

RF TEST REPORT

Applicant MeiG Smart Technology Co., Ltd

FCC ID 2APJ4-MT579

Product 4G Mobile WiFi

Brand MEIGLink

Model MT579

Report No. R2402A0143-R4

Issue Date July 1, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2023)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	st Laboratory	
1.1.	Notes of the Test Report	
1.2.	Test Facility	
1.3.	Testing Location	
2. Ge	neral Description of Equipment Under Test	
2.1.	Applicant and Manufacturer Information	
2.2.	General Information	
3. App	olied Standards	6
	st Configuration	
5. Tes	st Case Results	
5.1.	Maximum output power	
5.2.	99% Bandwidth and 6dB Bandwidth	
5.3.	Band Edge	27
5.4.	Power Spectral Density	36
5.5.	Spurious RF Conducted Emissions	61
5.6.	Unwanted Emission	75
5.7.	Conducted Emission	109
6. Ma	in Test Instruments	112
ANNEX	A: The EUT Appearance	113
	B: Test Setup Photos	

Summary of Measurement Results

Number	Test Case	Clause in FCC rules	Verdict
1	Maximum output power	15.247(b)(3)	PASS
2	99% Bandwidth and 6dB Bandwidth	15.247(a)(2) C63.10 6.9	PASS
3	Power spectral density	15.247(e)	PASS
4	Band Edge	15.247(d)	PASS
5	Spurious RF Conducted Emissions	15.247(d)	PASS
6	Unwanted Emissions	15.247(d), 15.205, 15.209	PASS
7	Conducted Emissions	15.207	PASS

Date of Testing: February 23, 2024 ~ April 10, 2024 Date of Sample Received: February 22, 2024

Note: All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

RF Test Report No.: R2402A0143-R4

1. Test Laboratory

1.1. Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3. Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Kain.Xu@cpt.eurofinscn.com

2. General Description of Equipment Under Test

2.1. Applicant and Manufacturer Information

Applicant	MeiG Smart Technology Co., Ltd		
Applicant address	2nd Floor, Office Building, No.5 Lingxia Road, Fenghuang,		
Applicant address	Fuyong Street,Bao'an District,Shenzhen		
Manufacturer	MeiG Smart Technology Co., Ltd		
Marristantina	2nd Floor, Office Building, No.5 Lingxia Road, Fenghuang,		
Manufacturer address	Fuyong Street,Bao'an District,Shenzhen		

2.2. General Information

MT579
R2402A0143/S01
MT579_PCB_V1.00
MT579-SA_4.0.2_EQ100
Battery / AC adapter
Internal Antenna
A permanently attached antenna (meet with the standard FCC
Part 15.203 requirement)
Antenna 0: 0.99 dBi
Antenna 1: 0.88 dBi
NA
Power: 0.99 dBi
PSD: 4.00 dBi
802.11b/g/n(HT20): 2412 ~ 2462 MHz
802.11n(HT40): 2422 ~ 2452 MHz
802.11b: DSSS
802.11g/n: OFDM
15.47dBm
EUT Accessory
Manufacturer: Dongguan Sunun Power Co., Ltd
Model: SA68-050100U
Manufacturer: Shenzhen Aerospace Electronic Co., Ltd.
Model: MG584463
Manufacturer: Zhongshan Tianmao Battery Co Ltd
Model: MG584463
Manufacturer: Shenzhen Gaohangda Technology Co., LTD
Model: /
the applicant to Eurofins TA and the information of the EUT is

declared by the applicant.

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

RF Test Report No.: R2402A0143-R4

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2023) Radio Frequency Devices

ANSI C63.10-2013

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Test Mode	Data Rate			
rest wode	Antenna 0	Antenna 1	MIMO	
802.11b	1 Mbps	1 Mbps	1	
802.11g	6 Mbps	6 Mbps	6 Mbps	
802.11n HT20	MCS0	MCS0	MCS8	
802.11n HT40	MCS0	MCS0	MCS8	

RF Test Report No.: R2402A0143-R4

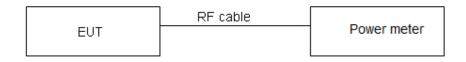
The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 0	Antenna 1	MIMO		
			802.11g		
Maximum output power	0	0	802.11n HT20		
			802.11n HT40		
			802.11g		
6dB Bandwidth		802.11b	802.11n HT20		
			802.11n HT40		
			802.11g		
Band Edge		802.11b	802.11n HT20		
			802.11n HT40		
			802.11g		
Power Spectral Density	0	0	802.11n HT20		
			802.11n HT40		
			802.11g		
Spurious RF Conducted Emissions		802.11b	802.11n HT20		
			802.11n HT40		
Unwanted Emissions	0				
Conducted Emission	802.11b				
Note: "O": test all bands					

5. Test Case Results

5.1. Maximum output power

Ambient Condition


Temperature	Relative humidity
15°C ~ 35°C	20% ~ 80%

Methods of Measurement

During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation.

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits

Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz: 1 Watt."

Average Output Power	≤ 1W (30dBm)
----------------------	--------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

Test Results

SISO Antenna Power Index							
Antenna	Channel	802.11b	802.11g	802.11n HT20	Channel	802.11n HT40	
	CH1	40	48	47	СН3	44	
Antenna 0	CH6	35	47	46	CH6	46	
	CH11	35	45	45	СН9	44	
	CH1	38	42	43	СН3	42	
Antenna 1	СН6	38	42	42	CH6	41	
	CH11	38	42	41	СН9	41	
MIMO Antenna Power Index							
		MIMO	O Antenna Pov	ver Index			
Antenna	Channel	802.11b	802.11g	ver Index 802.11n HT20	Channel	802.11n HT40	
Antenna	Channel CH1			802.11n	Channel CH3		
Antenna Antenna 0			802.11g	802.11n HT20		HT40	
	CH1		802.11g 45	802.11n HT20 44	СНЗ	HT40 44	
	CH1 CH6		802.11g 45 44	802.11n HT20 44 44	CH3	HT40 44 43	
	CH1 CH6 CH11		802.11g 45 44 44	802.11n HT20 44 44 44	CH3 CH6 CH9	HT40 44 43 43	

Test Mode	Duty cycle	Duty cycle correction Factor (dB)			
802.11b	0.98	0.00			
802.11g	0.93	0.31			
802.11n HT20	0.91	0.42			
802.11n HT40	0.88	0.55			
Note: when Duty cycle ≥0.98, Duty cycle correction Factor not required.					

Antenna 0

Test Mode	Carrier frequency (MHz) / Channel	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	2412/CH 1	14.14	14.14	30	PASS
802.11b	2437/CH 6	13.29	13.29	30	PASS
	2462/CH11	13.46	13.46	30	PASS
	2412/CH 1	13.06	13.37	30	PASS
802.11g	2437/CH 6	13.10	13.41	30	PASS
	2462/CH11	13.01	13.32	30	PASS
000.44	2412/CH 1	12.78	13.20	30	PASS
802.11n HT20	2437/CH 6	12.75	13.17	30	PASS
11120	2462/CH11	12.76	13.18	30	PASS
000.44	2422/CH3	11.70	12.25	30	PASS
802.11n HT40	2437/CH6	12.46	13.01	30	PASS
	2452/CH9	12.62	13.17	30	PASS
Note: Average F	Power with duty factor	= Average Power M	easured +Duty cyc	le correction	on factor

Antenna 1

Test Mode	Carrier frequency (MHz) / Channel	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	2412/CH 1	15.36	15.36	30	PASS
802.11b	2437/CH 6	15.16	15.16	30	PASS
	2462/CH11	15.34	15.34	30	PASS
	2412/CH 1	12.83	13.14	30	PASS
802.11g	2437/CH 6	12.77	13.08	30	PASS
	2462/CH11	12.81	13.12	30	PASS
000 44-	2412/CH 1	12.75	13.17	30	PASS
802.11n HT20	2437/CH 6	12.74	13.16	30	PASS
11120	2462/CH11	12.72	13.14	30	PASS
000.44	2422/CH3	12.72	13.27	30	PASS
802.11n HT40	2437/CH6	12.74	13.29	30	PASS
	2452/CH9	12.75	13.30	30	PASS
Note: Average F	Power with duty factor	= Average Power M	easured +Duty cyc	le correction	on factor

RF Test Report No.: R2402A0143-R4

MIMO

		MIN		MIN				
Test Mode	Carrier frequency (MHz) / Channel	Anten Average Power Measured	Average Power with duty factor	Average Power Measured	Average Power with duty factor	Total Power (dBm)	Limit (dBm)	Concl usion
	2412/CH 1	(dBm) 10.52	(dBm) 10.83	(dBm) 12.91	(dBm) 13.22	15.20	30	PASS
802.11g	2437/CH 6	10.52	10.83	12.83	13.14	15.14	30	PASS
	2462/CH11	11.05	11.36	13.04	13.35	15.47	30	PASS
802.11n HT20	2412/CH 1	10.10	10.52	12.65	13.07	14.99	30	PASS
	2437/CH 6	10.69	11.11	13.07	13.49	15.47	30	PASS
	2462/CH11	10.84	11.26	12.77	13.19	15.34	30	PASS
802.11n HT40	2422/CH3	10.24	10.79	12.67	13.22	15.18	30	PASS
	2437/CH6	10.14	10.69	12.87	13.42	15.28	30	PASS
	2452/CH9	10.51	11.06	12.84	13.39	15.39	30	PASS

Note: 1.Average Power with duty factor = Average Power Measured +Duty cycle correction factor

2. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna0 in dBm/10)+10^(Power antenna1 in dBm/10)).

3. According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain.

Directional gain = G_{ANT MAX} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for N_{ANT} ≤ 4;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

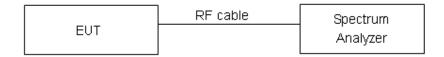
Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less, for 20-MHz channel widths with Nant ≥ 5.

So directional gain = Gant Max + Array Gain =0.99+0=0.99 dBi<6dBi. So the power limit is 30dBm

5.2. 99% Bandwidth and 6dB Bandwidth

Ambient Condition

Temperature	Relative humidity		
15°C ~ 35°C	20% ~ 80%		


Report No.: R2402A0143-R4

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold.

The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value.

Test Setup

Limits

Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz."

minimum 6 dB bandwidth	≥ 500 kHz
------------------------	-----------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

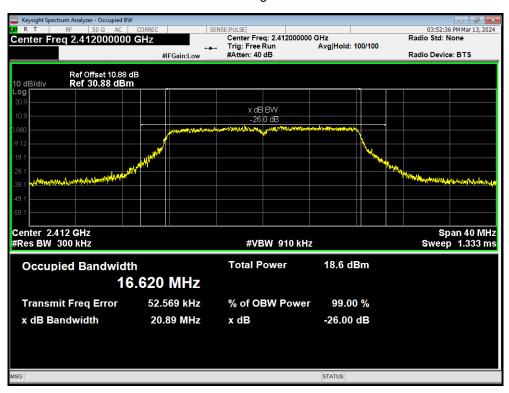
Test Results:

Test Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 6 dB bandwidth (MHz)	Limit (kHz)	Conclusion
802.11b	2412	15.103	9.097	500	PASS
	2437	15.546	10.040	500	PASS
	2462	15.616	10.054	500	PASS
802.11g	2412	16.620	16.156	500	PASS
	2437	16.786	16.357	500	PASS
	2462	16.795	16.316	500	PASS
802.11n HT20	2412	17.772	16.922	500	PASS
	2437	17.864	17.180	500	PASS
	2462	17.918	16.706	500	PASS
	2422	35.893	35.243	500	PASS
802.11n HT40	2437	36.000	35.326	500	PASS
11140	2452	35.836	35.223	500	PASS

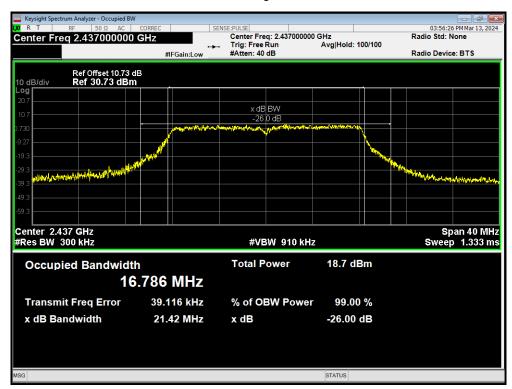
99%bandwidth

OBW 802.11b 2412MHz

OBW 802.11b 2437MHz



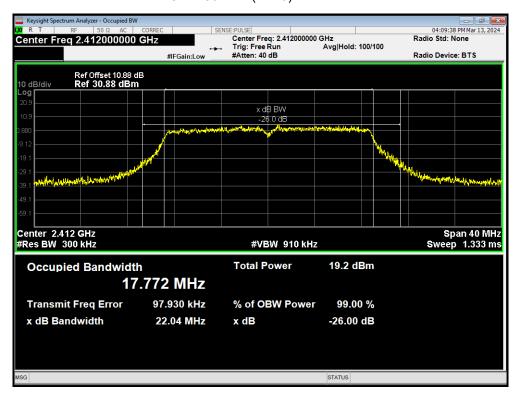
TA-MB-04-005R Page 15 of 114 Eurofins TA Technology (Shanghai) Co., Ltd. This report shall not be reproduced except in full, without the written approval of Eurofins TA Technology (Shanghai) Co., Ltd.


OBW 802.11b 2462MHz

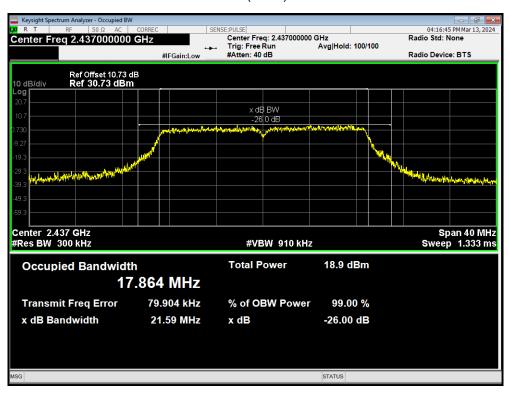
OBW 802.11g 2412MHz

OBW 802.11g 2437MHz

OBW 802.11g 2462MHz



Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

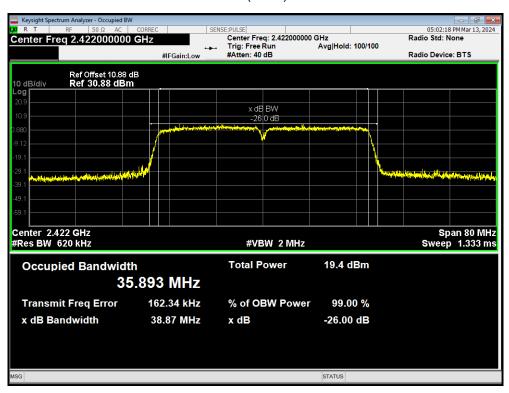
Page 17 of 114

OBW 802.11n(HT20) 2412MHz

OBW 802.11n(HT20) 2437MHz

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 18 of 114

RF Test Report Report No.: R2402A0143-R4

OBW 802.11n(HT20) 2462MHz

OBW 802.11n(HT40) 2422MHz

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 19 of 114

RF Test Report Report No.: R2402A0143-R4

OBW 802.11n(HT40) 2437MHz

OBW 802.11n(HT40) 2452MHz

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

6 dB bandwidth

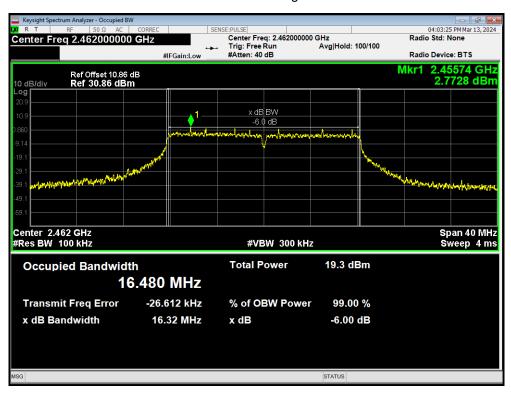
-6dB Bandwidth 802.11b 2412MHz

Report No.: R2402A0143-R4

-6dB Bandwidth 802.11b 2437MHz

-6dB Bandwidth 802.11b 2462MHz

-6dB Bandwidth 802.11g 2412MHz

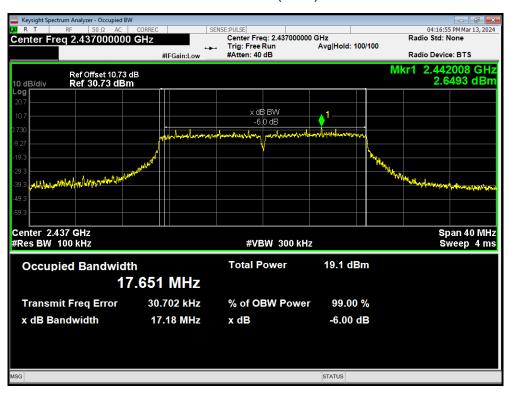


RF Test Report Report No.: R2402A0143-R4

-6dB Bandwidth 802.11g 2437MHz

-6dB Bandwidth 802.11g 2462MHz

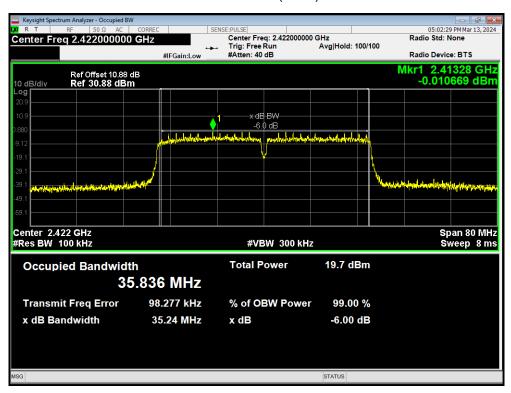
Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 23 of 114

-6dB Bandwidth 802.11n(HT20) 2412MHz

-6dB Bandwidth 802.11n(HT20) 2437MHz

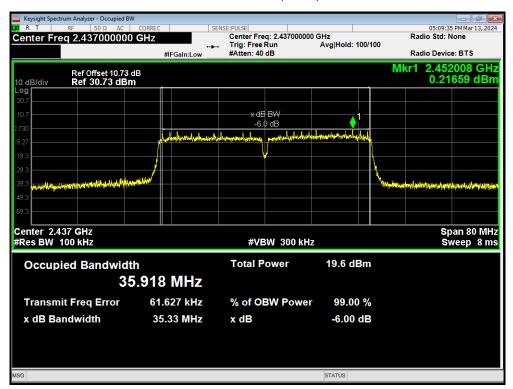


RF Test Report Report No.: R2402A0143-R4

-6dB Bandwidth 802.11n(HT20) 2462MHz

-6dB Bandwidth 802.11n(HT40) 2422MHz

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

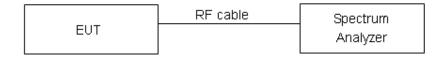
Page 25 of 114

-6dB Bandwidth 802.11n(HT40) 2437MHz

Report No.: R2402A0143-R4

-6dB Bandwidth 802.11n(HT40) 2452MHz

5.3. Band Edge


Ambient Condition

Temperature	Relative humidity		
15°C ~ 35°C	20% ~ 80%		

Method of Measurement

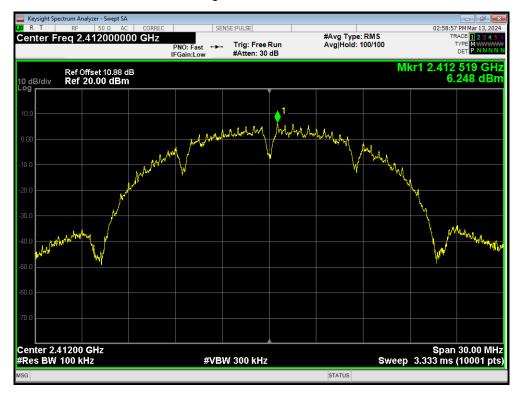
The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages.

Test Setup

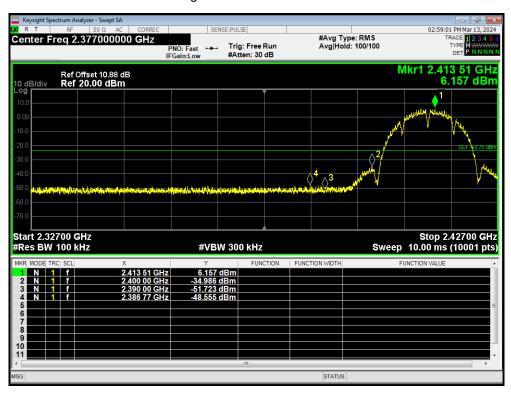
Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

Measurement Uncertainty


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty		
2GHz-3GHz	1.407 dB		

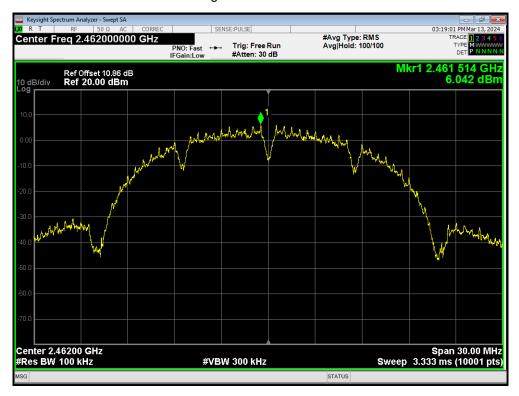

RF Test Report Report No.: R2402A0143-R4

Test Results: PASS

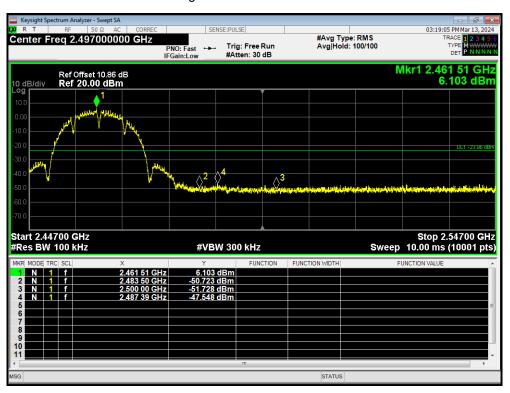
Band Edge 802.11b 2412MHz Ref

Band Edge 802.11b 2412MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 28 of 114


eurofins

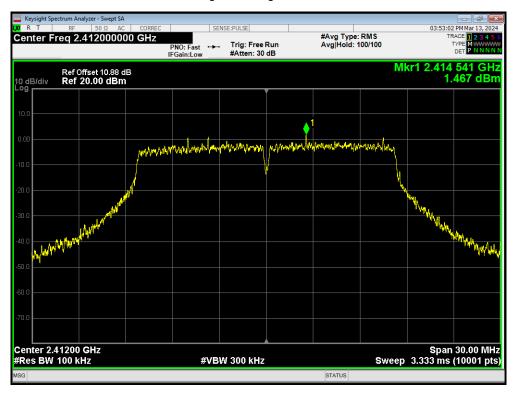
RF Test Report Report No.: R2402A0143-R4

Band Edge 802.11b 2462MHz Ref

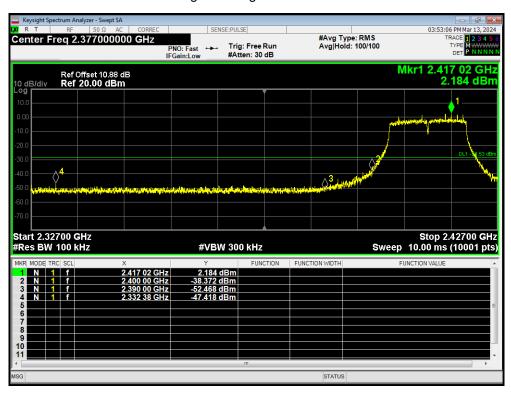
Band Edge 802.11b 2462MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 29 of 114

RF Test Report


eurofins

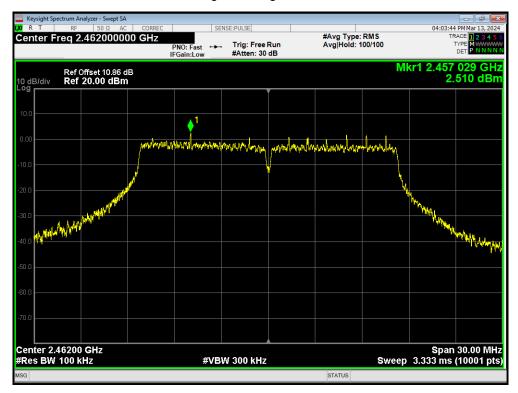
Report No.: R2402A0143-R4

Band Edge 802.11g 2412MHz Ref

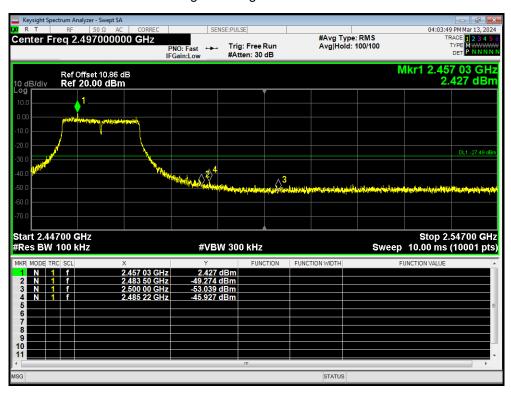
Band Edge 802.11g 2412MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 30 of 114

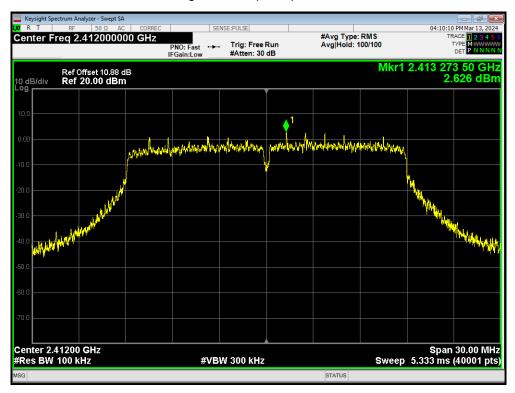
eurofins


RF Test Report

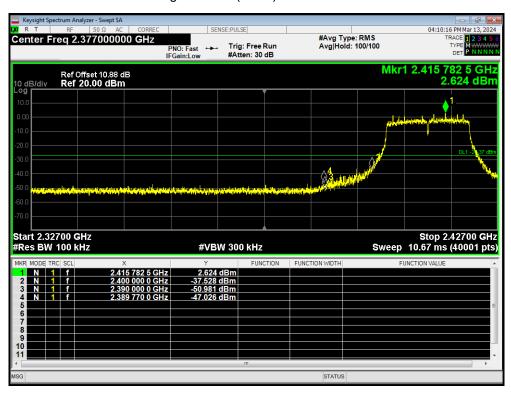
Report No.: R2402A0143-R4

Band Edge 802.11g 2462MHz Ref

Band Edge 802.11g 2462MHz Emission


Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

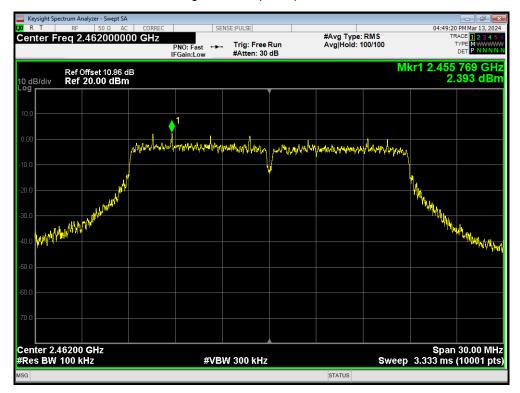

Page 31 of 114

RF Test Report Report No.: R2402A0143-R4

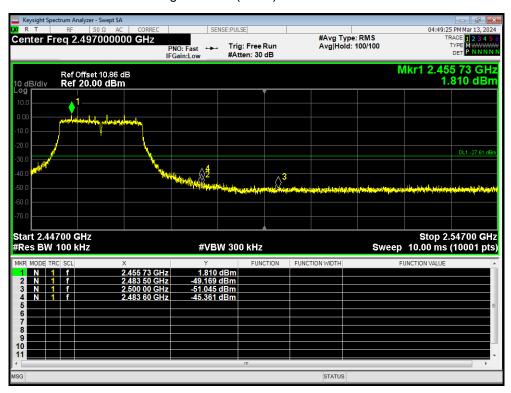
Band Edge 802.11n(HT20) 2412MHz Ref

Band Edge 802.11n(HT20) 2412MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

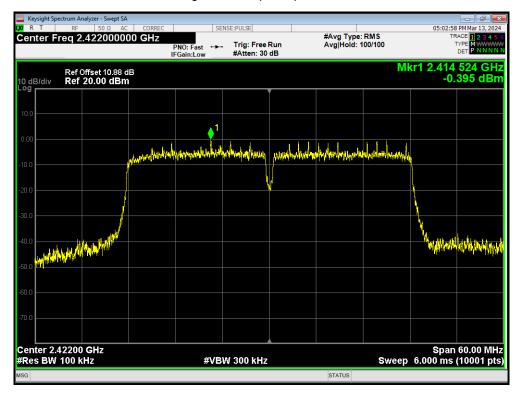
Page 32 of 114


eurofins

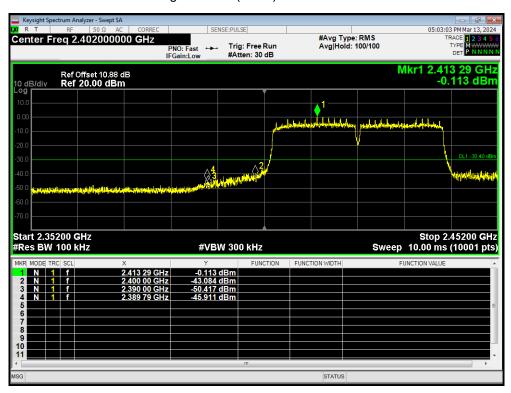
Report No.: R2402A0143-R4

Band Edge 802.11n(HT20) 2462MHz Ref

Band Edge 802.11n(HT20) 2462MHz Emission



Eurofins TA Technology (Shanghai) Co., Ltd.

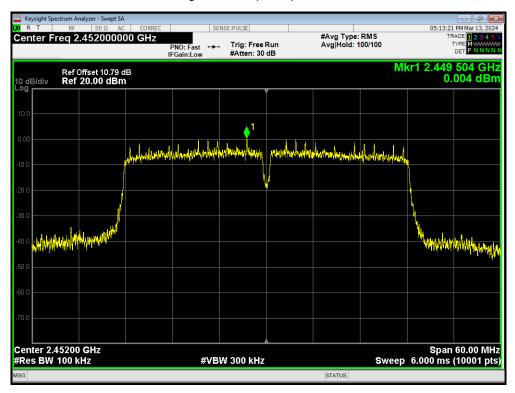

TA-MB-04-005R

Page 33 of 114

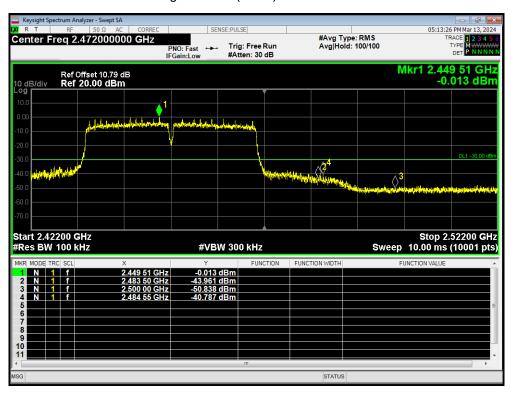
Band Edge 802.11n(HT40) 2422MHz Ref

Band Edge 802.11n(HT40) 2422MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 34 of 114


eurofins

RF Test Report Report No.: R2402A0143-R4

Band Edge 802.11n(HT40) 2452MHz Ref

Band Edge 802.11n(HT40) 2452MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 35 of 114

5.4. Power Spectral Density

Ambient Condition

Temperature	Relative humidity		
15°C ~ 35°C	20% ~ 80%		

Method of Measurement

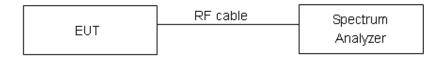
During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. The EUT is max power transmission with proper modulation.

Method AVGPSD-1 was used for this test.

- a) Set instrument center frequency to DTS channel center frequency
- b) Set span to at least 1.5 times the OBW
- c) Set RBW to:3kHz≤RBW≤100kHz
- d) Set VBW ≥ [3x RBW]
- e) Detector=power averaging (rms) or sample detector (when rms not available)
- f) Ensure that the number of measurement points in the sweep ≥ [2 X span/RBW]
- g) Sweep time auto couple
- h) Employ trace averaging (rms) mode over a minimum of 100 traces
- i) Use the peak marker function to determine the maximum amplitude level.
- j) If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

Method AVGPSD-2 was used for this test.

- a) Measure the duty cycle (D)of the transmitter output signal as described in 11.6
- b) Set instrument center frequency to DTS channel center frequency
- c) Set span to at least 1.5 times the OBW
- d) Set RBW to:3kHz≤RBW≤100kHz
- e) Set VBW ≥ [3x RBW]
- f) Detector= power averaging (rms) or sample detector (when rms not available)
- g) Ensure that the number of measurement points in the sweep ≥ [2 X span/RBW]
- h) Sweep time =auto couple
- i) Do not use sweep triggering; allow sweep to "free run"
- j) Employ trace averaging (rms) mode over a minimum of 100 traces
- k) Use the peak marker function to determine the maximum amplitude level


RF Test Report Report Report No.: R2402A0143-R4

I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time

m) If measured value exceeds requirement specified by regulatory agency then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced)

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. "

Limits	≤ 8 dBm / 3kHz
--------	----------------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

RF Test Report No.: R2402A0143-R4

Test Results:

Antenna 0

Test Mode	Carrier frequency (MHz)/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-8.73	-18.73	8	PASS
802.11b	2437/CH 6	-8.81	-18.81	8	PASS
	2462/CH11	-8.57	-18.57	8	PASS
802.11g	2412/CH 1	-11.10	-20.79	8	PASS
	2437/CH 6	-10.73	-20.42	8	PASS
	2462/CH11	-10.69	-20.38	8	PASS
000.44	2412/CH 1	-11.85	-21.43	8	PASS
802.11n HT20	2437/CH 6	-11.05	-20.63	8	PASS
	2462/CH11	-11.10	-20.68	8	PASS
802.11n HT40	2422/CH3	-14.41	-23.86	8	PASS
	2437/CH6	-13.65	-23.10	8	PASS
	2452/CH9	-13.17	-22.62	8	PASS

Note: Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*log10(3/30)

Antenna 1

Test Mode	Carrier frequency (MHz)/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-6.61	-16.61	8	PASS
802.11b	2437/CH 6	-7.01	-17.01	8	PASS
	2462/CH11	-7.17	-17.17	8	PASS
802.11g	2412/CH 1	-11.16	-20.85	8	PASS
	2437/CH 6	-11.14	-20.83	8	PASS
	2462/CH11	-10.51	-20.20	8	PASS
802.11n HT20	2412/CH 1	-11.06	-20.64	8	PASS
	2437/CH 6	-10.72	-20.30	8	PASS
	2462/CH11	-10.99	-20.57	8	PASS
802.11n HT40	2422/CH3	-13.74	-23.19	8	PASS
	2437/CH6	-12.47	-21.92	8	PASS
	2452/CH9	-13.69	-23.14	8	PASS

Note: Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*log10(3/30)

MIMO

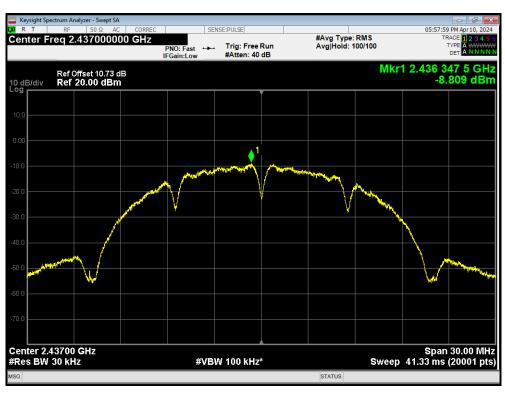
	Power Spectral Density							
Carrier	Antenna 0		Antenna 1					
Test Mode	frequency (MHz)/ Channel	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Read Value (dBm / 30kHz)	Power Spectral Density (dBm / 3kHz)	Total PSD (dBm / 3kHz)	Limit (dBm / 3kHz)	Conclusion
	2412/CH 1	-13.91	-23.60	-11.29	-20.98	-19.09	8	PASS
802.11g	2437/CH 6	-12.93	-22.62	-10.70	-20.39	-18.35	8	PASS
	2462/CH11	-12.03	-21.72	-11.38	-21.07	-18.37	8	PASS
	2412/CH 1	-13.99	-23.57	-11.21	-20.79	-18.95	8	PASS
802.11n HT20	2437/CH 6	-13.05	-22.63	-10.96	-20.54	-18.45	8	PASS
11120	2462/CH11	-12.68	-22.26	-11.46	-21.04	-18.60	8	PASS
	2422/CH3	-14.99	-24.44	-13.39	-22.84	-20.56	8	PASS
802.11n HT40	2437/CH6	-16.20	-25.65	-13.22	-22.67	-20.90	8	PASS
11140	2452/CH9	-16.02	-25.47	-13.79	-23.24	-21.20	8	PASS

Note: 1. Power Spectral Density (dBm/3kHz) =Read Value+Duty cycle correction factor + 10*log10(3 / 30)

Directional gain = G_{ANT MAX} + Array Gain. For PSD measurements on all devices, Array Gain=10log(Nant/Nss)dB, so directional gain=G_{ANT MAX}+Array Gain=0.99+10log(2/1)=4.0<6dBi. So the PSD limit is 8dBm

Report No.: R2402A0143-R4

^{2.} For Total PSD, according to KDB 662911 D01 Multiple Transmitter Output v02r01 2)a),the power spectral density=10log(10^(PSD antenna0 in dBm/10)+10^(PSD antenna1 in dBm/10))


^{3.} According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain.

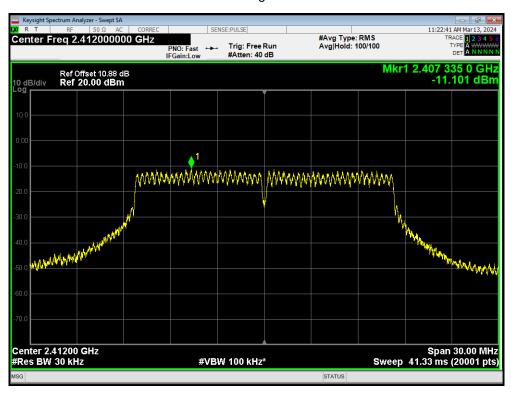
Antenna 0

PSD 802.11b 2412MHz

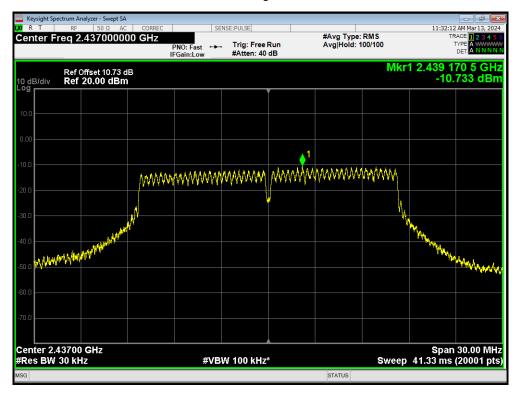
PSD 802.11b 2437MHz

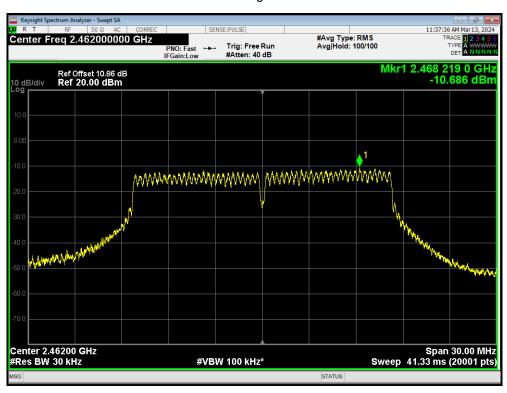


Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

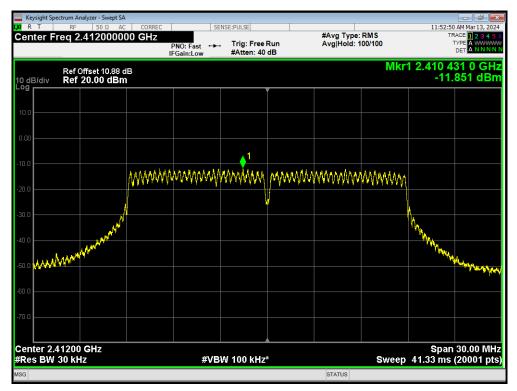
RF Test Report Report No.: R2402A0143-R4


PSD 802.11b 2462MHz

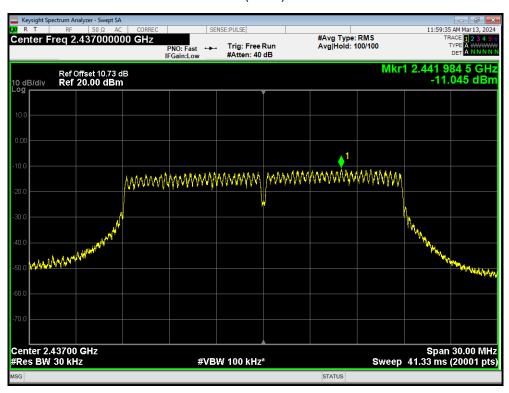

PSD 802.11g 2412MHz

PSD 802.11g 2437MHz

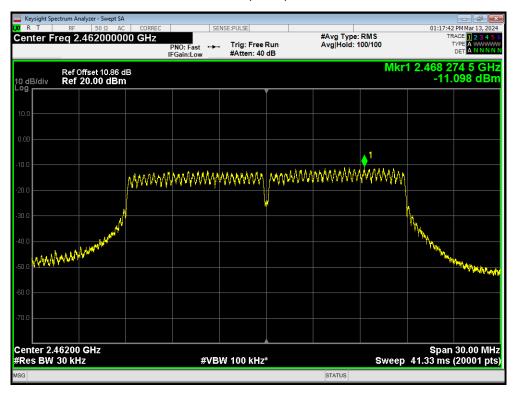
PSD 802.11g 2462MHz

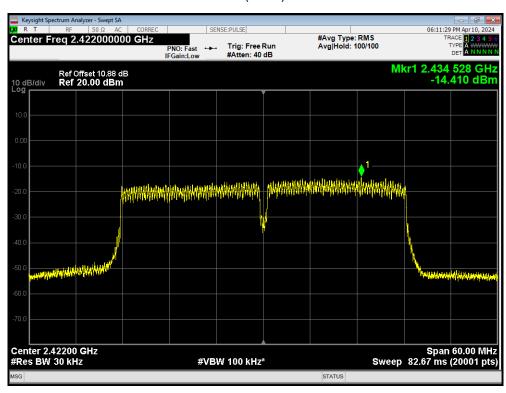


Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 42 of 114


PSD 802.11n(HT20) 2437MHz

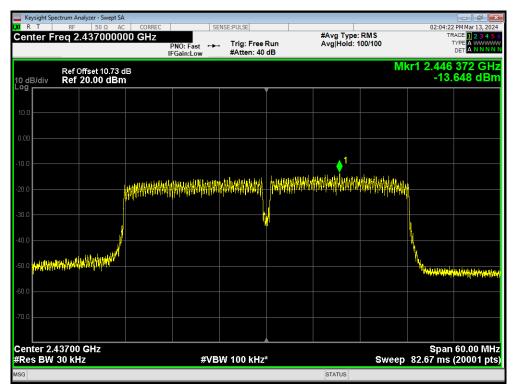

eurofins

Report No.: R2402A0143-R4

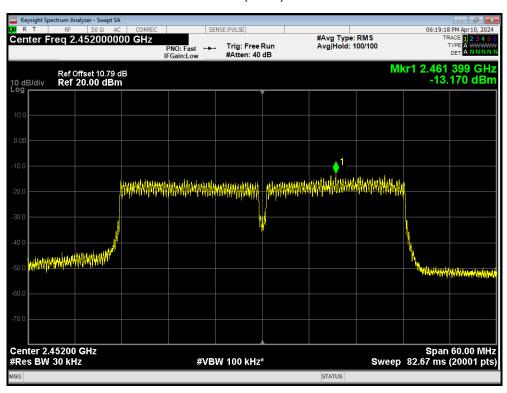
PSD 802.11n(HT20) 2462MHz

PSD 802.11n(HT40) 2422MHz

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 44 of 114


eurofins

Report No.: R2402A0143-R4

PSD 802.11n(HT40) 2452MHz

Eurofins TA Technology (Shanghai) Co., Ltd.

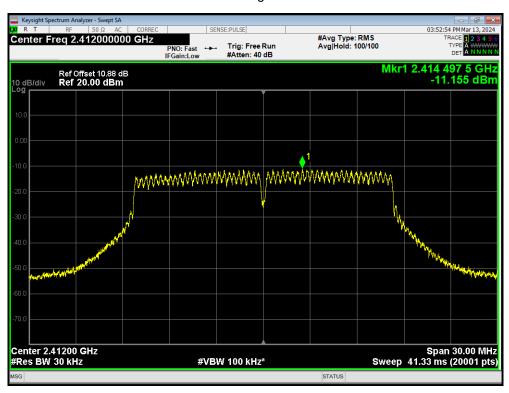
TA-MB-04-005R

Page 45 of 114

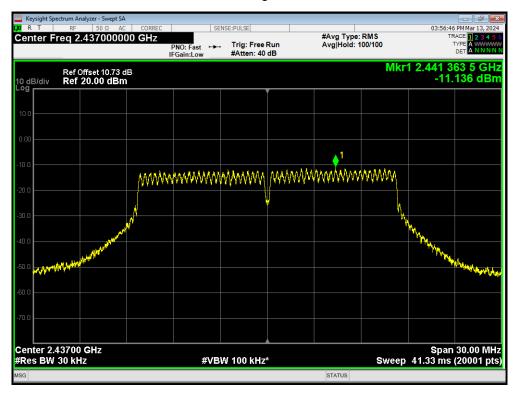
Antenna 1

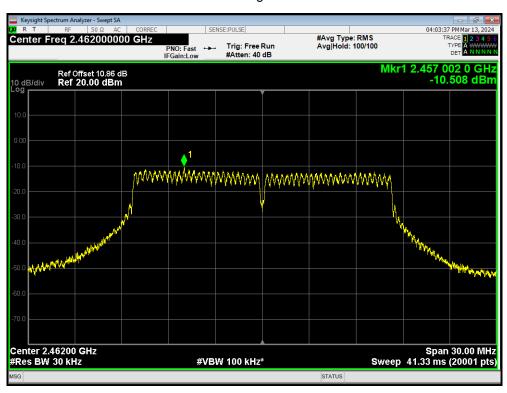
PSD 802.11b 2412MHz

PSD 802.11b 2437MHz


Eurofins TA Technology (Shanghai) Co., Ltd.

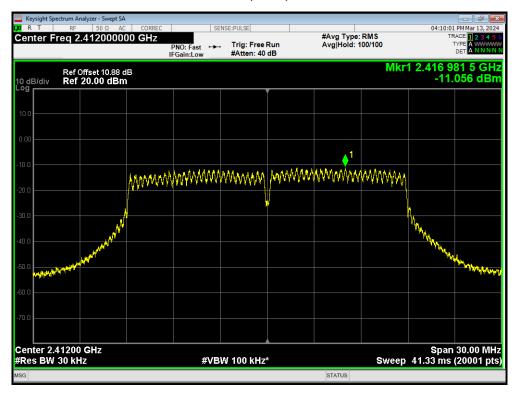
TA-MB-04-005R


PSD 802.11b 2462MHz

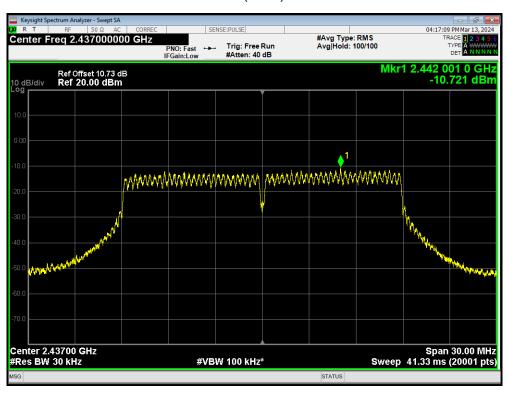

PSD 802.11g 2412MHz

PSD 802.11g 2437MHz

PSD 802.11g 2462MHz



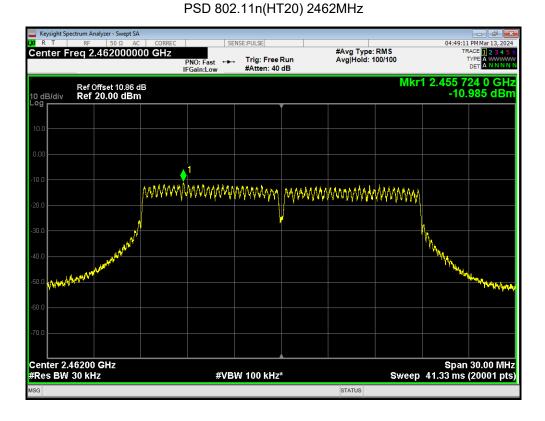
Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

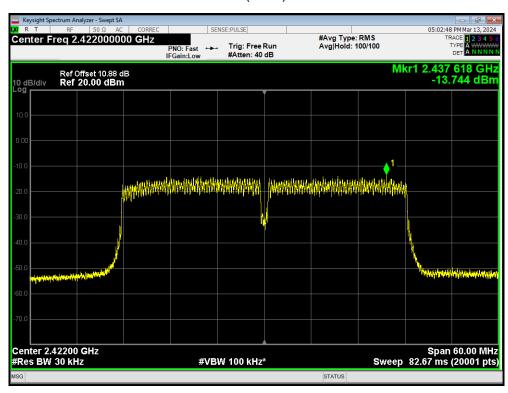
Page 48 of 114

PSD 802.11n(HT20) 2412MHz

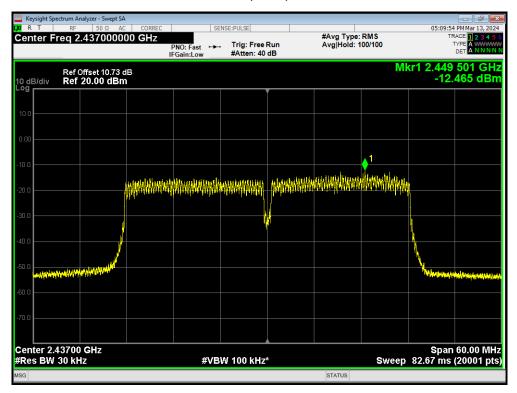
PSD 802.11n(HT20) 2437MHz

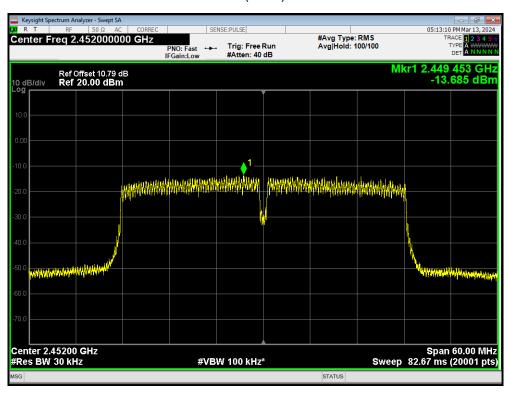


Eurofins TA Technology (Shanghai) Co., Ltd.

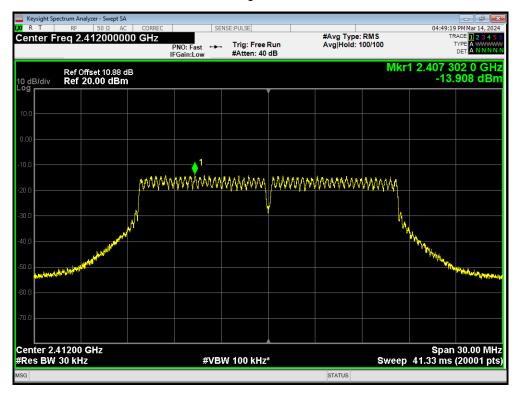

TA-MB-04-005R

Page 49 of 114

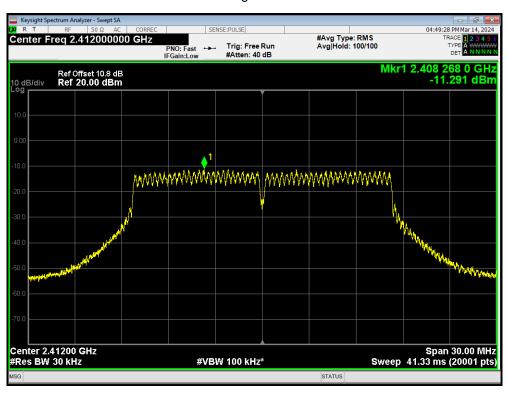



PSD 802.11n(HT40) 2422MHz

PSD 802.11n(HT40) 2437MHz



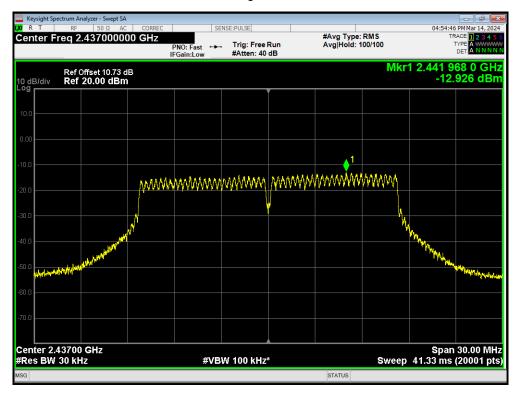
PSD 802.11n(HT40) 2452MHz



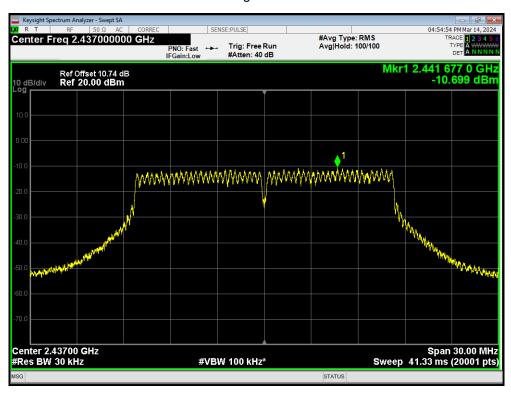
MIMO

PSD 802.11g 2412MHz Ant0

PSD 802.11g 2412MHz Ant1



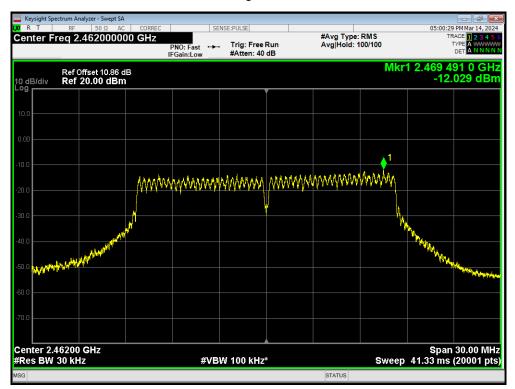
RF Test Report


eurofins

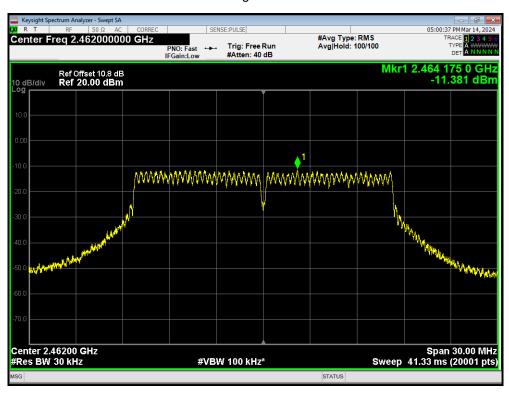
Report No.: R2402A0143-R4

PSD 802.11g 2437MHz Ant0

PSD 802.11g 2437MHz Ant1

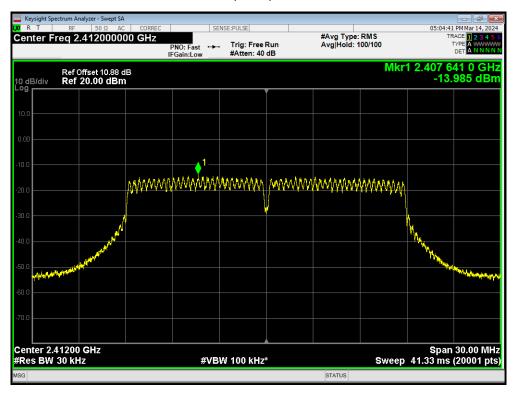

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

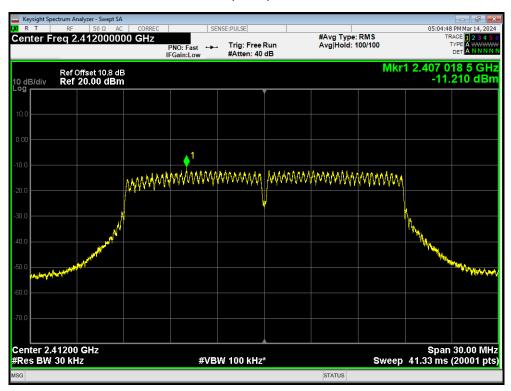

Page 53 of 114

PSD 802.11g 2462MHz Ant0

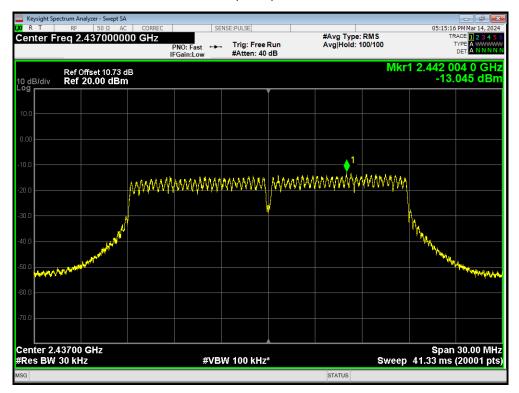
PSD 802.11g 2462MHz Ant1

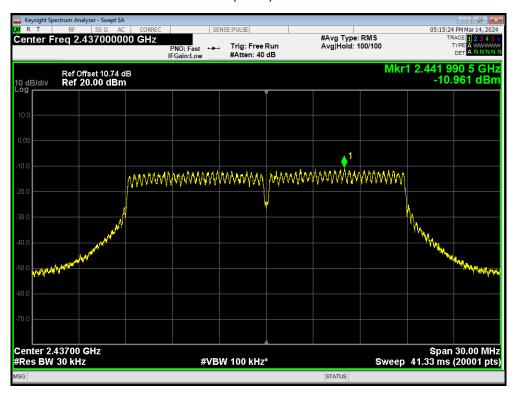

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 54 of 114

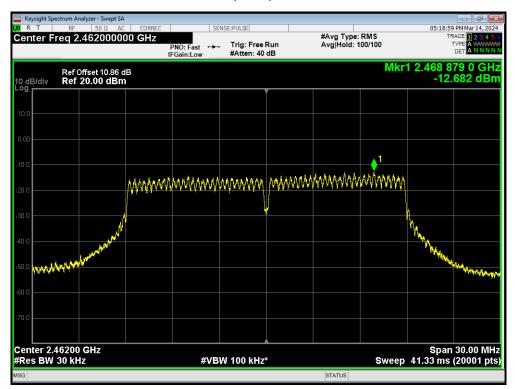
Report Report No.: R2402A0143-R4


PSD 802.11n(HT20) 2412MHz Ant0

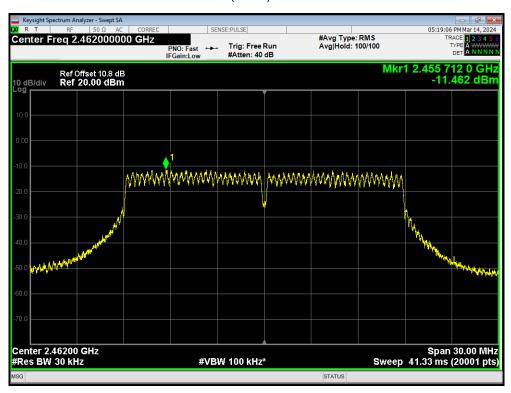

PSD 802.11n(HT20) 2412MHz Ant1

PSD 802.11n(HT20) 2437MHz Ant0

PSD 802.11n(HT20) 2437MHz Ant1



Eurofins TA Technology (Shanghai) Co., Ltd.

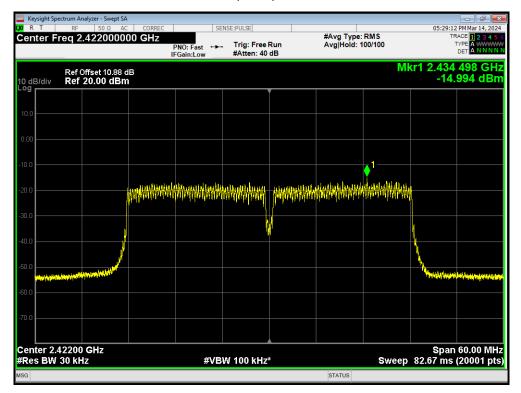

TA-MB-04-005R

Page 56 of 114

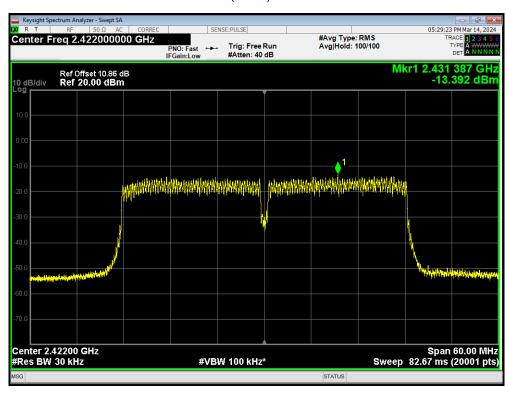
PSD 802.11n(HT20) 2462MHz Ant0

PSD 802.11n(HT20) 2462MHz Ant1

Eurofins TA Technology (Shanghai) Co., Ltd.

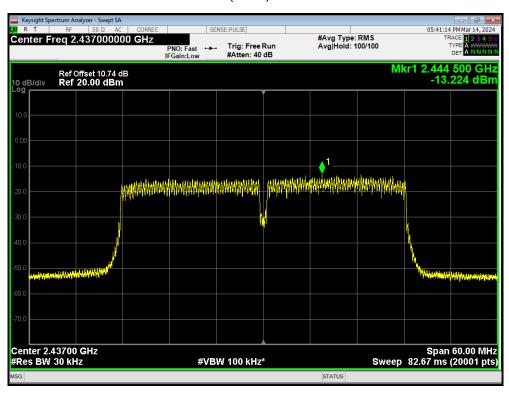

TA-MB-04-005R

Page 57 of 114

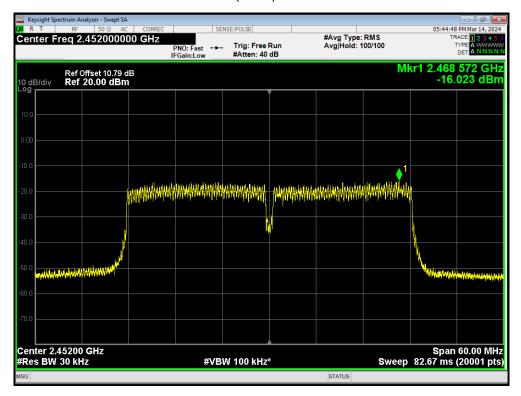


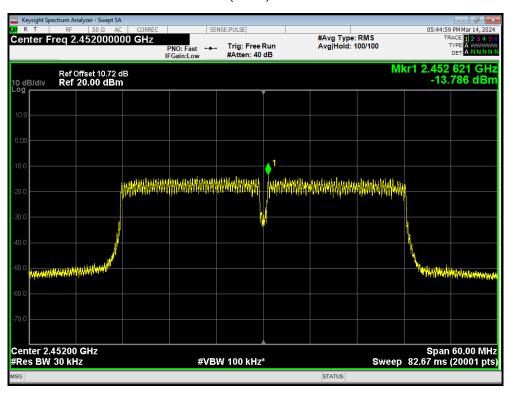
PSD 802.11n(HT40) 2422MHz Ant0

Report No.: R2402A0143-R4


PSD 802.11n(HT40) 2422MHz Ant1

PSD 802.11n(HT40) 2437MHz Ant0


PSD 802.11n(HT40) 2437MHz Ant1


eurofins

Report No.: R2402A0143-R4

PSD 802.11n(HT40) 2452MHz Ant0

PSD 802.11n(HT40) 2452MHz Ant1

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 60 of 114

Report No.: R2402A0143-R4 **RF Test Report**

5.5. Spurious RF Conducted Emissions

Ambient Condition

Temperature	Relative humidity	
15°C ~ 35°C	20% ~ 80%	

Method of Measurement

The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to AUTO.

The test is in transmitting mode.

Test Setup

Limits

Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB."

Test Mode	Carrier frequency (MHz)	Reference value (dBm)	Limit	
	2412	5.95	-24.05	
802.11b	2437	5.97	-24.03	
	2462	2.07	-27.93	
802.11g	2412	-0.32	-30.32	
	2437	0.34	-29.66	
	2462	-0.31	-30.31	
802.11n HT20	2412	5.95	-24.05	
	2437	5.97	-24.03	
	2462	2.07	-27.93	
802.11n HT40	2422	-0.32	-30.32	
	2437	0.34	-29.66	
	2452	-0.31	-30.31	

Eurofins TA Technology (Shanghai) Co., Ltd.

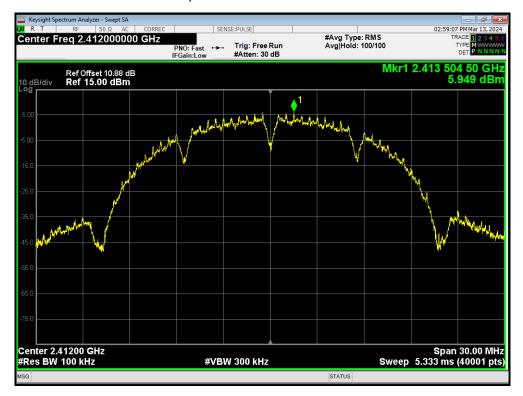
TA-MB-04-005R

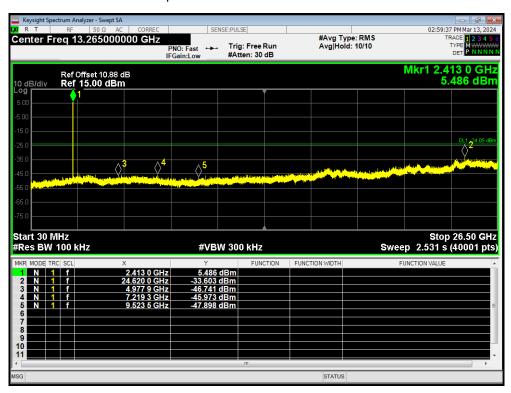
Page 61 of 114

RF Test Report No.: R2402A0143-R4

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.


Frequency	Uncertainty
100kHz-2GHz	0.684 dB
2GHz-26GHz	1.407 dB

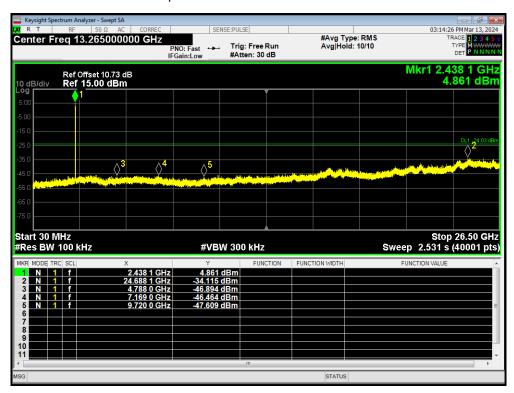

Report No.: R2402A0143-R4 **RF Test Report**

Test Results:

Tx. Spurious 802.11b 2412MHz Ref

Tx. Spurious 802.11b 2412MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

eport Report No.: R2402A0143-R4

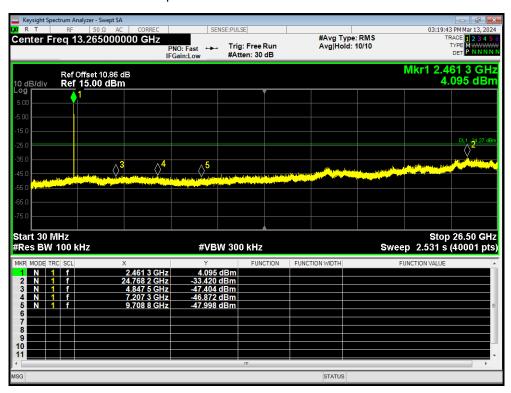
Tx. Spurious 802.11b 2437MHz Ref

Tx. Spurious 802.11b 2437MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 64 of 114

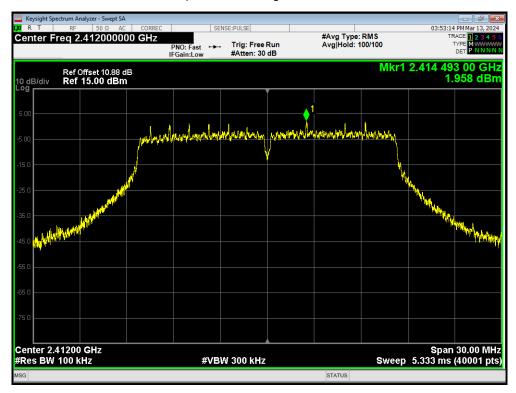


RF Test Report Report No.: R2402A0143-R4

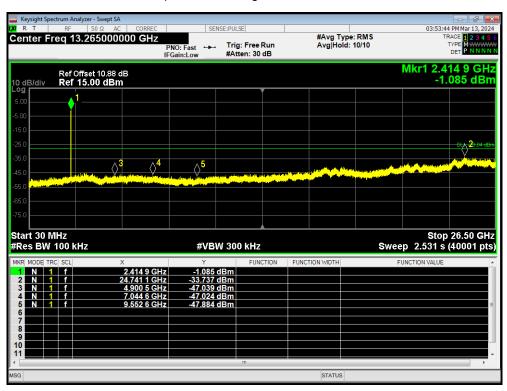
Tx. Spurious 802.11b 2462MHz Ref

Tx. Spurious 802.11b 2462MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

Page 65 of 114


eurofins

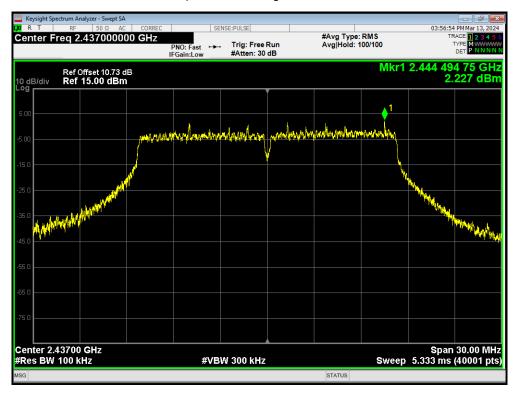
RF Test Report Report No.: R2402A0143-R4

Tx. Spurious 802.11g 2412MHz Ref

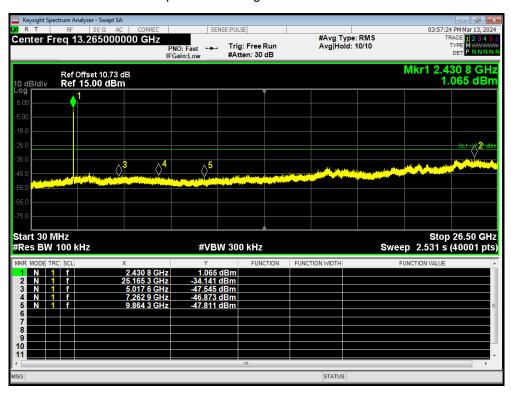
Tx. Spurious 802.11g 2412MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 66 of 114

RF Test Report


eurofins

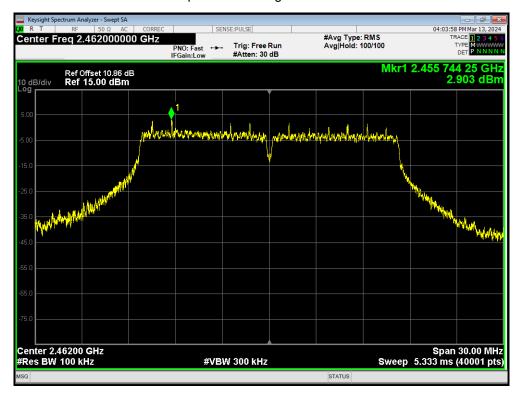
Report No.: R2402A0143-R4

Tx. Spurious 802.11g 2437MHz Ref

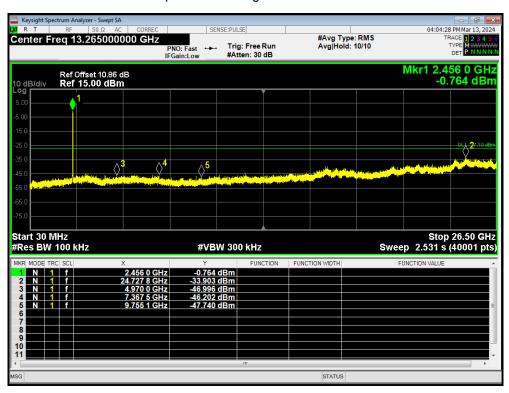
Tx. Spurious 802.11g 2437MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 67 of 114

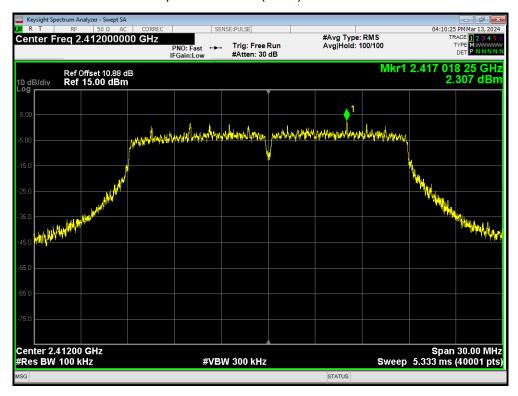
eurofins


RF Test Report

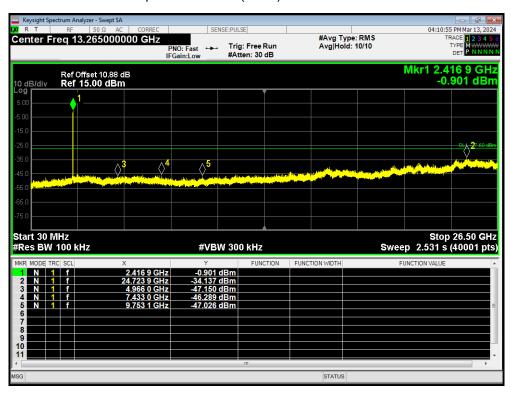
Report No.: R2402A0143-R4

Tx. Spurious 802.11g 2462MHz Ref

Tx. Spurious 802.11g 2462MHz Emission



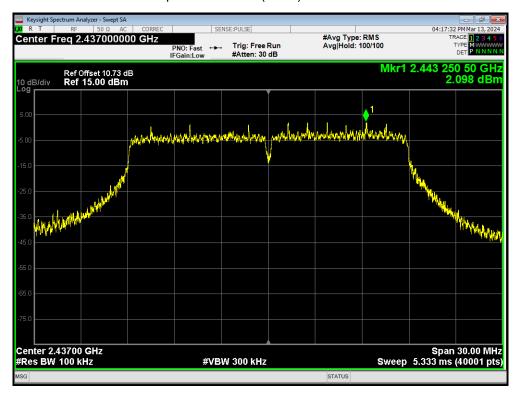
Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

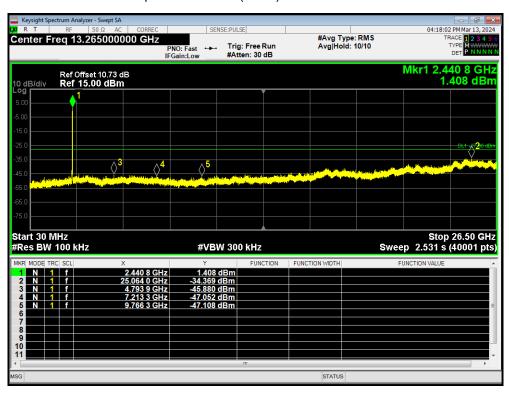
Page 68 of 114

Tx. Spurious 802.11n(HT20) 2412MHz Ref

Tx. Spurious 802.11n(HT20) 2412MHz Emission



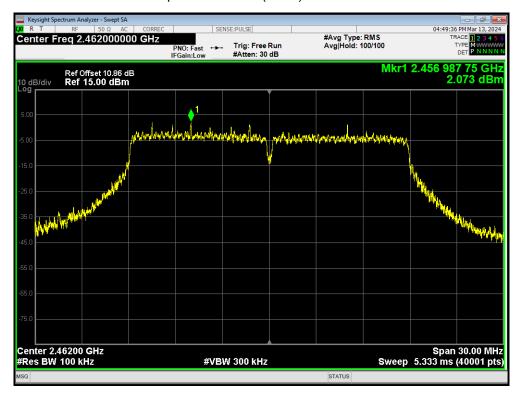
Eurofins TA Technology (Shanghai) Co., Ltd.


TA-MB-04-005R

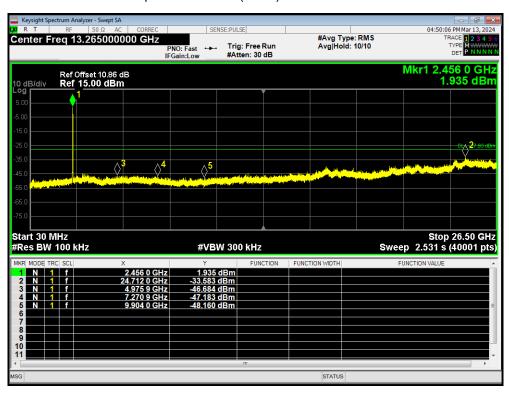
Page 69 of 114

Tx. Spurious 802.11n(HT20) 2437MHz Ref

Tx. Spurious 802.11n(HT20) 2437MHz Emission



Eurofins TA Technology (Shanghai) Co., Ltd.

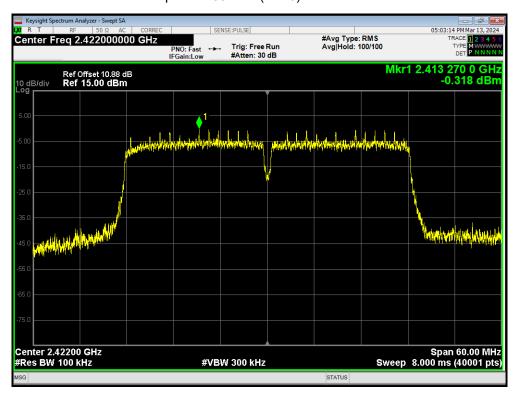

TA-MB-04-005R

Page 70 of 114

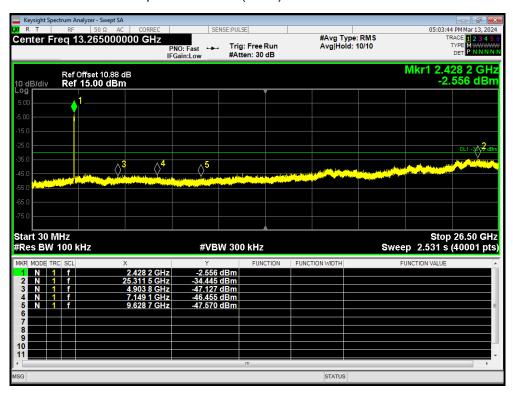
Tx. Spurious 802.11n(HT20) 2462MHz Ref

Tx. Spurious 802.11n(HT20) 2462MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

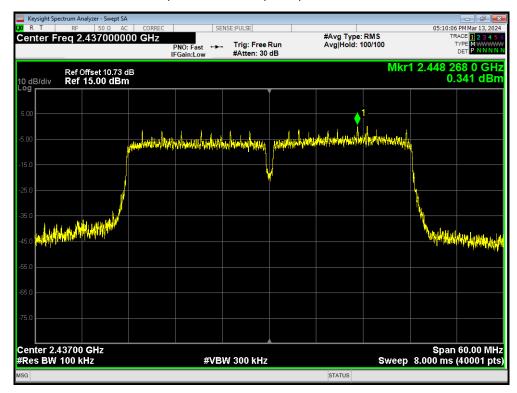

TA-MB-04-005R

Page 71 of 114

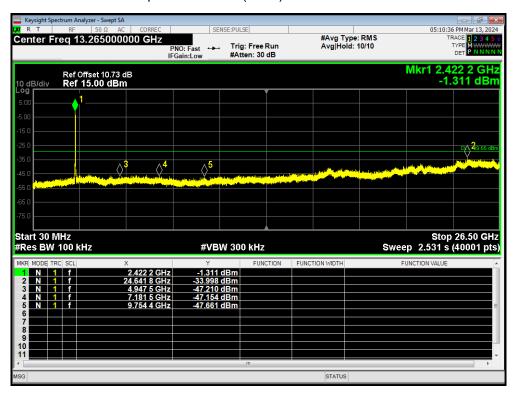


Tx. Spurious 802.11n(HT40) 2422MHz Ref

Report No.: R2402A0143-R4

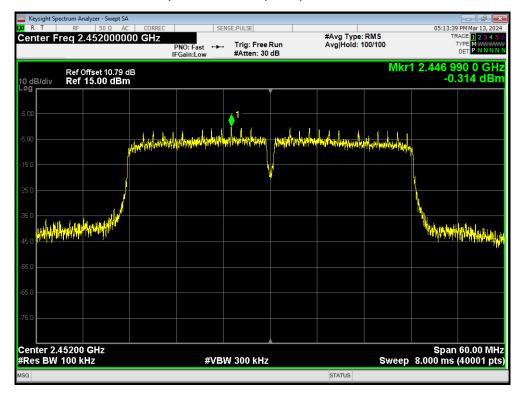


Tx. Spurious 802.11n(HT40) 2422MHz Emission

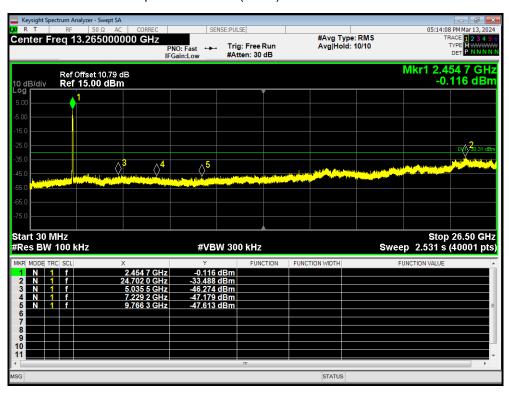


Tx. Spurious 802.11n(HT40) 2437MHz Ref

Tx. Spurious 802.11n(HT40) 2437MHz Emission


Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R


Page 73 of 114

Tx. Spurious 802.11n(HT40) 2452MHz Ref

Tx. Spurious 802.11n(HT40) 2452MHz Emission

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-04-005R

Page 74 of 114