

FCC Test Report

For

Applicant Name: TECNO MOBILE LIMITED

Address: FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

EUT Name: Laptop Brand Name: TECNO Model Number: S15AM

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230612R00406

Test Standards: 47 CFR Part 15, Subpart B

FCC ID: 2ADYY-S15AM

Test Conclusion: Pass

Test Date: 2023-03-06 to 2023-05-29

Date of Issue: 2023-06-15

Prepared By:

Chris Liu /

Date: 2023-06-15

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-06-15

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

roject Engineei

Revision History				
Version Issue Date Revisions Content				
R_V0	2023-06-15	Original		
Note: Once the	revision has been made, then prev	ious versions reports are invalid.		

Table of Contents

1	INTE	RODUCTION	4
	1.1 1.2 1.3	Identification of Testing LaboratoryIdentification of the Responsible Testing LocationAnnouncement	4
2	PRO	DUCT INFORMATION	5
	2.1 2.2 2.3 2.4 2.5	Application Information	5 5 5
3	SUM	IMARY OF TEST RESULTS	6
	3.1 3.2 3.3	Test StandardsUncertainty of TestSummary of Test Result	6
4	TES	T CONFIGURATION	7
	4.1 4.2 4.3	Test Equipment List Test Auxiliary Equipment Test Modes	9
5	EMIS	SSION TEST RESULTS (EMI)	10
	5.1	Conducted emissions on AC mains	10
	5.2	Radiated emissions (Below 1GHz)	
		5.2.1 E.U.T. Operation: 5.2.2 Test Setup Diagram: 5.2.3 Test Data:	13
	5.3	Radiated emissions (Above 1GHz)	
		5.3.1 E.U.T. Operation: 5.3.2 Test Setup Diagram: 5.3.3 Test Data:	16

Test Report Number: BTF230612R00406

1 Introduction

1.1 Identification of Testing Laboratory

	Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:		F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
Fax Number:		+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	
FCC Registration Number:	518915	
Designation Number:	CN1330	

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

2.2 Manufacturer Information

Company Name:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI
Address.	STREET FOTAN NT HONGKONG

2.3 Factory Information

Company Name:	GUANGXI SHANCHAUN TECHNOLOGY CO LTD
	2nd floor of building1 in zone 3, building2 in zone 3, 1st floor of building 2 in zone
Address:	4, Guangxi 3nod Smart Industrial Park, No. 3 Gaoke Road, Haicheng District,
	Beihai City, Guangxi Zhuang Autonomous Region

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Laptop
Test Model Number:	S15AM
Series Model Number:	N/A

2.5 Technical Information

Power Supply:	Li-ion Battery: S1 Nominal Voltage: 11.55V Rated Capacity: 6060mAh/70Wh Typical Capacity: 6160 mAh/71.14Wh Limited Charge Voltage: 13.2V	
Power Adaptor:	Adapter1: TCW-A 61S-65W Input: 100-240V~50/60Hz 1.5A Max Output: PD: 5V==3A 9V==3A 12V==3A 15V==3A 20V==3.25A PPS: 3.3-11V==5A Max Adapter2: DS65-2 Input: 100-240V~50/60Hz 1.5A Max Output: PD: 5V==3A 9V==3A 12V==3A 15V==3A 20V==3.25A 65W	

Test Report Number: BTF230612R00406

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15, Subpart B: Unintentional Radiators

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB
All emissions, radiated (<1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Conducted emissions on AC mains	47 CFR Part 15, Subpart B	15.107, Class B	Pass
Radiated emissions (Below 1GHz)	47 CFR Part 15, Subpart B	15.109, Class B	Pass
Radiated emissions (Above 1GHz)	47 CFR Part 15, Subpart B	15.109, Class B	Pass

Test Configuration

Test Equipment List

Conducted emissions on AC mains					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23

Radiated emissions (I	Below 1GHz)				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

Radiated emissions (Above 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27

4.2 Test Auxiliary Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Test Modes

Pretest Mode	Description
Mode 1	Video Recording
Model 2	Video Playing
Mode 3	Transferring with USB Disk (the worst case)
Mode 4	TF Card Playing

5 Emission Test Results (EMI)

Conducted emissions on AC mains

Test Requirement:	15.107, Class B					
Test Method:	ANSI C63.4					
	Frequency of emission (MHz)	Conducted limit (dBμV)			
		Quasi-peak	Average			
Toot Limits	0.15-0.5	66 to 56*	56 to 46*			
Test Limit:	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of t	*Decreases with the logarithm of the frequency.				
Procedure:	An initial pre-scan was performed was measurement were performed at the were detected.	ne frequencies with ma				
	Remark: Level= Read Level+ Cable	e Loss+ LISN Factor				

5.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	24.1 °C
Humidity:	48.7 %
Atmospheric Pressure:	1010 mbar

5.1.2 Test Setup Diagram:

5.1.3 Test Data:

TM1 / Line: Line Mode 3(the worst case)

Иk. Fi		Reading Level	Correct Factor	Measure- ment	Limit	Over	
M	lHz	dBuV	dB	dBuV	dBuV	dB	Detector
0.4	460	28.83	10.51	39.34	56.95	-17.61	QP
0.4	460	18.43	10.51	28.94	46.95	-18.01	AVG
0.8	700	35.81	10.54	46.35	56.00	-9.65	QP
0.8	700	26.23	10.54	36.77	46.00	-9.23	AVG
2.0	180	11.96	10.71	22.67	46.00	-23.33	AVG
2.6	020	23.76	10.72	34.48	56.00	-21.52	QP
3.4	820	14.95	10.72	25.67	46.00	-20.33	AVG
3.5	260	30.92	10.73	41.65	56.00	-14.35	QP
6.8	060	7.85	10.77	18.62	50.00	-31.38	AVG
9.4	060	19.24	10.82	30.06	60.00	-29.94	QP
16.0	459	22.90	11.17	34.07	60.00	-25.93	QP
16.0	860	14.10	11.17	25.27	50.00	-24.73	AVG
	0.4 0.4 0.8 0.8 2.0 2.6 3.4 3.5 6.8 9.4	Mk. Freq. MHz 0.4460 0.4460 0.8700	MHz dBuV 0.4460 28.83 0.4460 18.43 0.8700 35.81 0.8700 26.23 2.0180 11.96 2.6020 23.76 3.4820 14.95 3.5260 30.92 6.8060 7.85 9.4060 19.24 16.0459 22.90	Mk. Freq. Level Factor MHz dBuV dB 0.4460 28.83 10.51 0.4460 18.43 10.51 0.8700 35.81 10.54 2.0180 11.96 10.71 2.6020 23.76 10.72 3.4820 14.95 10.72 3.5260 30.92 10.73 6.8060 7.85 10.77 9.4060 19.24 10.82 16.0459 22.90 11.17	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.4460 28.83 10.51 39.34 0.4460 18.43 10.51 28.94 0.8700 35.81 10.54 46.35 0.8700 26.23 10.54 36.77 2.0180 11.96 10.71 22.67 2.6020 23.76 10.72 34.48 3.4820 14.95 10.72 25.67 3.5260 30.92 10.73 41.65 6.8060 7.85 10.77 18.62 9.4060 19.24 10.82 30.06 16.0459 22.90 11.17 34.07	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV 0.4460 28.83 10.51 39.34 56.95 0.4460 18.43 10.51 28.94 46.95 0.8700 35.81 10.54 46.35 56.00 2.0180 11.96 10.71 22.67 46.00 2.6020 23.76 10.72 34.48 56.00 3.4820 14.95 10.72 25.67 46.00 3.5260 30.92 10.73 41.65 56.00 6.8060 7.85 10.77 18.62 50.00 9.4060 19.24 10.82 30.06 60.00 16.0459 22.90 11.17 34.07 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB 0.4460 28.83 10.51 39.34 56.95 -17.61 0.4460 18.43 10.51 28.94 46.95 -18.01 0.8700 35.81 10.54 46.35 56.00 -9.65 0.8700 26.23 10.54 36.77 46.00 -9.23 2.0180 11.96 10.71 22.67 46.00 -23.33 2.6020 23.76 10.72 34.48 56.00 -21.52 3.4820 14.95 10.72 25.67 46.00 -20.33 3.5260 30.92 10.73 41.65 56.00 -14.35 6.8060 7.85 10.77 18.62 50.00 -31.38 9.4060 19.24 10.82 30.06 60.00 -29.94 16.0459 22.90 11.17 34.07 60.00

7

8

9

1.7700

3.2740

3.4620

6.85

18.95

4.14

10.67

10.72 10.72 17.52

29.67

14.86

46.00 -28.48

56.00 -26.33

46.00 -31.14

AVG

QΡ

AVG

5.2 Radiated emissions (Below 1GHz)

Test Requirement:	15.109, Class B	15.109, Class B						
Test Method:	ANSI C63.4	ANSI C63.4						
	unintentional radiators at a d values:	Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:						
	Frequency of emission	Field stre	ngth @3m	Field str	ength @10m			
Test Limit:	(MHz)	(uV/m)	(dBuV/	(uV/m)	(dBuV/m)			
rest Limit.			m)					
	30 – 88	100	40	30	29.5			
	88 – 216	150	43.5	45	33.1			
	216 – 960	200	46	60	35.6			
	Above 960	500	54	150	43.5			
Procedure:	An initial pre-scan was performed in the chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by BiConiLog antenna with 2 orthogonal polarities. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor							

5.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	24.1 °C
Humidity:	48.7 %
Atmospheric Pressure:	1010 mbar

5.2.2 Test Setup Diagram:

5.2.3 Test Data:

TM1 / Polarization: Horizontal

Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	30.0000	22.52	4.79	27.31	40.00	-12.69	QP
*	55.4147	35.45	-5.66	29.79	40.00	-10.21	QP
	106.3850	24.78	-2.57	22.21	43.50	-21.29	QP
	189.0743	25.07	-7.18	17.89	43.50	-25.61	QP
	386.6338	26.47	-1.14	25.33	46.00	-20.67	QP
	982.6200	22.96	7.01	29.97	54.00	-24.03	QP
		MHz 30.0000 * 55.4147 106.3850 189.0743 386.6338	Mk. Freq. Level MHz dBuV 30.0000 22.52 * 55.4147 35.45 106.3850 24.78 189.0743 25.07 386.6338 26.47	Mk. Freq. Level Factor MHz dBuV dB 30.0000 22.52 4.79 * 55.4147 35.45 -5.66 106.3850 24.78 -2.57 189.0743 25.07 -7.18 386.6338 26.47 -1.14	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 30.0000 22.52 4.79 27.31 * 55.4147 35.45 -5.66 29.79 106.3850 24.78 -2.57 22.21 189.0743 25.07 -7.18 17.89 386.6338 26.47 -1.14 25.33	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m 30.0000 22.52 4.79 27.31 40.00 * 55.4147 35.45 -5.66 29.79 40.00 106.3850 24.78 -2.57 22.21 43.50 189.0743 25.07 -7.18 17.89 43.50 386.6338 26.47 -1.14 25.33 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB 30.0000 22.52 4.79 27.31 40.00 -12.69 * 55.4147 35.45 -5.66 29.79 40.00 -10.21 106.3850 24.78 -2.57 22.21 43.50 -21.29 189.0743 25.07 -7.18 17.89 43.50 -25.61 386.6338 26.47 -1.14 25.33 46.00 -20.67

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	30.7455	23.70	4.50	28.20	40.00	-11.80	QP
2		55.6094	33.17	-5.69	27.48	40.00	-12.52	QP
3		98.1419	25.87	-4.21	21.66	43.50	-21.84	QP
4	2	273.2341	23.37	-3.54	19.83	46.00	-26.17	QP
5	4	473.8347	25.41	0.10	25.51	46.00	-20.49	QP
6	,	982.6200	22.96	7.01	29.97	54.00	-24.03	QP

5.3 Radiated emissions (Above 1GHz)

Test Requirement:	15.109, Class B			
Test Method:	ANSI C63.4			
	Frequency of emission (MHz)	Field streng	th @3m	
Test Limit:		Average (uV/m)	Average (dBuV/m)	Peak (dBuV/m)
	Above 1GHz	500	54	74
Procedure:	An initial pre-scan was performed peak detection mode. For below 10 conducted based on the peak swe antenna with 2 orthogonal polaritie were conducted based on the peal antenna with 2 orthogonal polaritie Remark: Level= Read Level+ Cabl	GHz test, Quase ep graph. The s. For above 10 s sweep graph. s.	si-peak measur EUT was meas GHz test, Avera The EUT was	rements were sured by BiConiL age measuremer measured by Ho

5.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	22.2 °C
Humidity:	54.7 %
Atmospheric Pressure:	1010 mbar

5.3.2 Test Setup Diagram:

Test Report Number: BTF230612R00406

5.3.3 Test Data:

TEST RESULTS

Above 1GHz(1~6GHz) : (Mode 3—worst case)

Erog	Ant. Pol.	Emission Layol/dBu		Limit 3m(dBuV/m)		Over(dB)	
Freq.	AIII. FUI.	Emission Level(dBuV)		, ,		(- /	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
1754.45	V	59.22	40.32	74	54	-14.78	-13.68
2942.65	V	58.34	39.34	74	54	-15.66	-14.66
1867.48	Н	58.14	40.02	74	54	-15.86	-13.98
2883.40	Н	58.11	39.11	74	54	-15.89	-14.89

Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor.

Freq. = Emission frequency in MHz

Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Over= Emission Level - Limit.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --