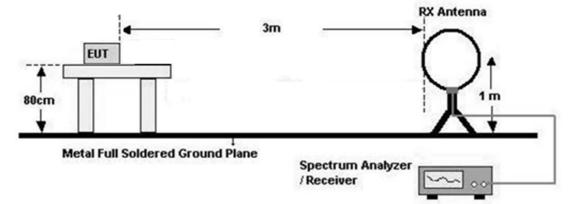
Factors for frequency

Freq(MHz)	Factor(dB)
30	10.79
100	10.95
200	11.02
300	11.06
400	11.09
500	11.23
600	11.26
700	11.39
800	11.40
900	11.45
1 000	11.46
2 000	11.49
2400	11.62
2500	11.62
3 000	11.92
4 000	11.95
5 000	12.77
5850	12.77
6 000	12.88
7 000	12.91
8 000	13.05
9 000	13.06
1 0000	13.21
11 000	13.23
12 000	13.38
13 000	13.41
14 000	13.42
15 000	13.55
16 000	13.60
17 000	13.61
18 000	13.66
19 000	13.64
20 000	13.71
21 000	13.72
22 000	13.78
23 000	13.81
24 000	13.81
25 000	13.85
26 000	13.93

Note :

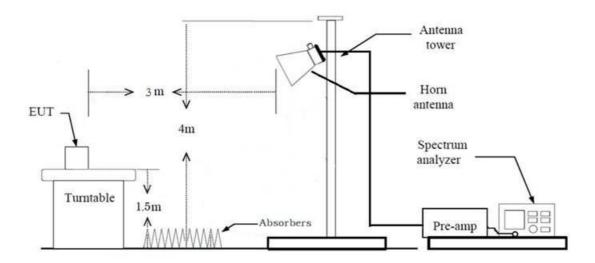
1. 2400 ~ 2500 MHz is fundamental frequency range.

2. Factor = Attenuator loss + Cable loss


7.6. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)			
0.009 - 0.490	2400/F(kHz)	300			
0.490 – 1.705	24000/F(kHz)	30			
1.705 – 30	30	30			
30-88	100	3			
88-216	150	3			
216-960	200	3			
Above 960	500	3			


Test Configuration

Below 30 MHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.

5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz \sim 30 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)

8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than $\pm 2~\%$
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.

- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1

9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total (Measurement Type : Peak)

= Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F) Total (Measurement Type : Average)

= Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) - Amp Gain(A.G) + Distance Factor(D.F)

#Note : Used Average measurement method according to KDB 558074 Section11 Q3

Test Procedure of Radiated Restricted Band Edge

1. The EUT is placed on a turntable, which is 1.5 m above ground plane.

2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than $\pm 2~\%$
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
 - (1)Measurement(Peak)
 - = Measured Value(Peak)
 - (2)Measurement(Avg)
 - = Measured Value(Avg)
 - We apply to the offset in range 1 GHz 18 GHz
 - The offset = Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

#Note : Used Average measurement method according to KDB 558074 Section11 Q3

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \,\mu$ H/50 ohms line impedance stabilization network (LISN).

Frequency Denge (MUL)	Limits (dBµV)							
Frequency Range (MHz)	Quasi-peak	Average						
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)						
0.50 to 5	56	46						
5 to 30	60	50						

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

1. The EUT is placed on a wooden table 80 cm above the reference ground plane.

2. The EUT is connected via LISN to a test power supply.

3. The measurement results are obtained as described below:

4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

7.8. Worst case configuration and mode

Radiated Test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone(DC 3.3V), Stand alone(DC 5V),
- Worst case : Stand alone(DC 3.3V)
- 2. EUT Axis:
 - Radiated Spurious Emissions : Z
 - Radiated Restricted Band Edge : Y

3. All packet length of operation were investigated and the test results are worst case in lowest

packet length.

(Worst case : 1M 37 Byte Only)

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone(DC 3.3V), Stand alone(DC 5V)

Conducted test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone(DC 3.3V), Stand alone(DC 5V),
- Worst case : Stand alone(DC 3.3V)
- 2. The EUT was configured with packet length of highest power.

(Worst case : 1M 37 Byte Only)

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§ 15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§ 15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§ 15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	Conducted > 20 dBc		PASS
AC Power line Conducted Emissions	§ 15.207	cf. Section 7.7	*	PASS
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Dedictor	PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

9. TEST RESULT

9.1 DUTY CYCLE

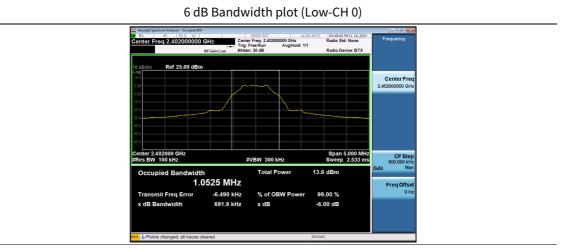
Data rate	Packet length	T _{on}	T _{total}	Duty Cycle	Duty Cycle Factor		
(Bit/s)	(Byte)	(ms)	(ms)		(dB)		
1M	37	0.393	0.625	0.629	2.017		

Test Plot

1 M Bit/s (37 Byte) Duty Cycle

Cent	er Fr	RF eq 2	2.40200	AC	GHz PNO: Fas IFGain:Lo					Avg T	ALIGN AUTO		4 PM 11 18, 202 RACE 1 2 3 4 TYPE W	5 6	Frequency
10 dB.	ldiv		Offset 11 f 21.62 c									∆Mkr3	624.6 μ -4.43 d	IS B	Auto Tun
Log 11.6 - 1.62 -				X				142		<u>3∆4</u>				2.4	Center Fre
-18.4 - -28.4 - -38.4 -														2.4	Start Fre 102000000 GH
-48.4 -58.4 -68.4 -		*		n an				iyalariyi d	ilas (1944)	, 			hali king Kinghotong		Stop Fre 102000000 GH
Res I	3W 8	MH:			#	VBW	/ 8.0 MH	z*					Span 0 H s (2000 pt	S) Auto	CF Stej 8.000000 MH Ma
			<u>(Δ)</u>	Х	392.6 µs			1 dB	FUNC	TION	FUNCTION WIDTH	I FUN	CTION VALUE	ń –	
2 3 4 5 6	F 1 4 1 F 1	t t	(<u>(</u>)		362.2 µs 624.6 µs 362.2 µs	i (Δ)	6.56 -4.4 6.56	3 dB						E	Freq Offse 0 H
7 8 9															Scale Typ
10 11														Log	Li

9.2 6 dB BANDWIDTH


Mode	Channel	6 dB Bandwidth (kHz)	Limit (kHz)
	0	691.9	
1M 37 Byte	19	691.8	> 500
	39	687.9	

Test Plots(1M Bit/s(37 Byte))

Note:

In order to simplify the report, attached plots were only the narrowest 6 dB BW channel.

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER

Peak Power

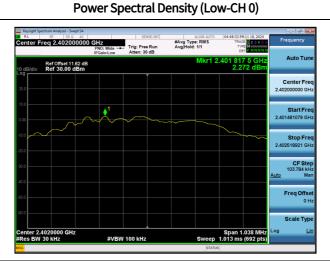
Data rate	Packet length	LE Mode		Peak Power	Limit	
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dBm)	
		2402	0	7.142		
1M	37	2440	19	7.665	30	
		2480	39	8.204		

Average Power

Data rate	Packet length	LE Mode		Measured Power	Duty Cycle Factor	Result	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(dBm)
		2402	0	3.73	2.02	5.75	
1M	37	2440	19	4.03	2.02	6.05	30
		2480	39	4.64	2.02	6.66	

9.4 POWER SPECTRAL DENSITY

			Test Result			
Frequency (MHz)	Channel No.	Mode (Bit/s)	Power Spectral Density (dBm)	Limit (dBm/3 kHz)		
2402	0		2.272			
2440	19	1 MBit/s 37 Byte	2.721	8		
2480	39	S. Syte	3.260			


Note :

1. Spectrum measured Value not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

IM Bit/s (37 Byte) Test Plots

Power Spectral Density (Mid-CH 19)

RF 50Ω AC ter Freq 2.440000000	PNO: Wide Trig: Free Run	#Avg Type: RMS Avg Hold: 1/1	04:49:18 PM 11 18, 2024 TRACE 1 2 3 4 5 6 TYPE M	Frequency
Ref Offset 11.62 dB	IFGain:Low Atten: 30 dB	Mkr1 2	.439 981 2 GHz 2.721 dBm	Auto Tu
				Center Fr 2.440000000 G
	·····			Start Fr 2.439481123 G
			<u></u>	Stop Fr 2.440518877 G
				CF St 103.775 Auto
				Freq Off: 0
				Scale Ty
ter 2.4400000 GHz s BW 30 kHz	#VBW 100 kHz	Sweep	Span 1.038 MHz 1.013 ms (692 pts)	Log

Power Spectral Density (High-CH 39)

F-TP22-03 (Rev. 06)

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS


Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

[BAND EDGE]

				Test	Result
Frequency (MHz)	Mode	Channel No.	Position	Measured Level (dB)	Limit (dBc)
2402		0	Lower	39.843	20
2480	1M Bit/s 37 Byte	39	Upper	44.649	20

Test Plots

Test Plots - Conducted Spurious Emission

1M Bit/s (37 Byte) (30 MHz - 26.5 GHz) Ch. 39

Limit (dBm): -12.773

9.6 RADIATED SPURIOUS EMISSIONS

i requeiley it		50 M IZ							
Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin			
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
_	No Critical peaks found								

Frequency Range : 9 kHz – 30 MHz

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)

3. Limit line = specific Limits ($dB\mu V$) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin			
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]			
	No Critical peaks found								

Note:

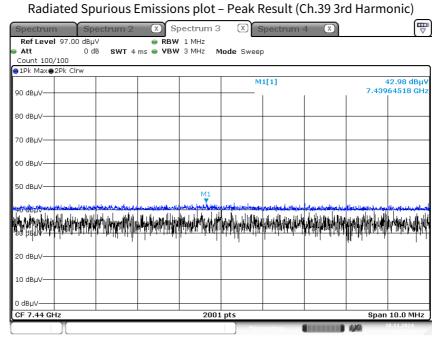
1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz Mode : 1 M Bit/s (37 Bytes)

CH 0	2402	MHz	MHz Mode :			1 M Bit/s (37 Bytes)			
Frequency	Measured value	AF+CL+DF-AG	Pol.	Total	Limit	Margin	Measuremen		
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре		
4804	46.57	2.56	V	49.13	73.98	24.85	PK		
4804	36.32	2.56	V	38.88	53.98	15.10	AV		
7206	42.01	8.81	V	50.82	73.98	23.16	PK		
7206	30.37	8.81	V	39.18	53.98	14.80	AV		
4804	45.27	2.56	Н	47.83	73.98	26.15	PK		
4804	36.18	2.56	Н	38.74	53.98	15.24	AV		
7206	41.88	8.81	Н	50.69	73.98	23.29	PK		
7206	30.16	8.81	Н	38.97	53.98	15.01	AV		
CH 19	H 19 2440 MHz		М	ode :	1 M Bit/s (37 Bytes)				
Frequency	Measured value	AF+CL+DF-AG	Pol.	Total	Limit	Margin	Measuremen		
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре		
4880	45.33	2.72	V	48.05	73.98	25.93	PK		
4880	35.17	2.72	V	37.89	53.98	16.09	AV		
7320	42.62	9.10	V	51.72	73.98	22.26	PK		
7320	30.99	9.10	V	40.09	53.98	13.89	AV		
4880	45.27	2.72	Н	47.99	73.98	25.99	PK		
4880	35.02	2.72	Н	37.74	53.98	16.24	AV		
7320	42.58	9.10	Н	51.68	73.98	22.30	PK		
7320	30.65	9.10	Н	39.75	53.98	14.23	AV		
CH 39	2480	MHz	Ма	ode :	11	M Bit/s (37	Bvtes)		
Frequency	Measured value	AF+CL+DF-AG	Pol.	Total	Limit	Margin	Measuremen		
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре		
4960	46 50	2 31	V	48.81	73 98	25.17	РК		

	2.00					1	
Frequency	Measured value	AF+CL+DF-AG	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	46.50	2.31	V	48.81	73.98	25.17	PK
4960	36.10	2.31	V	38.41	53.98	15.57	AV
7440	42.98	10.21	V	53.19	73.98	20.79	PK
7440	30.62	10.21	V	40.83	53.98	13.15	AV
4960	46.27	2.31	Н	48.58	73.98	25.40	PK
4960	36.02	2.31	Н	38.33	53.98	15.65	AV
7440	42.33	10.21	Н	52.54	73.98	21.44	PK
7440	30.57	10.21	Н	40.78	53.98	13.20	AV



■ 1M Bit/s 37 Bytes Test Plots (Worst case : Z-V)

Radiated Spurious Emissions plot – Average Result (Ch.39 3rd Harmonic)

Spectrum Ref Level 97.00	Spectrum 2		oectrum 3	× 5	Spectrum ·	4 X		
Att	OdB 👄 SWT (_		Mode Swe	en			
Count 100/100				induo one	, op			
∎1Rm AvgPwr⊕2P	k Clrw							
90 dBµV				M	1[1]			30.62 dBµV 64018 GHz
80 dBµV								
70 dвµV								
50 dBµV								
50 dBuV								
RAND REAL AND	, III A II A II A II A II A II A II A I	ineral for the state of the sta	*******	nukun kalentek kalente	uliyyaan damada ya	and the second second	ala thai leitheadar	New Light Hard And And And And And And And And And An
30-d8pV			Υ					
20 dBµV								
10 dBµV								
0 dBµV								
CF 7.44 GHz			2001	ntc				10.0 MHz

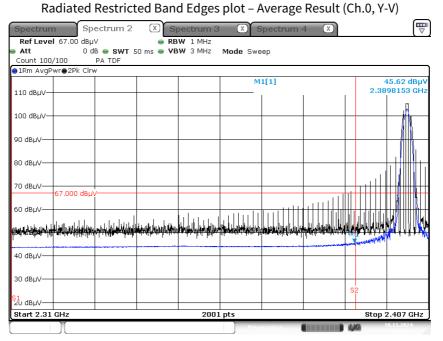
Date: 18.NOV.2024 14:25:24

Date: 18.NOV.2024 14:26:00

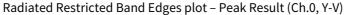
Note:

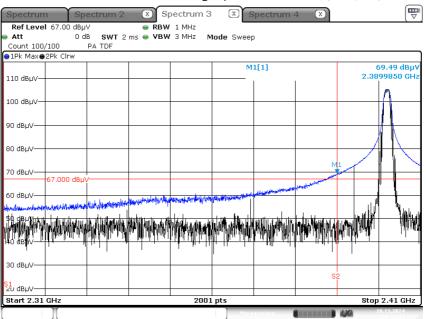
Plots of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES


Note : integration method Used (ANSI C63.10 Section11.13.3)

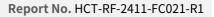
	1 M Bit/s (37 Bytes)									
Channel	0 CH	Channel No	2402 MHz							
Frequency	Measured Value	AF+CL+DF	Ant. Pol. Total Limit Margin Measurem							
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре			
2390.0	69.49	-	V	69.49	73.98	4.49	PK			
2390.0	45.62	-	V	45.62	53.98	8.36	AV			


	1 M Bit/s (37 Bytes)						
Channel	39 CH	Channel No	2480 MHz				
Frequency	Measured Value	AF+CL+DF	Ant. Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
#2483.5	69.10	-	V	69.10	73.98	4.88	PK
#2483.5	49.45	-	V	49.45	53.98	4.53	AV



Mode : 1 M Bit/s (37 Bytes) Test Plots

Date: 18.NOV.2024 10:38:51



Date: 18.NOV.2024 10:38:14

Note:

Plots of worst case are only reported.

9.8 POWERLINE CONDUCTED EMISSIONS

[3.3V]

Test

1/1

Test Report

Common Information

EUT : Operating Conditions : Comment : LCWB-009 BTLE [3.3V]

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1545	49.51	65.75	16.24	9.000	L1	9.6
0.1635	45.01	65.28	20.28	9.000	N	9.5
0.1815	44.18	64.42	20.24	9.000	L1	9.6
1.2875	29.77	56.00	26.23	9.000	N	9.6
3.3238	27.91	56.00	28.09	9.000	N	9.7
3.4768	25.75	56.00	30.25	9.000	N	9.7
28.5553	31.88	60.00	28.12	9.000	L1	9.9
28.6183	31.73	60.00	28.27	9.000	L1	9.9
28.8050	30.61	60.00	29.39	9.000	L1	9.9

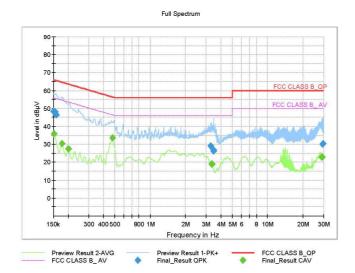
Final_Result_CAV

Frequency (MHz)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1523	35.95	55.88	19.92	9.000	L1	9.6
0.1770	30.68	54.63	23.95	9.000	L1	9.6
0.2018	27.19	53.54	26.34	9.000	N	9.5
0.4763	33.60	46.40	12.81	9.000	N	9.6
1.0940	20.65	46.00	25.35	9.000	Ν	9.6
3.5330	14.31	46.00	31.69	9.000	N	9.7
28.2403	25.81	50.00	24.19	9.000	L1	9.9
28.5598	29.67	50.00	20.33	9.000	L1	9.9
28.6205	24.57	50.00	25.43	9.000	L1	9.9

2024-11-21

오후 7:01:24

[5V]


Test

1/1

Test Report

Common Information

EUT : Operating Conditions : Comment : LCWB-009 BTLE [5V]

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBuV)	Limit (dBuV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1500	48.45	66.00	17.55	9.000	N	9.5
0.1545	48.14	65.75	17.62	9.000	N	9.5
0.1590	46.53	65.52	18.98	9.000	N	9.5
3.2585	28.97	56.00	27.03	9.000	N	9.7
3.4543	26.71	56.00	29.29	9.000	N	9.7
3.4768	26.37	56.00	29.63	9.000	N	9.7
29.2753	30.20	60.00	29.80	9.000	L1	9.9
29.3540	30.01	60.00	29.99	9.000	L1	9.9
29.5520	30.25	60.00	29.75	9.000	L1	9.9

Final_Result_CAV

Frequency	CAverage	Limit	Margin	Bandwidth	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dB)	(kHz)		(dB)
0.1523	35.92	55.88	19.96	9.000	L1	9.6
0.1770	30.43	54.63	24.19	9.000	N	9.5
0.2018	27.41	53.54	26.13	9.000	N	9.5
0.4763	33.66	46.40	12.75	9.000	N	9.6
3.3395	19.01	46.00	26.99	9.000	N	9.7
3.3440	18.93	46.00	27.08	9.000	N	9.7
28.9220	22.75	50.00	27.25	9.000	L1	9.9
29.0233	22.84	50.00	27.16	9.000	L1	9.9
29.1200	23.16	50.00	26.84	9.000	L1	9.9

2024-11-21

오후 6:48:49

10. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	07/17/2025	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	07/02/2025	Annual
Temperature Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Signal Analyzer	N9030A	Keysight	MY55410508	08/23/2025	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	100935	08/01/2025	Annual
Power Meter	N1911A	Agilent	MY45100523	02/28/2025	Annual
Power Sensor	N1921A	Agilent	MY57820067	02/22/2025	Annual
Directional Coupler	87300B	Agilent	3116A03621	10/21/2025	Annual
Power Splitter	11667B	Hewlett Packard	10545	02/06/2025	Annual
DC Power Supply	E3632A	Agilent	KR75305528	01/02/2025	Annual
Attenuator(10 dB)(DC-26.5 GHz)	8493C-010	Agilent	08285	05/28/2025	Annual
Attenuator(20 dB)	18N-20dB	Rohde & Schwarz	8	02/20/2025	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A
Bluetooth Tester	CBT	Rohde & Schwarz	100808	02/15/2025	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	S3AM	07/30/2025	Annual
Controller	EM2090	Emco	060520	N/A	N/A
Turn Table	N/A	Ets	N/A	N/A	N/A
Amp & Filter Bank Switch Controller	FBSM-01A	TNM system	0	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/07/2026	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	9168-0895	08/28/2026	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	9120D-1191	11/07/2025	Biennial
Horn Antenna(15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/02/2025	Annual
Band Reject Filter	WRCJV12-4900- 5100-5900-6100- 50SS	Wainwright Instruments	5	06/04/2025	Annual
Band Reject Filter	WRCJV12-4900- 5100-5900-6100- 50SS	Wainwright Instruments	6	06/04/2025	Annual
Band Reject Filter	WRCJV5100/5850- 40/50-8EEK	Wainwright Instruments	1	02/14/2025	Annual
RF Switching System	FBSR-03A (3G HPF+LNA)	T&M SYSTEM	S3L1	10/31/2025	Annual
RF Switching System	FBSR-03A (10dB ATT+LNA)	T&M SYSTEM	S3L2	10/31/2025	Annual
RF Switching System	FBSR-03A (7G HPF+LNA)	T&M SYSTEM	S3L3	10/31/2025	Annual
RF Switching System	FBSR-03A (3dB ATT+LNA)	T&M SYSTEM	S3L4	10/31/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/07/2025	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
Bluetooth Tester	TC-3000C	TESCOM	3000C000175	03/19/2025	Annual
Spectrum Analyzer	FSV40 (9 kHz ~ 40 GHz)	Rohde & Schwarz	100900	08/27/2025	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description				
1	HCT-RF-2411-FC021-P				