

Report No.: EED32K00238701 Page 1 of 50

TEST REPORT

Product : Razor Silencer Bluetooth

Trade mark : Walker's

Model/Type reference : GWP-SLCR-BT, GWP-SLCRFDECMO-BT,

GWP-SLCRXXXXXX-BT - (Where X= 0-9 or A-Z)

Serial Number : N/A

Report Number : EED32K00238701 **FCC ID** : MV3-GWPSLCRBT

Date of Issue : Sep. 20, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Country Mate Technology Ltd 5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Tom chen (Test Project)

Compiled by:

Approved by

Report Seal

Ware Xin (Project Engineer)

Reviewed by:

Rech lang

Kevin yang (Reviewer)

Sheek Luo (Lab supervisor)

Date:

Sep. 20, 2018

Check No.:3096346882

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 2 of 50

2 Version

Version No.	ion No. Date Description			9
00	Sep. 20, 2018		Original	
	*	12	795	100
		(4,67)		

Page 3 of 50 Report No.: EED32K00238701

3 Test Summary

rest Summary			1	
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

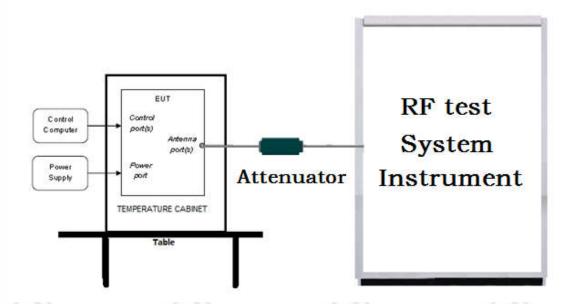
The tested sample(s) and the sample information are provided by the client.

Model No.:GWP-SLCR-BT, GWP-SLCRFDECMO-BT, GWP-SLCRXXXXXX-BT - (Where X= 0-9 or A-Z) Only the left Ear buds was tested, the model is GWP-SLCR-BT, since Their electrical circuit design, layout, components used and internal wiring are identical, Only the Color and enclosure is different.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

4 Content

1 COVER PAGE				•••••		1
2 VERSION	•••••	•••••		•••••	•••••	2
3 TEST SUMMARY	′	•••••	•••••	•••••	•••••	3
4 CONTENT			•••••		•••••	4
5 TEST REQUIRE	ЛЕNТ		•••••			5
5.1 TEST SETUP 5.1.1 For Con 5.1.2 For Rad 5.1.3 For Con 5.2 TEST ENVIRO 5.3 TEST CONDIT 6 GENERAL INFOR 6.1 CLIENT INFOR 6.2 GENERAL DES 6.3 PRODUCT SPI 6.4 DESCRIPTION 6.5 TEST LOCATION 6.6 DEVIATION FR 6.7 ABNORMALITII 6.8 OTHER INFOR	ducted test setup	tup)			
	T					
	AL REQUIREMENTS					
Appendix A): (Appendix B): (Appendix C): Appendix D): Appendix E): (Appendix F): (Appendix G): Appendix G): Appendix H):	SodB Occupied Bandwid Conducted Peak Outpu Band-edge for RF Conducted Spurious Power Spectral Density Antenna Requirement AC Power Line Conducted Bands aroun addited Spurious Emis	tht Powerducted Emissions Emissionstted Emissiontted Emissiond	quency (Radia	ated)		
PHOTOGRAPHS C	F TEST SETUP		•••••	•••••	•••••	40
PHOTOGRAPHS (F EUT CONSTRUCTION	ONAL DETAILS	•••••	•••••	•••••	43



Report No.: EED32K00238701 Page 5 of 50

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

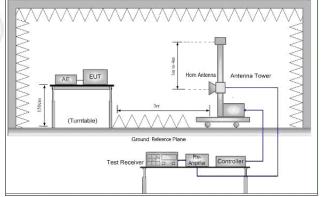
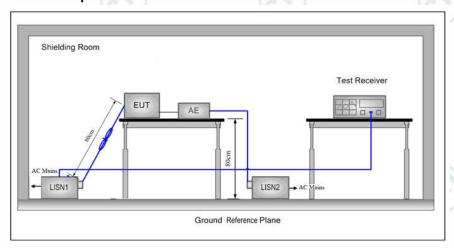
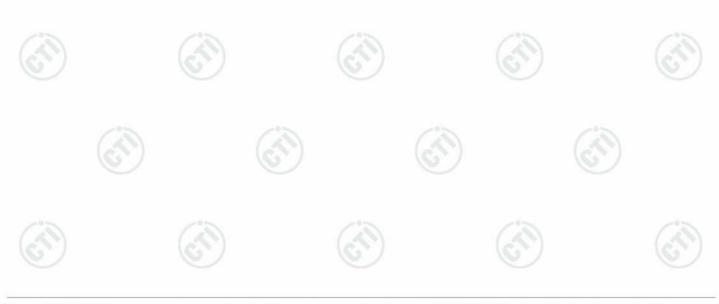



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:		(0)
Temperature:	23.4 °C	
Humidity:	64 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Toot Mode	Tx/Rx	RF Channel			
Test Mode		Low(L)	Middle(M)	High(H)	
GFSK	2402MHz ~2480MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402WH2 ~2460WH2	2402MHz	2440MHz	2480MHz	
TX mode:	The EUT transmitted the continuo channel(s)	us modulation tes	t signal at the sp	pecific	

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

6 General Information

6.1 Client Information

Applicant:	Country Mate Technology Ltd
Address of Applicant:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Manufacturer:	Country Mate Technology Ltd
Address of Manufacturer:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street, Kwun Tong, Kln, Hong Kong
Factory:	Concord Electronic (Huizhou) Ltd.
Address of Factory:	21, Ping An Rd, Shuikou Street, Hui Cheng District, Huizhou City, Guangdong Province, China

6.2 General Description of EUT

Product Name:	Razor Silencer Bluetooth
Model No.(EUT):	GWP-SLCR-BT, GWP-SLCRFDECMO-BT, GWP-SLCRXXXXXX-BT - (Where X= 0-9 or A-Z)
Test Model No.:	GWP-SLCR-BT
Trade mark:	Walker's
EUT Supports Radios application:	BT4.2 BT Dual mode, 2402-2480MHz
Power Supply:	Battery: 3.7V, 85mAh
Sample Received Date:	Aug. 30, 2018
Sample tested Date:	Aug. 30, 2018 to Sep. 17, 2018

6.3 Product Specification subjective to this standard

2402MHz~2480MHz		
4.0		
DSSS		
GFSK	1:5	
40	(6.53)	
V0.5(manufacturer declare)		
V0.3(manufacturer declare)		
N/A		
CSR BlueTest3(manufacturer declare)		(0.)
Type: PCB Antenna Gain: 0.8dBi		
DC 5V	13	
	4.0 DSSS GFSK 40 V0.5(manufacturer declare) V0.3(manufacturer declare) N/A CSR BlueTest3(manufacturer declare) Type: PCB Antenna Gain: 0.8dBi	4.0 DSSS GFSK 40 V0.5(manufacturer declare) V0.3(manufacturer declare) N/A CSR BlueTest3(manufacturer declare) Type: PCB Antenna Gain: 0.8dBi

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00238701 Page 8 of 50

Operation	requency eac		1	(C)	/	(6.	/
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1.4	ociated nent name	Manufacture	model	serial number	Supplied by	Type
AE1	adapter	Shenzhen yiboyuan technology company	QC01	N/A	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	ltem	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
2	Dadieted Courieus emission fact	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction oniceion	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32K00238701 Page 10 of 50

7 Equipment List

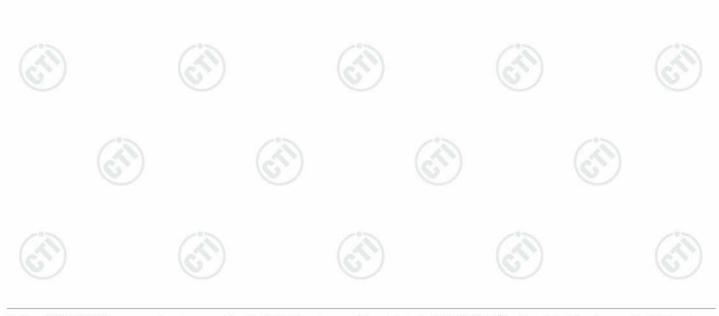
		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(2,1)	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	04-11-2018	04-10-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019

	Co	nducted distur	pance Test		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Temperature/ Humidity Indicator	Defu			07-02-2018	07-01-2019
LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019
ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019

(i)

Report No. : EED32K00238701 Page 11 of 50

		Semi/full-anech	Serial	Cal. date	Cal. Due date			
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy			
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019			
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019			
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019			
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021			
Double ridge horn antenna	A.H.SYSTEM S	SAS-574	6042	06-05-2018	06-04-2021			
Pre-amplifier	A.H.SYSTEM S	PAP-1840-60	6041	06-05-2018	06-04-2021			
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019			
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019			
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019			
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019			
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019			
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019			
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019			
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019			
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018 01-10-2018	01-09-2019			
Cable line Communication test set	Fulai(3M) R&S	SF106 CMW500	5217/6A 104466	01-10-2018	01-09-2019 02-04-2019			
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019			
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019			

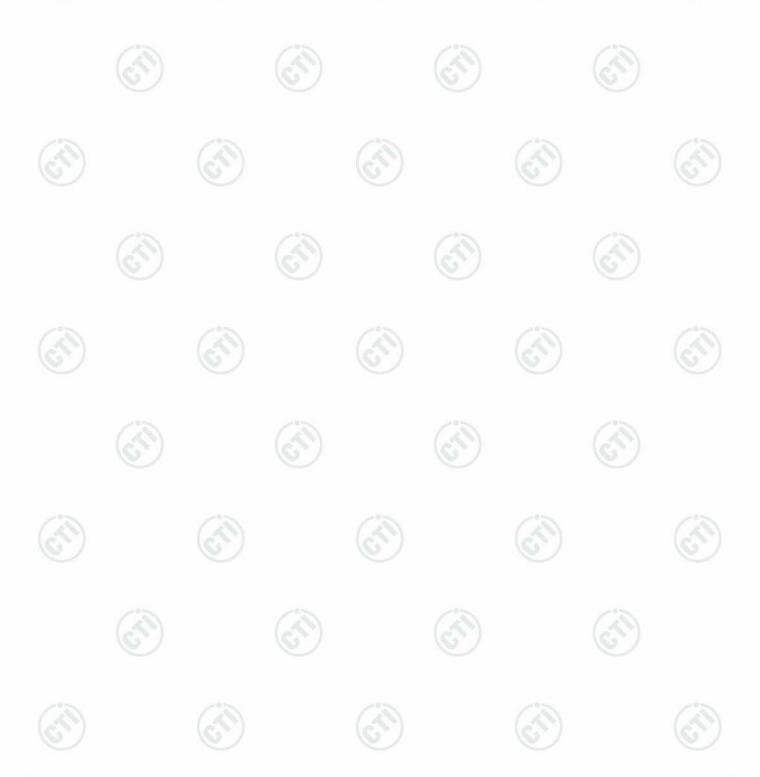

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

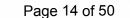
Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	Spectral Density PASS	
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	K ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)



Appendix A): 6dB Occupied Bandwidth

Test Result


Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict	Remark
BLE	LCH	0.6887	1.0443	PASS	
BLE	MCH	0.6823	1.0487	PASS	Peak
BLE	НСН	0.6902	1.0475	PASS	detector

Page 13 of 50

Test Graphs

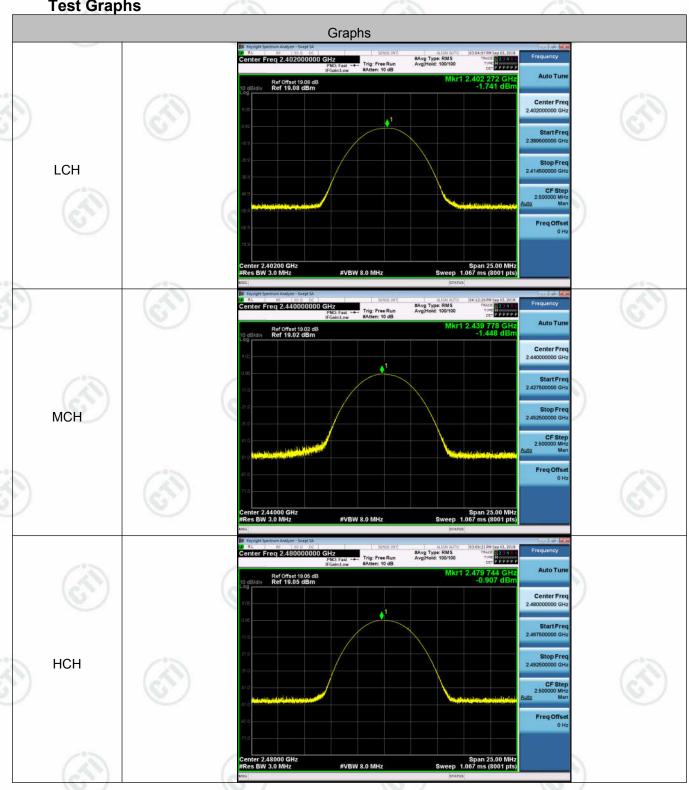
Report No.: EED32K00238701

Report No. : EED32K00238701 Page 15 of 50

Appendix B): Conducted Peak Output Power

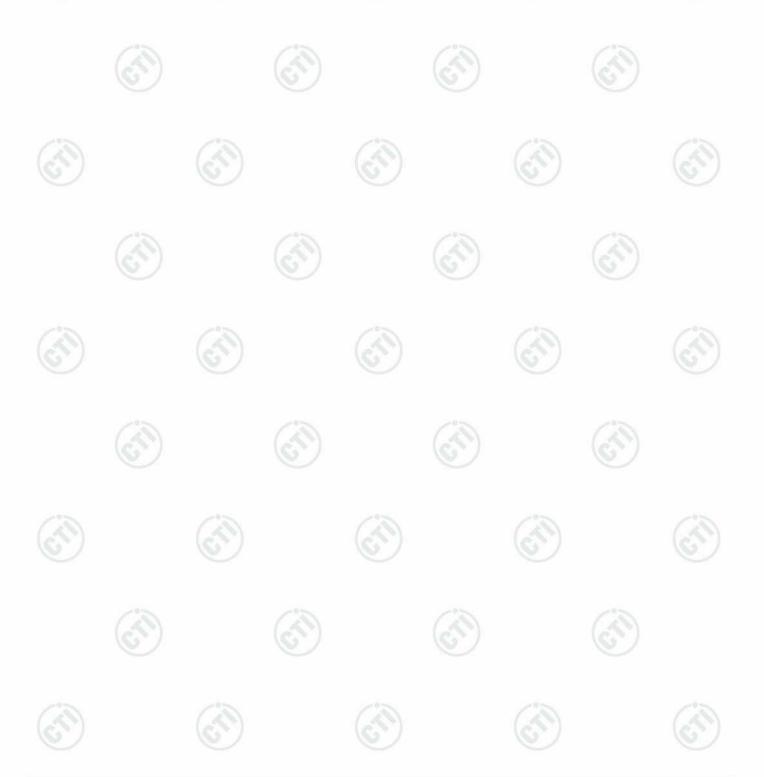
Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.741	PASS
BLE	MCH	-1.448	PASS
BLE	НСН	-0.907	PASS



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Graphs



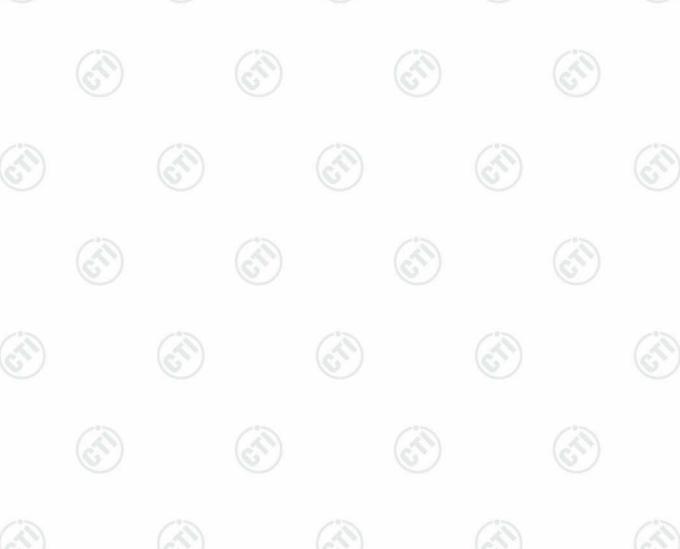
Appendix C): Band-edge for RF Conducted Emissions

Result Table

	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict	
į	BLE	LCH	-2.043	-61.151	-22.04	PASS	
7	BLE	нсн	-1.076	-58.437	-21.08	PASS	

Test Graphs

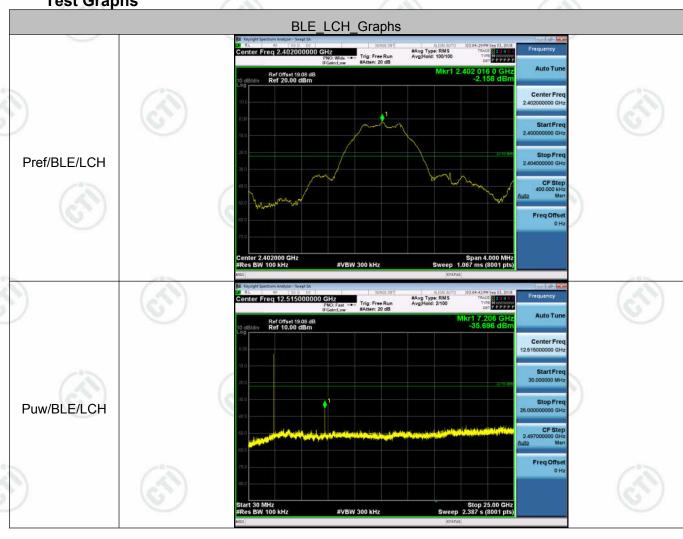
Report No.: EED32K00238701



Appendix D): RF Conducted Spurious Emissions

Result Table

5,500									
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict					
BLE	LCH	-2.158	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	MCH	-1.837	<limit< td=""><td>PASS</td></limit<>	PASS					
BLE	нсн	-1.242	<limit< td=""><td>PASS</td></limit<>	PASS					



Report No.: EED32K00238701 Page 20 of 50

Test Graphs

Page 21 of 50

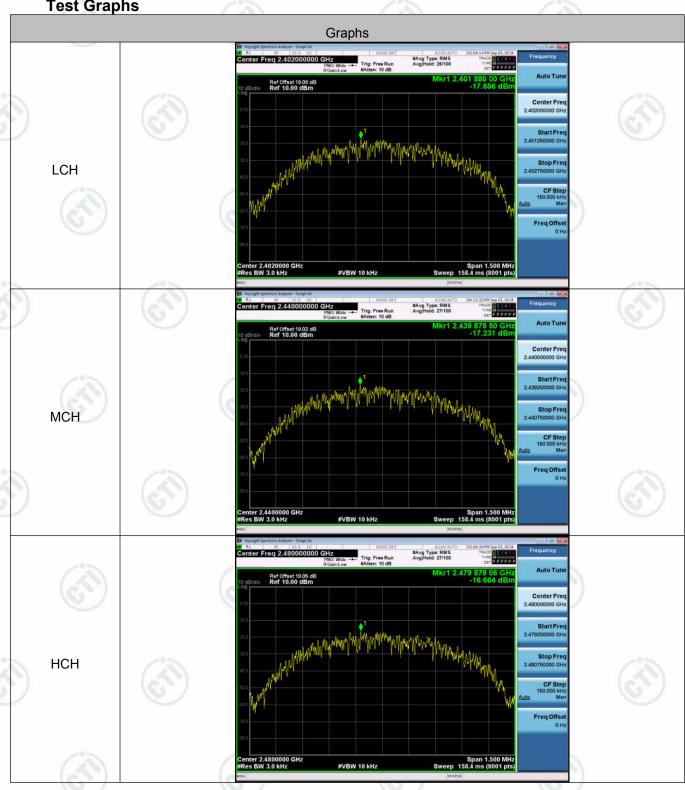


Page 23 of 50

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD[dBm/3kHz]	Limit [dBm/3kHz]	Verdict
		<u> </u>	Zillik [dDill/Okt12]	
BLE	LCH	-17.656	8	PASS
BLE	MCH	-17.231	8	PASS
BLE	нсн	-16.664	8	PASS



Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Test Graphs

Report No. : EED32K00238701 Page 25 of 50

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.8dBi.

Report No.: EED32K00238701 Page 26 of 50

Appendix G): AC Power Line Conducted Emission

Test Procedure: Test frequency range :150KHz-30MHz

- 1)The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

[Limit (dBµV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

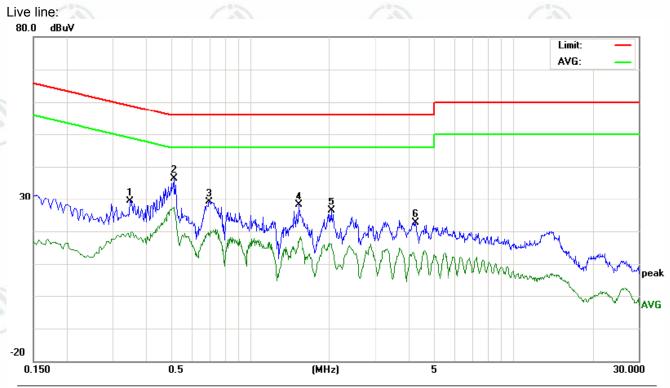
^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

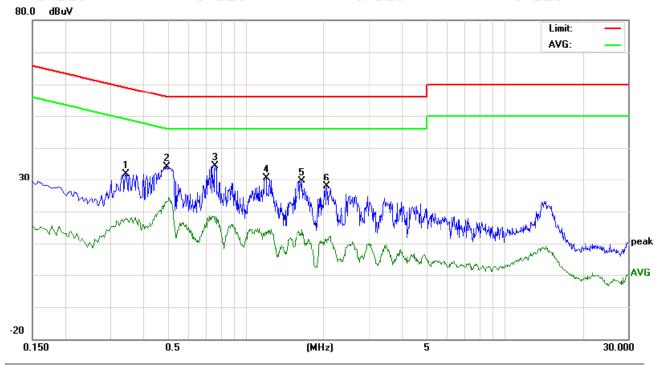
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Page 27 of 50

No.	Reading_Le lo. Freq. (dBuV)				Reading_Level req. (dBuV)		Correct Factor	M	leasurem (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment		
1	0.3481	19.68	16.38	8.27	9.77	29.45	26.15	18.04	59.01	49.01	-32.86	-30.97	Р			
2	0.5121	26.67	23.22	17.64	9.71	36.38	32.93	27.35	56.00	46.00	-23.07	-18.65	Р			
3	0.6965	19.42	16.74	9.55	9.75	29.17	26.49	19.30	56.00	46.00	-29.51	-26.70	Р			
4	1.5264	18.46	15.46	7.01	9.72	28.18	25.18	16.73	56.00	46.00	-30.82	-29.27	Р			
5	2.0325	16.76	12.54	6.38	9.72	26.48	22.26	16.10	56.00	46.00	-33.74	-29.90	Р			
6	4.2454	12.99	9.69	1.37	9.64	22.63	19.33	11.01	56.00	46.00	-36.67	-34.99	Р			



Neutral line:

No.	Freq.	Reading_Level (dBuV)			Correct Factor	M	leasuren (dBuV)		Lin (dB			rgin fB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.3441	19.53	16.33	5.84	9.77	29.30	26.10	15.61	59.10	49.10	-33.00	-33.49	Р	
2	0.4964	24.46	21.58	13.42	9.71	34.17	31.29	23.13	56.06	46.06	-24.77	-22.93	Р	
3	0.7586	24.75	21.47	6.96	9.74	34.49	31.21	16.70	56.00	46.00	-24.79	-29.30	Р	
4	1.1962	20.89	17.65	3.20	9.72	30.61	27.37	12.92	56.00	46.00	-28.63	-33.08	Р	
5	1.6531	19.94	16.32	4.64	9.72	29.66	26.04	14.36	56.00	46.00	-29.96	-31.64	Р	
6	2.0543	18.17	15.41	0.76	9.72	27.89	25.13	10.48	56.00	46.00	-30.87	-35.52	Р	

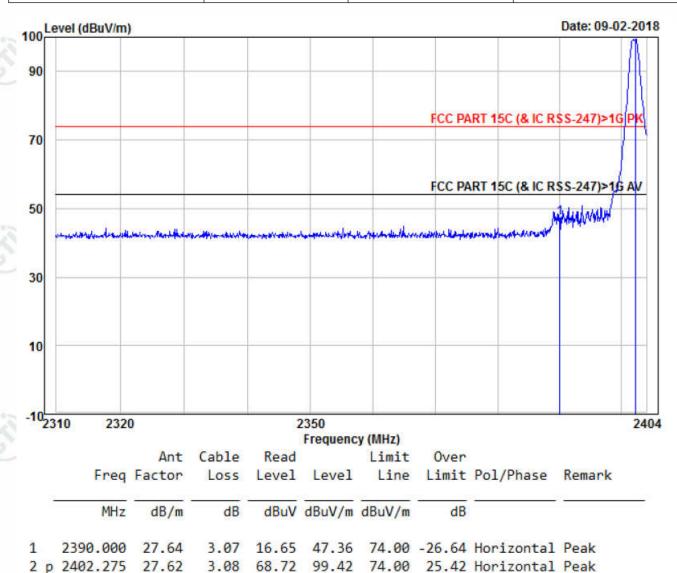
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00238701 Page 29 of 50

Appendix H): Restricted bands around fundamental frequency (Radiated)

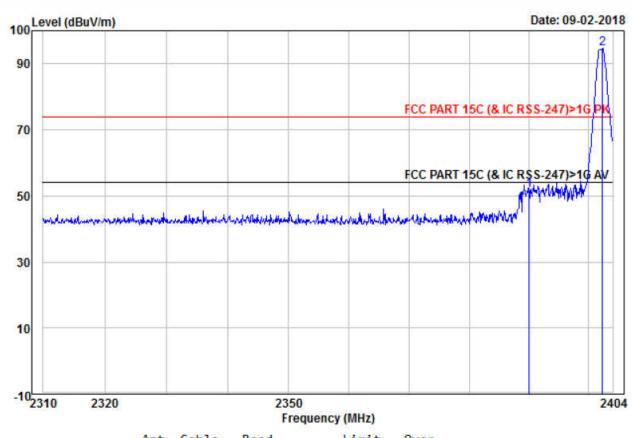
(Radiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	:
		Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proce The EUT was placed at a 3 meter semi-anech determine the position of The EUT was set 3 mas mounted on the top The antenna height determine the maximum polarizations of the anten For each suspected the antenna was tuned to turned from 0 degrees to The test-receiver system Bandwidth with Maximum Place a marker at the frequency to show comp	dure as below: d on the top of a resolution of a variable-height varied from one value of the field emission, the EUTO heights from 1 mm 360 degrees to fistem was set to Perm Hold Mode. e end of the restricted	otating table able was rotion. Ithe interfer the antenna meter to footstrength. But the meas I was arranged the maxeak Detect	e 0.8 meter tated 360 of ence-recei tower. our meters oth horizon surement. aged to its neters and timum read Function a	rs above the of degrees to degrees to degrees to degrees to degrees to degree the ground above the ground state and vertice worst case are the rotatable ding. Ind Specified the transmit	, which was
	Save the spectrum analy and highest channel Above 1GHz test proce	zer plot. Repeat f	or each pov	wer and mo	odulation for l	lowes
	Save the spectrum analy and highest channel	edure as below: bove is the test site or change form tained table is 1.5 met be lowest channel, irrements are performed the X axis p	e, change fible 0.8 meter). the Highestermed in X, positioning v	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v	Anechoic Ch neter(Above openitioning for worse case.	ambe 18GH
imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter a . Test the EUT in the The radiation measure. Transmitting mode, and	edure as below: bove is the test site or change form tained table is 1.5 met be lowest channel, irrements are performed the X axis p	e, change fible 0.8 meter). the Highesormed in X, cositioning vencies me	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v	Anechoic Ch neter(Above openitioning for worse case.	lowes ambe
imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter at. Test the EUT in the The radiation measure. Transmitting mode, and Repeat above proce	edure as below: bove is the test site or change form tand table is 1.5 meter lowest channel, irements are performed the X axis pure until all frequents are performed the X axis pure until all frequents are performed the X axis pure until all frequents are performed the X axis pure until all frequents are performed the X axis pure until all frequents are performed to the X axis pure until all frequents are performed to the X axis pure until all frequents are performed to the X axis pure the	e, change fible 0.8 meter). the Highestermed in X, rositioning valuencies meter.	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa	Anechoic Chaeter (Above positioning for worse case.	lowes ambe 18GH
imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter a . Test the EUT in the The radiation measu Transmitting mode, and Repeat above proce Frequency	edure as below: bove is the test site or change form tand table is 1.5 met belowest channel, irrements are performed the X axis pure dures until all frequency.	e, change fible 0.8 meter). the Highestermed in X, positioning valuencies meter/m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rer Quasi-pe	Anechoic Chater (Above cositioning for worse case.	lowes ambe
imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter a . Test the EUT in the The radiation measu Transmitting mode, and Repeat above proce Frequency 30MHz-88MHz	edure as below: bove is the test site or change form tand table is 1.5 metres lowest channel, irrements are performed the X axis produces until all frequency Limit (dBµV 40.	e, change fible 0.8 meter). the Highestormed in X, positioning valuencies meter/m @3m)	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa Rei Quasi-pe	Anechoic Chater (Above cositioning for worse case. as complete.	lowes ambe
imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter a . Test the EUT in the The radiation measu Transmitting mode, and Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz	edure as below: bove is the test site or change form tand table is 1.5 meterometric lowest channel, irrements are performent to a lowest channel with the X axis produces until all frequency Limit (dBµV 40.	e, change fible 0.8 meter). the Highesterned in X, positioning vencies meter/m @3m) 0	rom Semi- er to 1.5 m t channel Y, Z axis p which it is v easured wa Rei Quasi-pe Quasi-pe	Anechoic Chater (Above cositioning for worse case. as complete. mark eak Value	lowes ambe 18GH
-imit:	Save the spectrum analy and highest channel Above 1GHz test proce Different between at to fully Anechoic Chamb the distance is 1 meter a . Test the EUT in the The radiation measuransmitting mode, and Repeat above proce Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	dure as below: ove is the test site of change form tand table is 1.5 meter lowest channel, irrements are performed the X axis produces until all frequency Limit (dBµV 40.43.46.	e, change fible 0.8 meter). the Highestermed in X, positioning valuencies meter/m @3m) 0 5	rom Semi- er to 1.5 m t channel Y, Z axis p which it is w easured wa Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	Anechoic Chater (Above cositioning for worse case. as complete. mark eak Value eak Value	lowes ambe 18GH



Page 30 of 50

Test plot as follows:

Warna agaa mada:	GFSK		
Worse case mode:	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

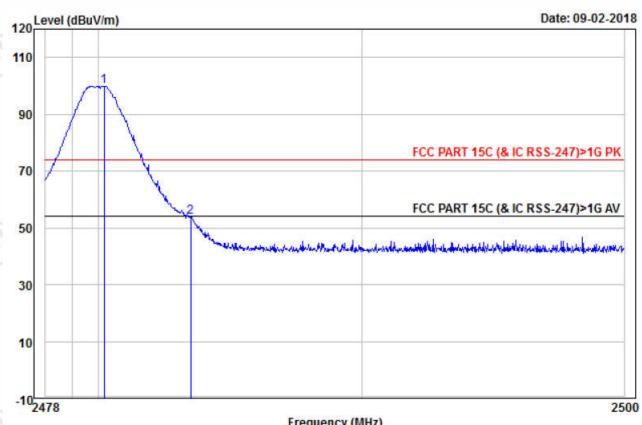


Report No. : EED32K00238701 Page 31 of 50

Maran agan mada.	GFSK	(25)	(273)
Worse case mode:	Test channel: Lowest	Polarization: Vertical	Remark: Peak

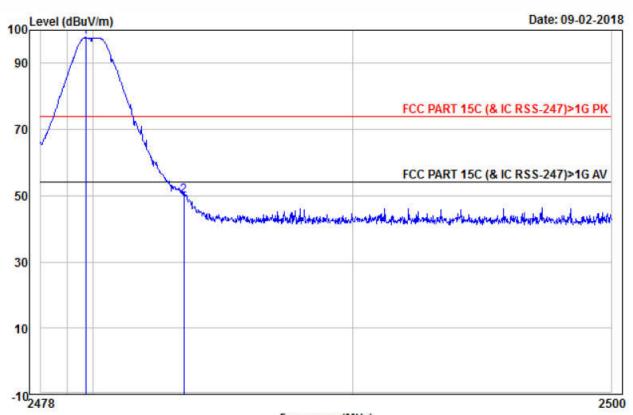
Cable Read Limit 0ver Limit Pol/Phase Remark Freq Factor Loss Level Level Line MHz dBuV dBuV/m dBuV/m dB/m dB 51.70 2390.000 35.86 3.07 74.00 -22.30 Vertical 12.77 Peak

2 p 2402.275 35.68 3.08 55.86 94.62 74.00 20.62 Vertical Peak



					Freque	ncy (MHz)			
		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	8 <u>3 - 3</u>	2
p	2480.213	27.59	3.12	69.13	99.84	74.00	25.84	Horizontal	Peak
	2/183 500	27 50	2 12	22 10	53 00	7/ 00	20 10	Honizontal	Dook

1



Page 33 of 50

Waraa agaa mada:	GFSK	(20)	(25)
Worse case mode:	Test channel: Highest	Polarization: Vertical	Remark: Peak

				Frequenc	y (MHz)				
Freq					Limit Line		Pol/Phase	Remark	
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	·		
1 p 2479.731	42.64	3.12	52.01	97.77	74.00	23.77	Vertical	Peak	

3.12 12.31 49.90 74.00 -24.10 Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2483.500

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	705
•)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(41)
/	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	(0)
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A h a v a 4 O l l =	Peak	1MHz	3MHz	Peak	
6	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Test the EUT in the lowest channel ,the middle channel ,the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

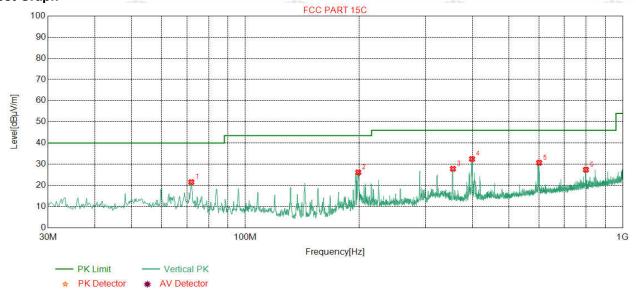
Repeat above procedures until all frequencies measured was complete.

	- 11	m	ıt.	
ш	-11		IL.	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	705	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



Page 35 of 50 Report No.: EED32K00238701

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	QP		

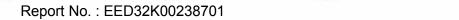
Suspected List

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
<u>.</u>	1	71.9124	8.64	0.97	-32.05	43.95	21.51	40.00	18.49	Pass	Vertical
Š	2	199.2018	10.82	1.67	-31.94	45.58	26.13	43.50	17.37	Pass	Vertical
9	3	355.0150	14.41	2.25	-31.85	43.01	27.82	46.00	18.18	Pass	Vertical
	4	398.8678	15.38	2.38	-31.77	46.46	32.45	46.00	13.55	Pass	Vertical
	5	600.4741	19.00	2.96	-31.99	40.70	30.67	46.00	15.33	Pass	Vertical
	6	798.9758	20.89	3.39	-32.03	35.13	27.38	46.00	18.62	Pass	Vertical

Page 36 of 50

Mode:	BLE GFSK Transmitting	Channel:	2440
Remark:	QP		

Suspected List


♠ PK Detector

AV Detector

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	72.1064	8.60	0.98	-32.06	43.14	20.66	40.00	19.34	Pass	Horizontal
2	144.0948	7.34	1.41	-31.99	45.65	22.41	43.50	21.09	Pass	Horizontal
3	199.9780	10.90	1.67	-31.94	47.98	28.61	43.50	14.89	Pass	Horizontal
4	399.8380	15.40	2.38	-31.76	45.38	31.40	46.00	14.60	Pass	Horizontal
5	599.6979	18.99	2.96	-31.99	43.26	33.22	46.00	12.78	Pass	Horizontal
6	797.0354	20.87	3.38	-32.01	36.16	28.40	46.00	17.60	Pass	Horizontal

Page 37 of 50

Transmitter Emission above 1GHz

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	1		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2991.5983	33.19	4.52	-36.73	47.47	48.45	74.00	25.55	Pass	Н	Peak
2	4804.0000	34.50	4.55	-36.15	57.54	60.44	74.00	13.56	Pass	Н	Peak
3	5691.2691	35.31	5.01	-36.11	44.05	48.26	74.00	25.74	Pass	Н	Peak
4	7206.0000	36.31	5.81	-36.43	59.20	64.89	74.00	9.11	Pass	Н	Peak
5	8417.6418	36.57	6.35	-36.31	44.12	50.73	74.00	23.27	Pass	Н	Peak
6	9608.0000	37.64	6.63	-36.79	42.09	49.57	74.00	24.43	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4804.0000	34.50	4.55	-36.15	42.36	45.26	54.00	8.74	Pass	Н	Average
2	7206.0000	36.31	5.82	-36.43	45.14	50.84	54.00	3.16	Pass	Н	Average

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	1	37)	(0,)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3867.8368	33.69	4.35	-36.16	45.15	47.03	74.00	26.97	Pass	V	Peak
2	4804.0000	34.50	4.55	-36.15	54.13	57.03	74.00	16.97	Pass	V	Peak
3	6505.4755	35.90	5.46	-36.21	43.30	48.45	74.00	25.55	Pass	V	Peak
4	7206.0000	36.31	5.81	-36.43	52.25	57.94	74.00	16.06	Pass	V	Peak
5	8102.6853	36.44	6.17	-36.56	44.16	50.21	74.00	23.79	Pass	V	Peak
6	9608.0000	37.64	6.63	-36.79	42.89	50.37	74.00	23.63	Pass	V	Peak

1	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
A	1	4804.0000	34.50	4.55	-36.15	38.74	41.64	54.00	12.36	Pass	V	Average
	2	7206.0000	36.31	5.82	-36.43	39.10	44.80	54.00	9.20	Pass	V	Average

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00238701 Page 38 of 50

Mode:	BLE GFSK Transmitting	Channel:	2440
Remark:	1		(0.)

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	2985.9972	33.18	4.51	-36.74	46.73	47.68	74.00	26.32	Pass	Н	Peak
2	4880.0000	34.50	4.80	-36.09	55.38	58.59	74.00	15.41	Pass	Н	Peak
3	5537.2037	35.06	5.16	-36.07	44.13	48.28	74.00	25.72	Pass	Н	Peak
4	7320.0000	36.42	5.85	-36.38	52.42	58.31	74.00	15.69	Pass	Н	Peak
5	8461.5212	36.58	6.42	-36.42	43.96	50.54	74.00	23.46	Pass	Н	Peak
6	9760.0000	37.70	6.73	-36.81	41.72	49.34	74.00	24.66	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4880.0000	34.50	4.80	-36.10	45.14	48.34	54.00	5.66	Pass	Н	Average
2	7320.0000	36.42	5.85	-36.38	40.89	46.78	54.00	7.22	Pass	Н	Average

Mode:	BLE GFSK Transmitting	Channel:	2440
Remark:	1		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4474.3474	34.46	4.73	-36.22	44.00	46.97	74.00	27.03	Pass	V	Peak
2	4880.0000	34.50	4.80	-36.09	54.59	57.80	74.00	16.20	Pass	V	Peak
3	5648.3648	35.24	4.97	-36.02	43.88	48.07	74.00	25.93	Pass	V	Peak
4	7320.0000	36.42	5.85	-36.38	52.44	58.33	74.00	15.67	Pass	V	Peak
5	8090.9841	36.44	6.15	-36.56	44.22	50.25	74.00	23.75	Pass	V	Peak
6	9760.0000	37.70	6.73	-36.81	42.97	50.59	74.00	23.41	Pass	V	Peak

(NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
	1	4880.0000	34.50	4.80	-36.10	44.34	47.54	54.00	6.46	Pass	V	Average
	2	7320.0000	36.42	5.85	-36.38	40.11	46.00	54.00	8.00	Pass	V	Average

Report No.: EED32K00238701 Page 39 of 50

Mode:	BLE GFSK Transmitting	Channel:	2480		
Remark:	1		(0.)		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3130.6631	33.25	4.63	-36.90	47.44	48.42	74.00	25.58	Pass	Н	Peak
2	4960.0000	34.50	4.82	-36.20	57.22	60.34	74.00	13.66	Pass	Н	Peak
3	6501.5752	35.90	5.47	-36.22	43.19	48.34	74.00	25.66	Pass	Н	Peak
4	7440.0000	36.54	5.85	-36.34	52.79	58.84	74.00	15.16	Pass	Н	Peak
5	8428.3678	36.57	6.37	-36.35	44.01	50.60	74.00	23.40	Pass	Н	Peak
6	9920.0000	37.77	6.79	-36.82	40.58	48.32	74.00	25.68	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	4960.0000	34.50	4.82	-36.21	42.15	45.26	54.00	8.74	Pass	Н	Average
2	7440.0000	36.54	5.85	-36.34	40.80	46.85	54.00	7.15	Pass	Н	Average

1	Mode:	BLE GFSK Transmitting	Channel:	2480		
\c	Remark:		37)	(0)		

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
1	3095.5596	33.24	4.73	-36.82	46.56	47.71	74.00	26.29	Pass	V	Peak
2	4960.0000	34.50	4.82	-36.20	56.13	59.25	74.00	14.75	Pass	V	Peak
3	5675.6676	35.28	5.00	-36.07	43.32	47.53	74.00	26.47	Pass	V	Peak
4	7440.0000	36.54	5.85	-36.34	52.60	58.65	74.00	15.35	Pass	V	Peak
5	9027.0777	37.69	6.41	-36.49	43.06	50.67	74.00	23.33	Pass	V	Peak
6	9920.0000	37.77	6.79	-36.82	40.29	48.03	74.00	25.97	Pass	V	Peak

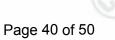
/	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity	Remark
١	1	4960.0000	34.50	4.82	-36.21	43.50	46.61	54.00	7.39	Pass	V	Average
	2	7440.0000	36.54	5.85	-36.34	40.67	46.72	54.00	7.28	Pass	V	Average

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor


2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

PHOTOGRAPHS OF TEST SETUP

Test model No.: GWP-SLCR-BT

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(Below 1GHz)

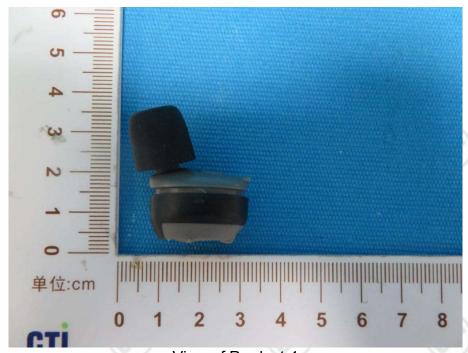
Report No.: EED32K00238701 Page 41 of 50

Radiated spurious emission Test Setup-3(Above 1GHz)

Radiated spurious emission Test Setup for Close-up



Page 42 of 50

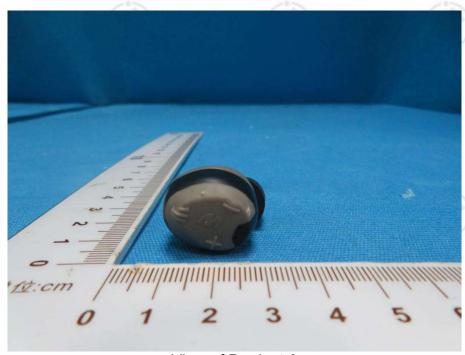


PHOTOGRAPHS OF EUT Constructional Details

Test model No.: GWP-SLCR-BT

View of Product-1

View of Product-2

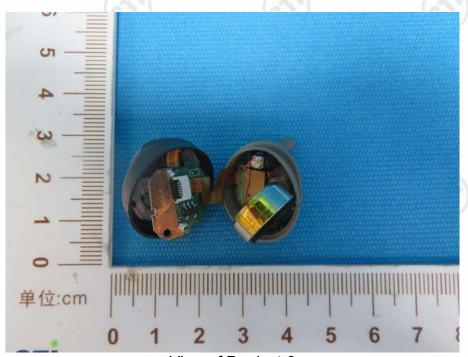


View of Product-3

View of Product-4

View of Product-5

View of Product-6

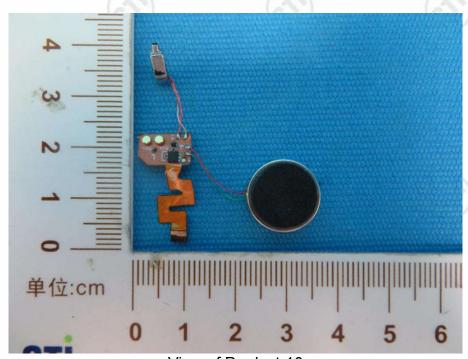


Report No. : EED32K00238701 Page 46 of 50

View of Product-7

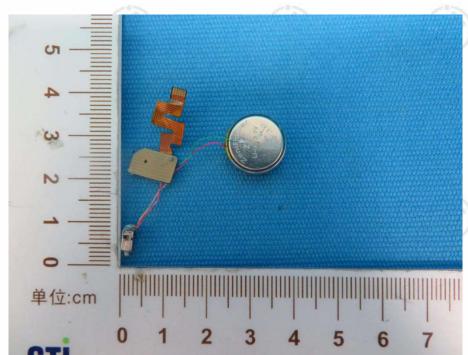
View of Product-8





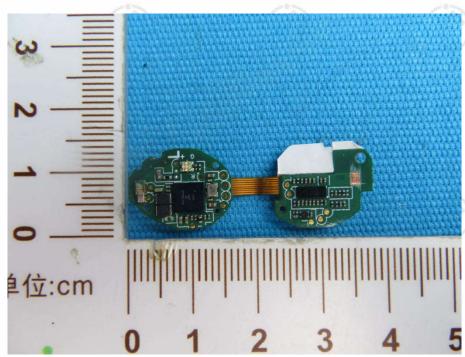
View of Product-9

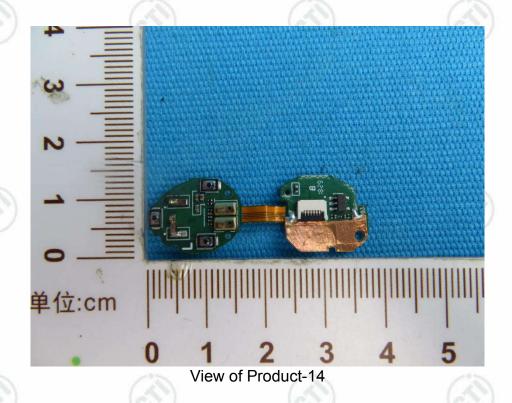
View of Product-10



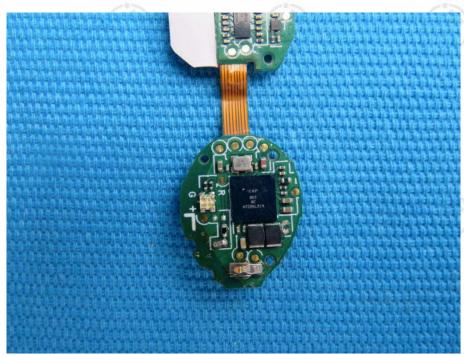
View of Product-11

View of Product-12





Report No. : EED32K00238701 Page 49 of 50



View of Product-13

Page 50 of 50 Report No.: EED32K00238701

View of Product-15

View of Product-16

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com