	之 汉 J HNDLOGY				
	TEST REPOR	Т			
FCC ID :	2AEJARAYOGO				
Test Report No:	TCT240812E028				
Date of issue:	Aug. 27, 2024				
Testing laboratory::	SHENZHEN TONGCE TESTING	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Shen People's Republic of China	y Renshan Industrial Zone, Fuhai zhen, Guangdong, 518103,			
Applicant's name::	GSM GLOBE.COM INC				
Address:	10286 SW 22nd pl. Davie, Florida	a 33324, United States			
Manufacturer's name :	GSM GLOBE.COM INC				
Address:	10286 SW 22nd pl. Davie, Florida	a 33324, United States			
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name::	MOBILE PHONE				
Trade Mark:	RAYO MOVIL				
Model/Type reference :	Go				
Rating(s):	Adapter Information: Input: AC 100-240V, 50/60Hz,0.1 Output: DC 5.0V, 500mA Rechargeable Li-ion Battery DC				
Date of receipt of test item:	Aug. 12, 2024				
Date (s) of performance of test:	Aug. 12, 2024 ~ Aug. 27, 2024				
Tested by (+signature) :	Aaron MO	Aaron Argongeer			
Check by (+signature) :	Beryl ZHAO	Boy 10 TCT			
Approved by (+signature):	Tomsin	Jomsm 30 84			
TONGCE TESTING LAB. TH	oduced except in full, without the his document may be altered or re ly, and shall be noted in the revisi apply to the tested sample.	evised by SHENZHEN TONGCE			

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.1. EUT description
1.1. EUT description
1.2. Model(s) list3
1.3. Operation Frequency
2. Test Result Summary
3. General Information
3.1. Test environment and mode
3.2. Description of Support Units7
4. Facilities and Accreditations
4.1. Facilities
4.2. Location
4.3. Measurement Uncertainty8
5. Test Results and Measurement Data9
5.1. Antenna requirement9
5.2. Conducted Emission
5.3. Conducted Output Power14
5.4. 20dB Occupy Bandwidth15
5.5. Carrier Frequencies Separation16
5.6. Hopping Channel Number17
5.7. Dwell Time
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement20
5.10.Conducted Spurious Emission Measurement21
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	MOBILE PHONE	$(\mathbf{c}^{(1)})$		$(\mathcal{C}^{(1)})$
Model/Type reference:	Go			
Sample Number	TCT240812E028-0101			
Bluetooth Version:	V3.0		No.	
Operation Frequency:	2402MHz~2480MHz			
Transfer Rate:	1/2/3 Mbits/s			
Number of Channel:	79			
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology:	FHSS			
Antenna Type:	PIFI Antenna			
Antenna Gain:	1.59dBi			
Rating(s):	Adapter Information: Input: AC 100-240V, 50/60Hz,0. Output: DC 5.0V, 500mA Rechargeable Li-ion Battery DC			

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Report No.: TCT240812E028

1.3. Operation Frequency

TCT通测检测 TESTING CENTRE TECHNOLOGY

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
U				·		<u> </u>	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
	S						S
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	- 39	2441MHz	- 59	2461MHz		-
Remark:	Channel 0, 3	39 & 78 ha	ave been te	sted for G	GFSK, π/4-D	QPSK, 8	DPSK

modulation mode.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

ducted Emission Radiated Emission				
5 °C 25.7 °C				
% RH 💛 51 % RH				
1010 mbar 1010 mbar				
p the EUT in continuous transmitting by select nnel and modulations with Fully-charged battery	,			
nvestigated all operating modes, rotated about red typical configuration to obtain worst pos- bles, rotating the turntable, varying antenna he zontal and vertical polarizations. The emiss own in Test Results of the following pa ted, only worse case DH1 is reported.	sition, neight			

3.2. Description of Support Units

TCT通测检测 TCT通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1		/	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

•IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

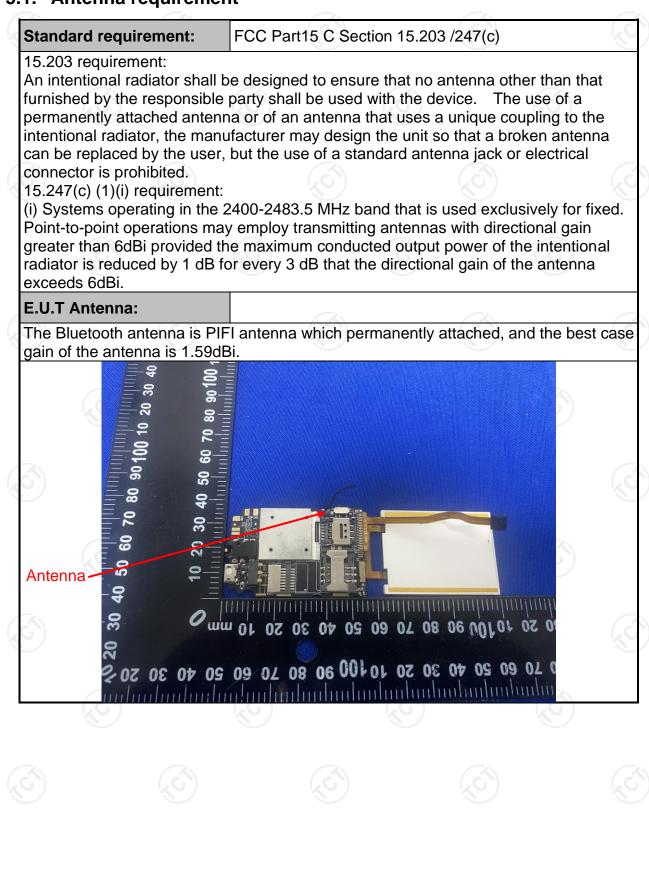
The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

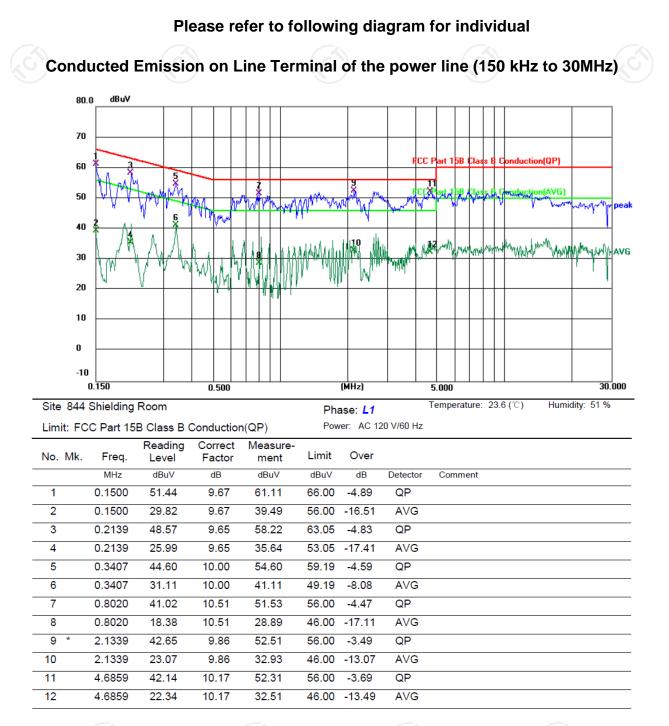
5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207 😒				
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	(C)				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto			
	Frequency range	(dBuV)				
	(MHz)	Quasi-peak	Áverage			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	(()	(201)			
Test Setup:	40cm E.U.T AC power B0cm LISN Filter AC power Filter AC power E.U.T Emil Remark EMI E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
T M	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	etwork				
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m Charging + Transmittir	etwork	ar through a line			
Test Mode: Test Procedure:	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin The E.U.T is connering impedance stabilizing provides a 500hm/5 measuring equipme The peripheral device power through a Line coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	etwork ng Mode acted to an adapte action network 50uH coupling im nt. ces are also conne ISN that provides a with 50ohm tern diagram of the line are checked nce. In order to fil e positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to			
	 E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m Charging + Transmittin The E.U.T is connel impedance stabiliz provides a 50ohm/8 measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative 	etwork ng Mode acted to an adapte action network 50uH coupling im nt. ces are also conne ISN that provides a with 50ohm tern diagram of the line are checked nce. In order to fil e positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the mains a 50ohm/50ul- nination. (Please test setup and ed for maximum nd the maximum ipment and all o l according to			

Page 10 of 99


5.2.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	тст	CE-05	/	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1

Page 11 of 99

5.2.3. Test data

Note:

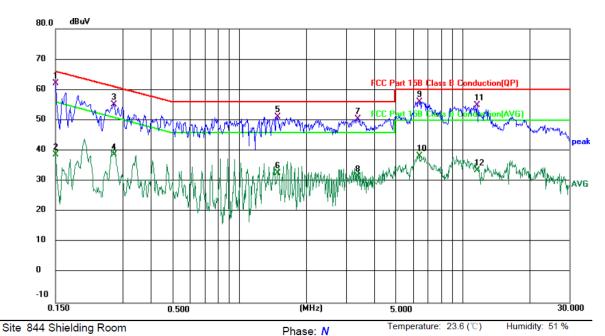
 Freq. = Emission frequency in MHz

 Reading level (dBμV) = Receiver reading

 Corr. Factor (dB) = LISN factor + Cable loss

 Measurement (dBμV) = Reading level (dBμV) + Corr. Factor (dB)

 Limit (dBμV) = Limit stated in standard


 Margin (dB) = Measurement (dBμV) - Limits (dBμV)

 Q.P. =Quasi-Peak

 AVG =average

 * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 12 of 99

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

		•				1 114	30. 1		
Limi	it: FC	C Part 15	B Class B C	Conduction	(QP)	Powe	er: AC 12	0 V/60 Hz	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	52.51	9.65	62.16	66.00	-3.84	QP	
2		0.1500	28.95	9.65	38.60	56.00	-17.40	AVG	
3		0.2740	45.61	9.64	55.25	61.00	-5.75	QP	
4		0.2740	29.03	9.64	38.67	51.00	-12.33	AVG	
5		1.4858	41.44	9.75	51.19	56.00	-4.81	QP	
6		1.4858	22.98	9.75	32.73	46.00	-13.27	AVG	
7		3.3980	40.52	9.94	50.46	56.00	-5.54	QP	
8		3.3980	21.59	9.94	31.53	46.00	-14.47	AVG	
9		6.3859	45.84	10.19	56.03	60.00	-3.97	QP	
10		6.3859	28.05	10.19	38.24	50.00	-11.76	AVG	
11		11.5700	44.67	10.29	54.96	60.00	-5.04	QP	
12		11.5700	23.14	10.29	33.43	50.00	-16.57	AVG	

Note1:

TCT通测检测 TCT通测检测

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.

Page 13 of 99

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being
Test Procedure:	measured VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A C
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

(20)) (,	201)	
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		/

Page 16 of 99

5.6. Hopping Channel Number

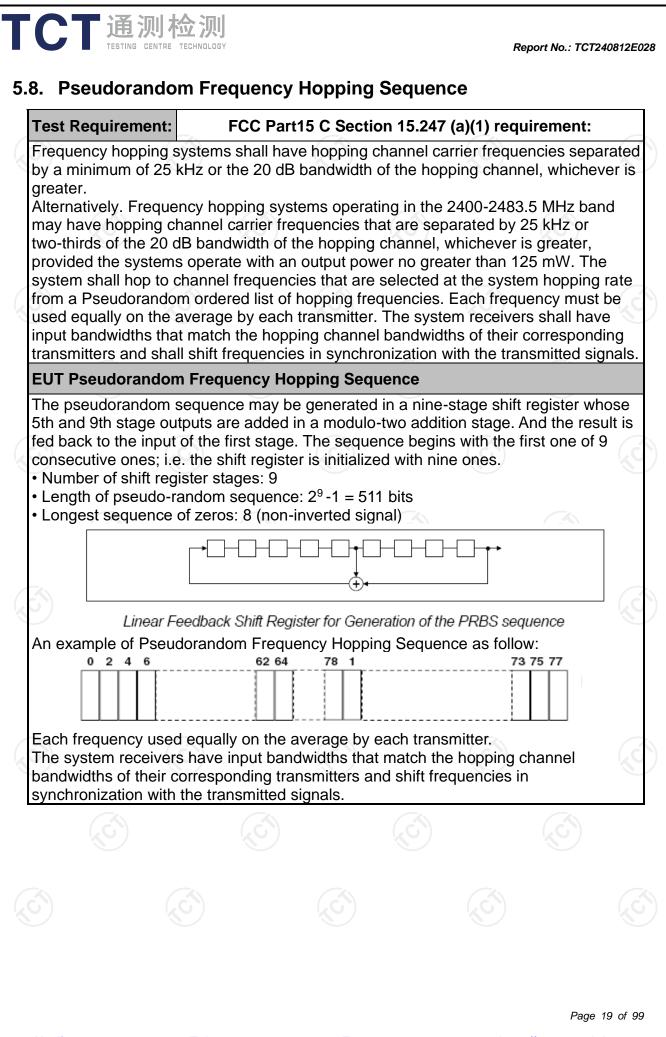
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 99

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	G 1	

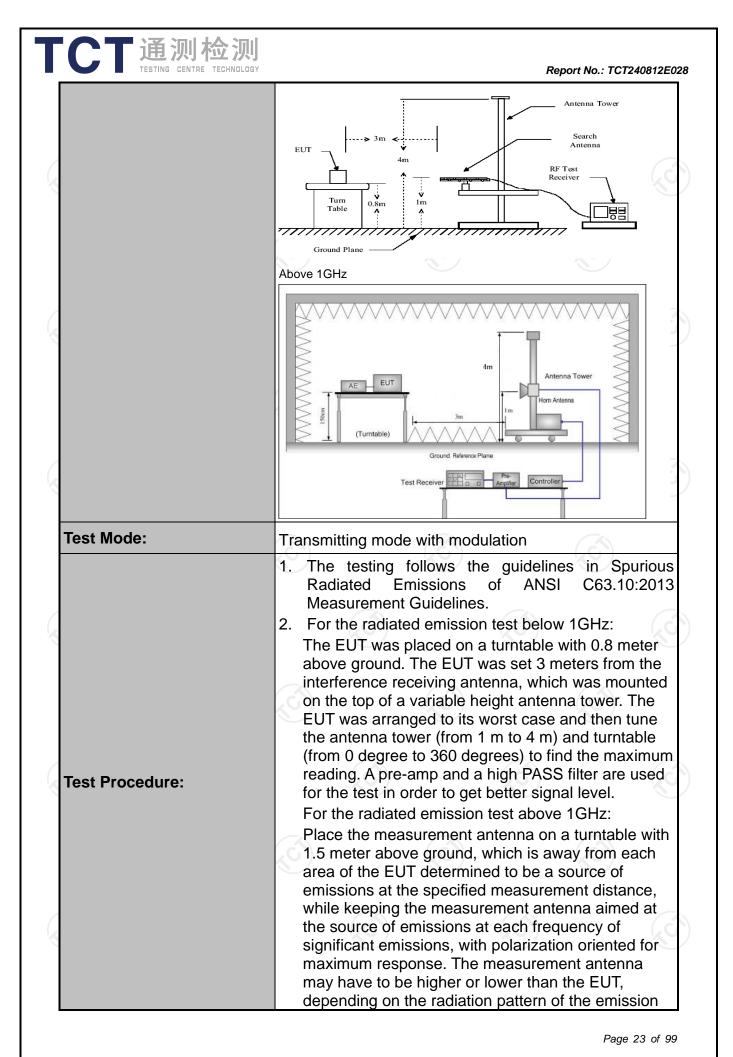
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

(C) ()				
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		


Page 21 of 99

5.11.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

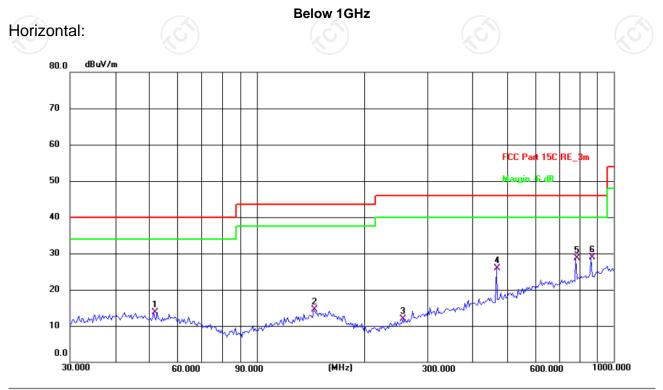
ANSI C63.10 9 kHz to 25 0		3			
	GHz	X			
3 m	X			S	
Horizontal &	Vertical				
Frequency	Detector	RBW	VBW	Re	emark
9kHz- 150kHz			1kHz		peak Value
150kHz- 30MHz	Quasi-peak	s 9kHz	30kHz	Quasi-	peak Value
30MHz-1GHz	Quasi-peak		300KHz		peak Value
Above 1GHz	Peak				k Value
	Peak	1MHz	10Hz	Avera	age Value
Frequen	ICV				urement
					e (meters)
	/				300 30
			<u>IXFIZ)</u>		30 30
					3
					3
		200			3
Above 9	60	500			3
	(micro	volts/meter) 500	Distan	nce	Detector Average Peak
	stance = 3m				
	5	(S)		
	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.3 1.705-3 30-88 88-216 216-96 Above 9 Frequency Above 1GHz	9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Frequency Field (microson) Above 1GHz For radiated emissions below Distance = 3m Image: Standard (microson) Image: Standard (microson) Image: Standard (microson)	FrequencyDetectorRBW9kHz-150kHzQuasi-peak200Hz150kHz-Quasi-peak9kHz30MHz-1GHzQuasi-peak120KHzAbove 1GHzPeak1MHzPeak1MHz0.009-0.4902400/F(00.490-1.70524000/F(01.705-303030-8810088-216150216-960200Above 960500FrequencyField Strength (microvolts/meter)Above 1GHz500For radiated emissions below 30MHzDistance = 3mImage: Construction of the strength (microvolts/meter)Image: Construc	Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz Quasi-peak 9kHz 30kHz 30MHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Keauree Measuree Distar (microvolts/meter) Distar (meter) Above 1GHz 500 3 3 For radiated emissions below 30MHz Distance = 3m Image: Stance = 3m Image: Stance = 3m Image: Stance = 3m Image: Stance = 3m	Frequency Detector RBW VBW Ri 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 150kHz- 30MHz-1GHz Quasi-peak 9kHz 30kHz Quasi- 300KHz Quasi- 200KHz Quasi- 20KHz Quasi- 20KHz Quas

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	receiving measure maximize antenna restricted above th 3. Set to th EUT trai 4. Use the (1) Spa emis (2) Set for f Sw = n (3) For	ing aimed at the emission the maximum signal. The ment antenna elevation is es the emissions. The me elevation for maximum en- d to a range of heights of e ground or reference ground or reference ground or reference ground n maximum power sett normal continuously. following spectrum analy n shall wide enough to fu- ssion being measured; RBW=120 kHz for f < 1 (Constant) RBW=120 kHz for f < 1 (Constant) and the set of the set	he final shall be that which easurement emissions shall be from 1 m to 4 m ound plane. ing and enable the yzer settings: ully capture the GHz, RBW=1MHz ction = peak; Trace use duty cycle
	15.3 On t Wh Ien Ave Lev	time =N1*L1+N2*L2++ here N1 is number of type gth of type 1 pulses, etc. erage Emission Level = F yel + 20*log(Duty cycle)	Nn-1*LNn-1+Nn*Li e 1 pulses, L1 is Peak Emission
Test results:	15.3 On t Wh Ien Ave Lev Corr	time =N1*L1+N2*L2++ tere N1 is number of type gth of type 1 pulses, etc. terage Emission Level = F	Nn-1*LNn-1+Nn*Li e 1 pulses, L1 is Peak Emission Factor + Cable
Test results:	15.3 On t Wh Ien Ave Lev Corr	time =N1*L1+N2*L2++ tere N1 is number of type gth of type 1 pulses, etc. terage Emission Level = F vel + 20*log(Duty cycle) rected Reading: Antenna	Nn-1*LNn-1+Nn*Li e 1 pulses, L1 is Peak Emission Factor + Cable
Test results:	15.3 On t Wh Ien Ave Lev Corr	time =N1*L1+N2*L2++ tere N1 is number of type gth of type 1 pulses, etc. terage Emission Level = F vel + 20*log(Duty cycle) rected Reading: Antenna	Nn-1*LNn-1+Nn*L e 1 pulses, L1 is Peak Emission Factor + Cable
Test results:	15.3 On t Wh Ien Ave Lev Corr	time =N1*L1+N2*L2++ tere N1 is number of type gth of type 1 pulses, etc. terage Emission Level = F vel + 20*log(Duty cycle) rected Reading: Antenna	Nn-1*LNn-1+Nn*L e 1 pulses, L1 is Peak Emission Factor + Cable

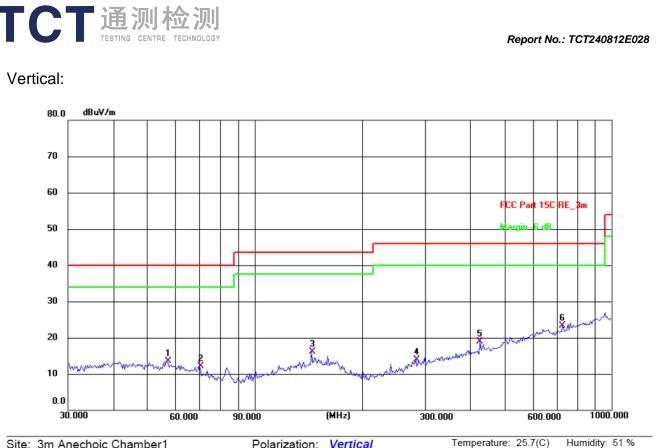
5.11.2. Test Instruments

Radiated Er	nission Test Sit	e (966)	
Manufacturer	Model	Serial Number	Calibration Due
R&S	ESCI7	100529	Jan. 31, 2025
R&S	FSQ40	200061	Jun. 26, 2025
HP	8447D	2727A05017	Jun. 26, 2025
SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Schwarzbeck	VULB9163	340	Jun. 28, 2025
Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
SKET	RE-03-D	/	Jun. 26, 2025
SKET	RE-03-M	1	Jun. 26, 2025
SKET	RE-03-L	/	Jun. 26, 2025
SKET	RE-04-D	$\left[\begin{array}{c} \end{array} \right]$	Jun. 26, 2025
SKET	RE-04-M	7	Jun. 26, 2025
SKET	RE-04-L	/	Jun. 26, 2025
Keleto	RE-AM	21	$(\mathbf{O})_{\mathbf{I}}$
EZ_EMC	FA-03A2 RE+	1.1.4.2	/
	Manufacturer R&S R&S HP SKET SKET SChwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck Schwarzbeck SKET SKET SKET SKET SKET SKET	ManufacturerModelR&SESCI7R&SFSQ40HP8447DSKETLNPA_0118G- 45SKETLNPA_1840G- 50SchwarzbeckFMZB1519BSchwarzbeckVULB9163SchwarzbeckBBHA 9120DSchwarzbeckBBHA 9170SKETRE-03-DSKETRE-03-DSKETRE-03-LSKETRE-04-DSKETRE-04-DSKETRE-04-MSKETRE-04-MSKETRE-04-LKeletoRE-AM	Manufacturer Model Number R&S ESCI7 100529 R&S FSQ40 200061 HP 8447D 2727A05017 SKET LNPA_0118G- 45 SK202101210 2 SKET LNPA_1840G- 50 SK202109203 500 Schwarzbeck FMZB1519B 00191 Schwarzbeck VULB9163 340 Schwarzbeck BBHA 9120D 631 Schwarzbeck BBHA 9120D 631 Schwarzbeck RE-03-D / SKET RE-03-M / SKET RE-03-M / SKET RE-03-L / SKET RE-04-D / SKET RE-04-M / SKET RE-04-L / SKET RE-04-L /


Page 25 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data

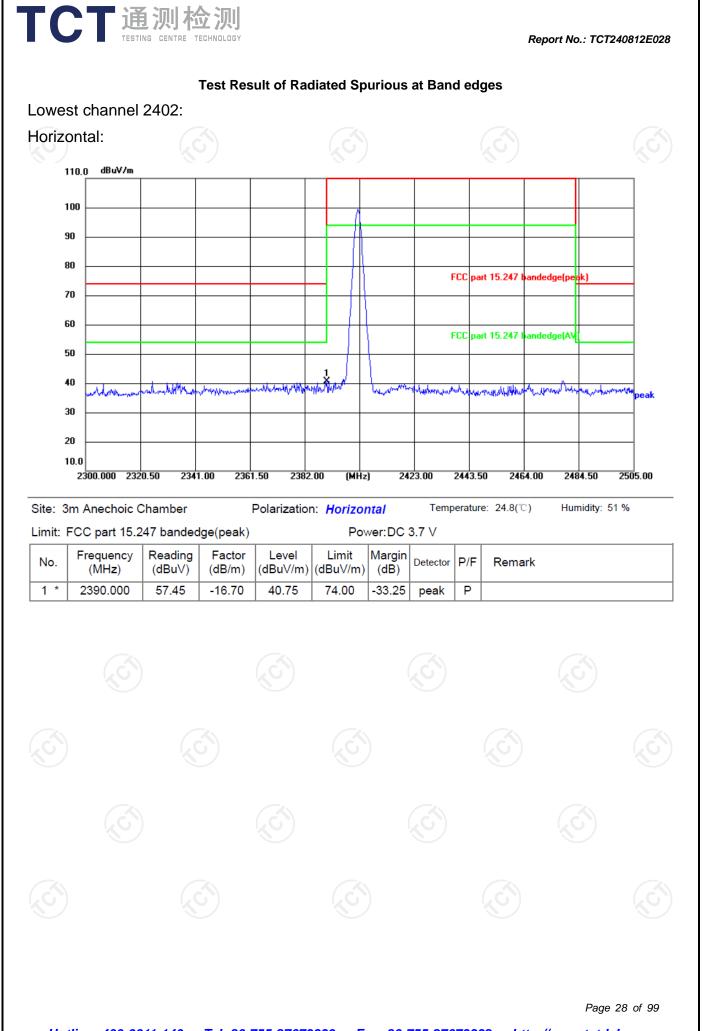

Please refer to following diagram for individual

Site: 3m Anechoic Chamber1 Polarization: Horizontal Temperature: 25.7(C) Humidity: 51 %

Power: DC 3.7V

LIIIII. F	FUC Part TSU R	E_911			P	ower. L	C 5.7V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	51.4807	26.14	-12.41	13.73	40.00	-26.27	QP	Р	
2	144.3347	26.47	-11.92	14.55	43.50	-28.95	QP	Ρ	
3	256.5210	24.82	-12.89	11.93	46.00	-34.07	QP	Ρ	
4	468.8762	33.87	-8.02	25.85	46.00	-20.15	QP	Ρ	
5	782.3453	31.75	-2.99	28.76	46.00	-17.24	QP	Ρ	
6 *	863.0562	30.83	-1.87	28.96	46.00	-17.04	QP	Ρ	

 Site: 3m Anechoic Chamber1
 Polarization:
 Vertical
 Temperature: 25.7(C)
 Humidity: 51 %


 Limit: ECC Part 15C PE 3m
 Power: DC 3.7//

Limit: F	FCC Part 15C R	E_3m			P	ower: D	C 3.7V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	56.7917	25.94	-12.52	13.42	40.00	-26.58	QP	Ρ	
2	70.0902	26.29	-14.24	12.05	40.00	-27.95	QP	Ρ	
3	144.3347	28.04	-11.92	16.12	43.50	-27.38	QP	Ρ	
4	282.9851	25.54	-11.55	13.99	46.00	-32.01	QP	Ρ	
5	428.0192	27.44	-8.47	18.97	46.00	-27.03	QP	Ρ	
6 *	729.3582	27.08	-3.79	23.29	46.00	-22.71	QP	Ρ	

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.
 - 2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Highest channel and Pi/4 DQPSK) was submitted only.
 - 3. Freq. = Emission frequency in MHz
 - Measurement ($dB\mu V/m$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
 - Limit (dBµV/m) = Limit stated in standard
 - $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 27 of 99

11	0.0 dBuV/m												
10	0					(
90						-//							
80									FCC pa	art 15.247 I)andedge(p	eak)	
70 60													
50									FCC pa	art 15.247 I	andedge(A	M	
40	AND MARCH AND	manufluorupatabat	and water with	a water and a star		~~	- Jongia Angeronet	when when	-	where he had be	angerale Jane Marada	too management	
30									+				
20									+				
10.	.0 2300.000 232	0.50 234	1.00 236	61.50 238	32.00	(MHz	z) 24	23.00	2443.	50 246	54.00 2	484.50	2505.00
				Deleviert				Temr	oeratu	re: 24.8(°	C) Hi	umidity:	51 %
	n Anechoic C			Polarizatio	on: V							annung.	
it: F	CC part 15.2	47 banded	dge(peak) Factor				wer:DC	3.7 ∨		Dama			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F	CC part 15.2 Frequency	47 bandeo Reading	Factor	Level) <mark>(</mark> dBi	Pov.	wer:DC	3.7 ∨		Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema		3	
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema		3	
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema		3	
it: F(CC part 15.2 Frequency (MHz)	247 banded Reading (dBuV)	Factor (dB/m)	Level (dBuV/m) <mark>(</mark> dBi	Po∖ imit uV/m)	wer:DC Margin (dB)	3.7 ∨ Detector	P/F	Rema			

11	0.0 dBuV/m												
10	0							_					_
90								-			Λ		_
80							F	⁻ CC pa	rt 15.247	bandec	lge(pea	k)	
70								+		-	+		
60							F	CC pa	rt 15.247	bandec	ige(AV		
50													
4(3(and mar and and	Horan Marka hard	hallown	wheel a horizon and the	henrikaranalah	Lateration Martin	wanter	ar and a second	and the second and	Arbitesson	1	ry. Alway way of	^M ⊶w [#] peak
20													
~ ~ ~													
10	.0	0.50 2341	1 00 236	1 50 2382	00 (14)	-) 2 4'	23.00	2443 5	0 24	64.00	249	4 50	2505.00
	.0 2300.000 2320			1.50 2382				2443.5		64.00		4.50	2505.00
e: 3r	n.0 2300.000 2320 n Anechoic C	hamber		Polarizatio	n: <i>Horizo</i>	ntal	Temp		i0 24 e: 24.8(*			1 4.50 nidity: 5	
e: 3r nit: F	n Anechoic C CC part 15.2 Frequency	Chamber 47 bandec Reading	dge(peak) Factor	Polarizatio	n: <i>Horizo</i> Po Limit	ntal wer:DC 3	Temp	eratur		°C)			
e: 3r	n Anechoic C CC part 15.2	Chamber 47 bandec	dge(peak)	Polarizatio	n: <i>Horizo</i> Po	ntal wer:DC 3	Temp 3.7 V	eratur	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F lo.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F Io.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			
e: 3r nit: F Io.	n Anechoic C CC part 15.2 Frequency (MHz)	Chamber 47 bandec Reading (dBuV)	dge(peak) Factor (dB/m)	Polarization Level (dBuV/m)	n: <i>Horizo</i> Po Limit (dBuV/m)	ntal wer:DC 3 Margin (dB)	Temp 3.7 ∨ Detector	eratur P/F	e: 24.8(°	°C)			

110	0.0 dBuV/m			,									
100	0												
90													
80											Д		
70					_			FCC p	art 15.247	anded	ge(pea	ik)	
60													
50								FCC p	art 15.247 I	anded	ge(AV)		
40	apptonet	Portulation of the second second	population that the	www.white	any with free with	hill water and	angled and and a	t and the second se	here the second	MAY MAY		and the grad	and the state
30													pea
20													_
10.	.0 2300.000 232	0.50 234	1.00 236	1.50 238	2.00 (MH	z] 24	23.00	2443.	50 246	4.00	248	4.50	2505.0
· 3m	Anechoic	hamber		Polarizatio	n: Vortio		Temr	peratu	re: 24.8(°		Hun	nidity:	51 %
	n Anechoic (CC part 15.2		dge(peak)	Polarizatio		al wer:DC :		peratu	re: 24.8(°	2)	Hun	nidity:	51 %
it: FC			dge(peak) Factor (dB/m)	Level		wer:DC		P/F	re: 24.8(%		Hun	nidity:	51 %
nit: FC	CC part 15.2 Frequency	47 banded Reading	Factor	Level	Po Limit	wer:DC	3.7 V				Hun	nidity:	51 %
hit: FC b. * te: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
iit: F(b. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
iit: F(b. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F(. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
iit: F(b. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F(. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
iit: F(b. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
iit: F(b. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F(. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F(. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F(. * fe: M	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			
it: F().	CC part 15.2 Frequency (MHz) 2483.500	247 banded Reading (dBuV) 67.73 s were con	Factor (dB/m) -16.65	Level (dBuV/m) 51.08	Po Limit (dBuV/m) 74.00	Margin (dB) -22.92	3.7 V Detector peak	P/F P	Rema	rk			

Above 1GHz

Modulation	Type: Pi/4	4 DQPSK							
Low channe	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	54.44		-9.51	44.93		74	54	-9.07
7206	Н	45.61		-1.41	44.20		74	54	-9.80
	Н								
((G)		(,C)) 	()	.G`)		(C)	
4804	V	56.23		-9.51	46.72		74	54	-7.28
7206	V	47.76		-1.41	46.35		74	54	-7.65
	V								

Middle cha	nnel: 2441	MHz		N N) ((
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	H	55.18		-9.36	45.82		74	54	-8.18
7323	KCĤ)	45.92	-120	-1.14	44.78	<u>5</u>	74	54	-9.22
	Ĥ								
4882	V	56.60		-9.36	47.24		74	54	-6.76
7323	V	46.87		-1.14	45.73		74	54	-8.27
<u> </u>	V			%	- /				

High channel: 2480 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4960	Н	54.45		-9.20	45.25		74	54	-8.75		
7440	Н	45.44		-0.96	44.48		74	54	-9.52		
	Н				~						
C				(.6			(\mathbf{G})		(.c.		
4960	V	54.01		-9.20	44.81		74	54	-9.19		
7440	V	46.59		-0.96	45.63		74	54	-8.37		
	V										

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

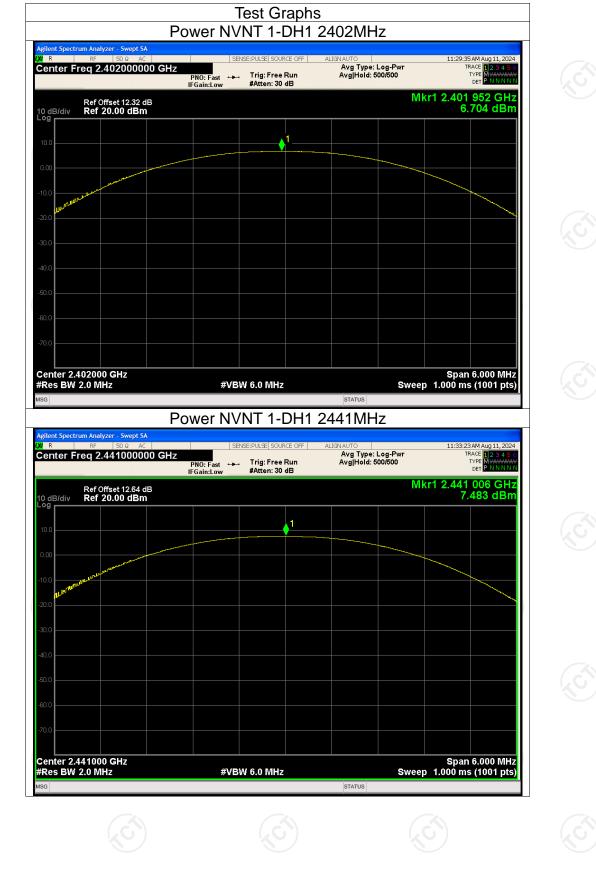
CT通测检测 TESTING CENTRE TECHNOLOGY

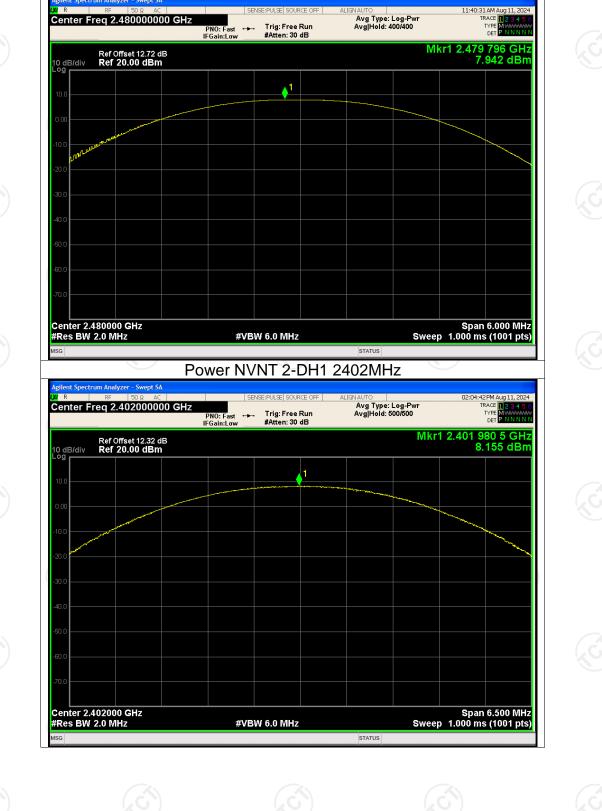
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Pi/4 DQPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power											
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict						
NVNT	1-DH1	2402	6.70	30	Pass						
NVNT	1-DH1	2441	7.48	30	Pass						
NVNT	1-DH1	2480	7.94	30	Pass						
NVNT	2-DH1	2402	8.15	21	Pass						
NVNT	2-DH1	2441	8.96	21	Pass						
NVNT	2-DH1	2480	9.37	21	Pass						
NVNT	3-DH1	2402	7.46	21	Pass						
NVNT	3-DH1	2441	8.26	21	Pass						
NVNT	3-DH1	2480	8.44	21	Pass						

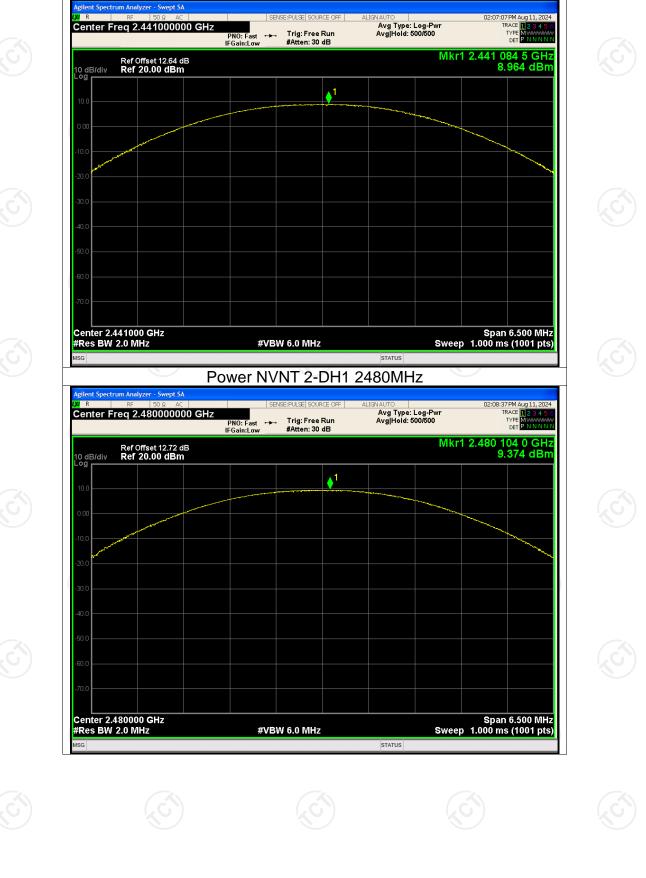




Page 33 of 99

Tel: 86-755-27673339 Fax: 86-755-27673332 Hotline: 400-6611-140 http://www.tct-lab.com

Power NVNT 1-DH1 2480MHz

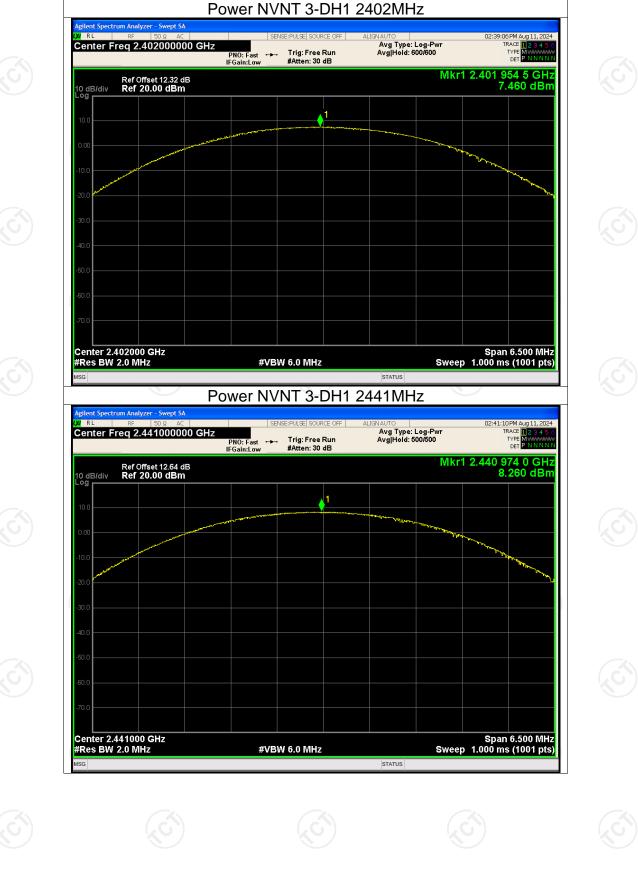

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA

Report No.: TCT240812E028

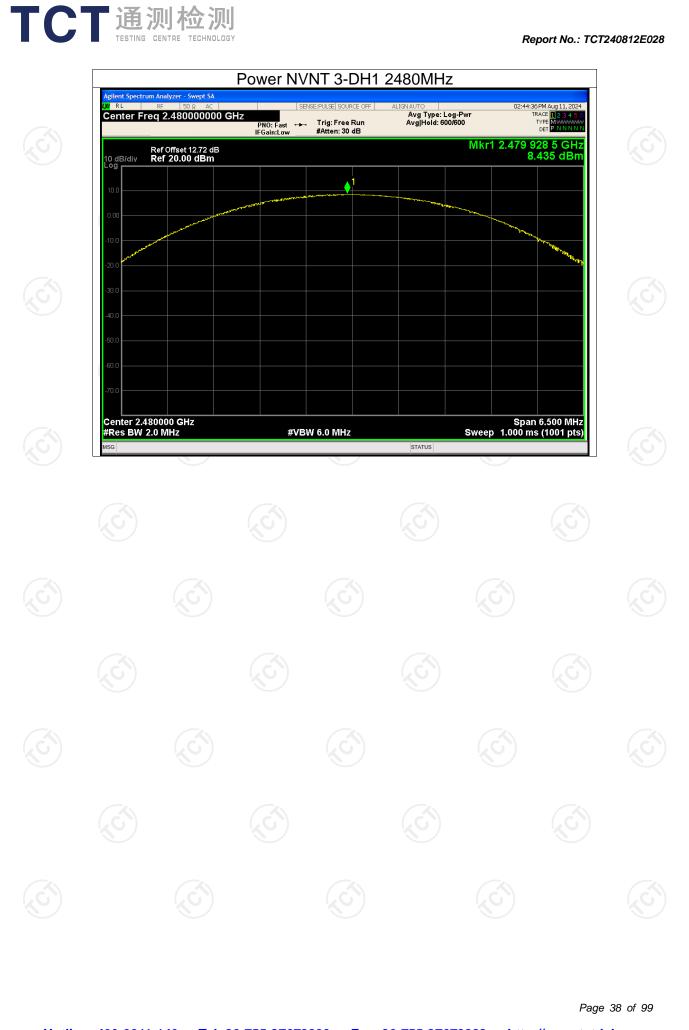
Page 35 of 99



Power NVNT 2-DH1 2441MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240812E028

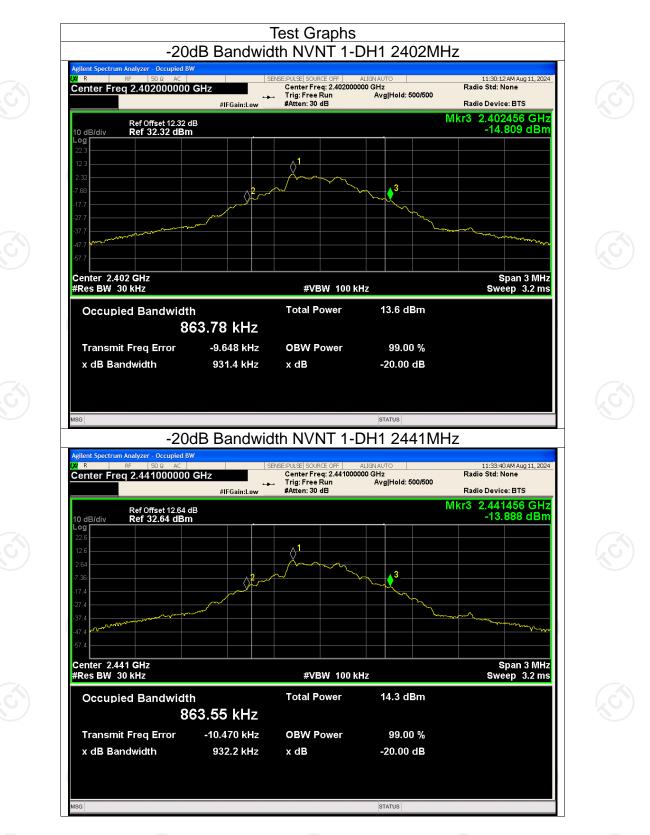

Page 36 of 99

TCT通测检测 TESTING CENTRE TECHNOLOGY

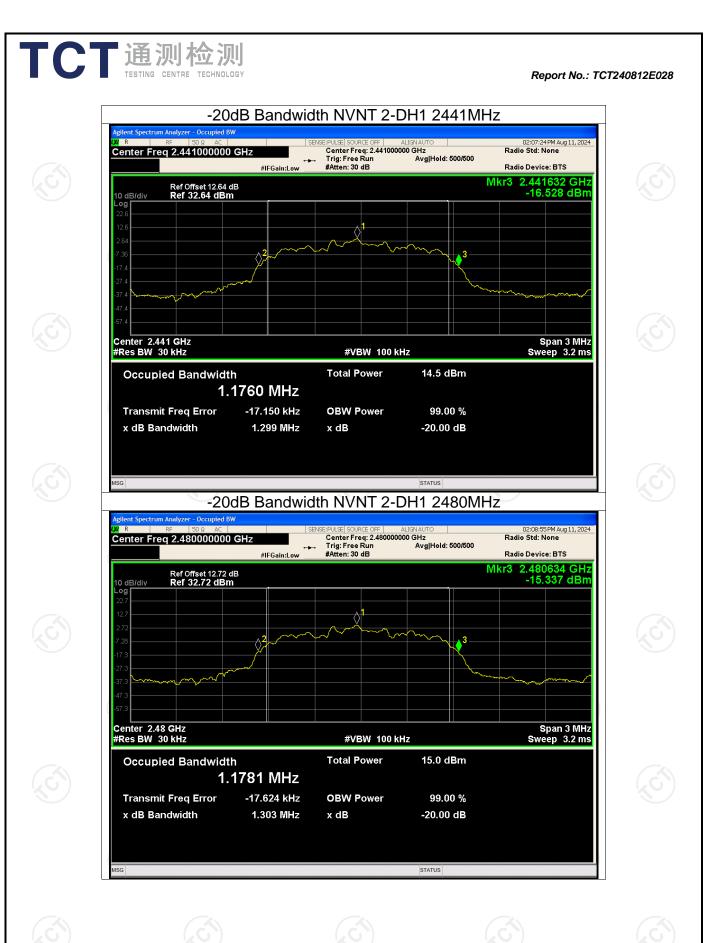
Report No.: TCT240812E028

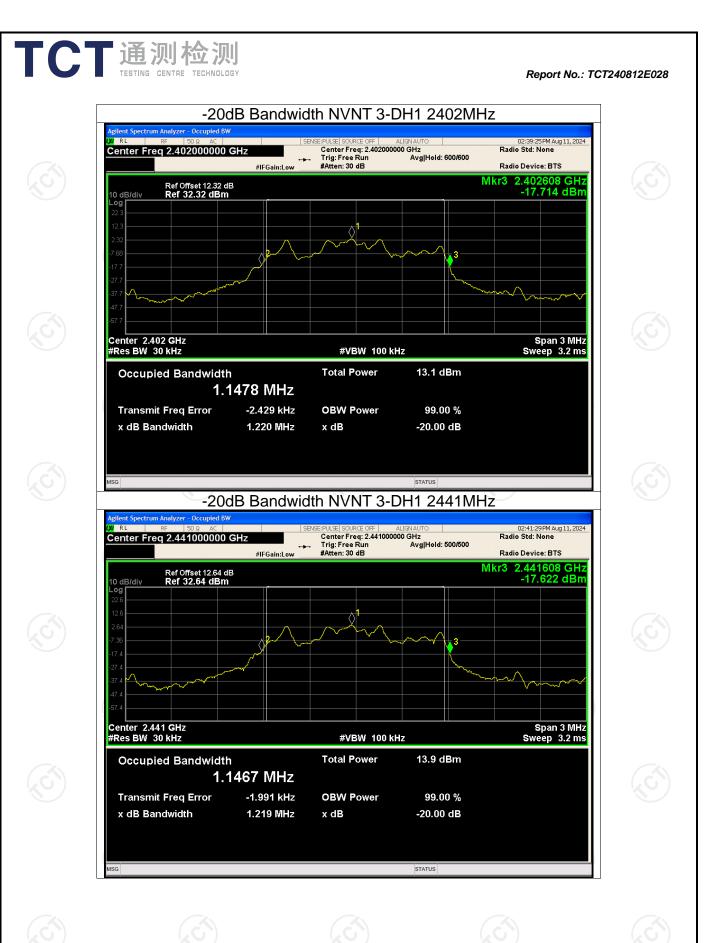
Page 37 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT通测检测 TESTING CENTRE TECHNOLOGY

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict			
NVNT	1-DH1	2402	0.931	Pass			
NVNT 🚫	1-DH1	2441	0.932	Pass			
NVNT	1-DH1	2480	0.933	Pass			
NVNT	2-DH1	2402	1.300	Pass			
NVNT	2-DH1	2441	1.299	Pass			
NVNT	2-DH1	2480	1.303	Pass			
NVNT	3-DH1	2402	1.220	Pass			
NVNT	3-DH1	2441	1.219	Pass			
NVNT	3-DH1	2480	1.219	Pass			
2)						




Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 40 of 99

Report No.: TCT240812E028

	通测检测 STING CENTRE TECHNOLOGY
--	--

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.824	2402.822	0.998	0.933	Pass
NVNT	1-DH1	2440.822	2441.820	0.998	0.933	Pass
NVNT	1-DH1	2478.822	2479.820	0.998	0.933	Pass
NVNT	2-DH1	2401.828	2402.824	0.996	0.869	Pass
NVNT 🐇	2-DH1	2440.824	2441.832	1.008	0.869	Pass
NVNT	2-DH1	2478.826	2479.824	0.998	0.869	Pass
NVNT	3-DH1	2401.822	2402.822	1	0.813	Pass
NVNT	3-DH1	2440.828	2441.826	0.998	0.813	Pass
NVNT	3-DH1	2478.82	2479.824	1.004	0.813	Pass

Carrier Frequencies Separation

11:48:15 AM Aug 11, 2024 TRACE 123456 TYPE MWWWWW DET PNNNNN PNO: Wide 🖵 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 824 GHz 6.348 dBm Ref Offset 12.32 dB Ref 20.00 dBm 10 dB/div ∟og **r** \Diamond^2 **≜**¹ Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION VALUE 6.348 dBm 6.360 dBm N 1 f N 1 f 2.401 824 GHz 2.402 822 GHz 5 8 9 10 11 STATUS CFS NVNT 1-DH1 2441MHz 11:57:59 AM Aug 11, 2024 U R SENSE:PULSE SOURCE OFF TRACE 1 2 3 4 TYPE MWWW DET P N N N Center Freq 2.441500000 GHz Avg Type: Log-Pwr Avg|Hold>100/100 PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 822 GHz 7.186 dBm Ref Offset 12.64 dB Ref 20.00 dBm 10 dB/di Log r **⊘**² Span 2.000 MHz Sweep 1.000 ms (1001 pts) Center 2.441500 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH 2.440 822 GHz 2.441 820 GHz 7.186 dBm 7.196 dBm N 1 f 1 f 8 C 10 STATUS

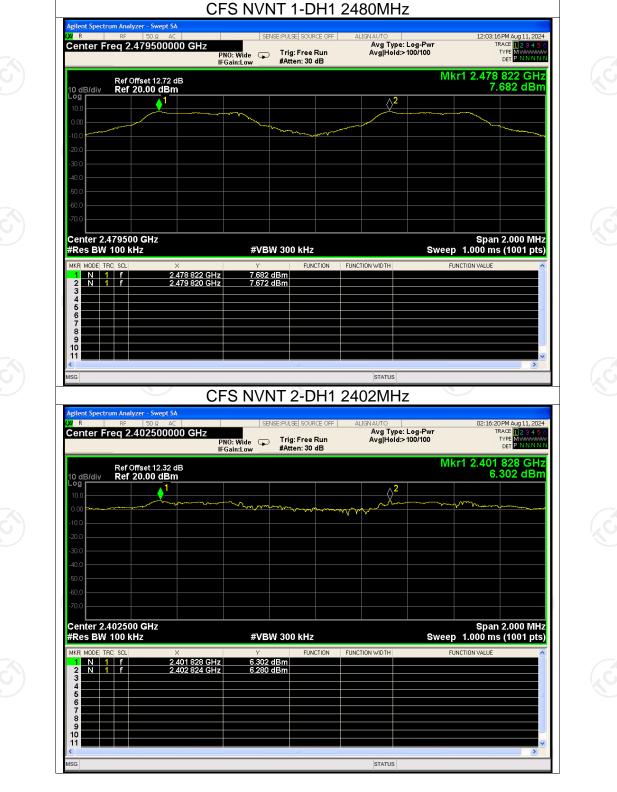
Test Graphs CFS NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold:>100/100

SENSE: PULSE SOURCE OF

Report No.: TCT240812E028

R


gilent Spectrum Analyzer - Swept SA

Center Freq 2.402500000 GHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 46 of 99

CFS NVNT 2-DH1 2441MHz SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold>100/100 02:25:40 PM Aug 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N PNO: Wide Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 824 GHz 7.096 dBm

Span 2.000 MHz Sweep 1.000 ms (1001 pts)

FUNCTION VALUE

⊘²

	STATUS	
CFS NVNT 2-DH1 2480)MF	Ιz

FUNCTION FUNCTION WIDTH

#VBW 300 kHz

7.096 dBm 7.070 dBm

R RF enter Freq 2.47		Tri	.se SOURCE OFF g: Free Run ten: 30 dB	ALIGNAUTO Avg Type Avg Hold:	:: Log-Pwr >100/100	02:31:18PM Aug TRACE TYPE M DET P	2 3 4 MAIN
dB/div Ref 20.	et 12.72 dB 00 dBm					r1 2.478 826 7.575	
	↓1						
00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mun					~
).0							
).0							
).0							
.0							
.0							
).0							
enter 2.479500 G Res BW 100 kHz	Hz	#VBW 30	0 kHz		Sweep	Span 2.00 1.000 ms (100	0 Mi 1 pt
R MODE TRC SCL	×	Y	FUNCTION	FUNCTION WIDTH	FU	INCTION VALUE	
N 1 f	2.478 826 GHz 2.479 824 GHz						
3							
5							
5 7							

10 dB/div Log **r**

gilent Spectrum Analyzer - Swept SA

Center 2.441500 GHz #Res BW 100 kHz

N 1 f N 1 f

MKR MODE

3 5

Center Freq 2.441500000 GHz

Ref Offset 12.64 dB Ref 20.00 dBm

2.440 824 GHz 2.441 832 GHz

Page 48 of 99

CFS NVNT 3-DH1 2402MHz gilent Spectrum Analyzer - Swept SA SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold>100/100 03:38:35 PM Aug 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Center Freq 2.402500000 GHz PNO: Wide Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 822 GHz 6.030 dBm Ref Offset 12.32 dB Ref 20.00 dBm **⊘**² Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.401 822 GHz 2.402 822 GHz 6.030 dBm 6.023 dBm

STATUS

CFS NVNT 3-DH1 2441MHz

	ım Analyzer - Swep								
Center Fr	RF 50 Ω eq 2.441500	0000 GHz	NO: Wide	E:PULSE SOUR Trig: Free F #Atten: 30 c	Run	ALIGNAUTO Avg Typ Avg Hold	e: Log-Pwr ⇒100/100	т	3PM Aug 11, 2024 RACE 123456 TYPE MWWWW DET PNNNN
10 dB/div	Ref Offset 12.6 Ref 20.00 d								828 GHz 792 dBm
10.0		1	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
-10.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¥~~~~~	m			
-20.0									
-30.0									
-40.0									
-60.0									
-70.0									
Center 2.4 #Res BW	41500 GHz 100 kHz		#VBW	300 kHz			Swee		2.000 MHz s (1001 pts)
MKR MODE TR	C SCL	× 2.440 828 GHz	Y 6.792 d	FUNC	TION F	FUNCTION WIDTH	F	UNCTION VALUE	^
2 N 1 3	f	2.441 826 GHz	6.503 d	Bm					
4 5 6									=
7 8 9									
10									~
K MSG				Ш		STATUS			<u>></u>

Report No.: TCT240812E028

RL

10 dB/div Log **r**

Center 2.402500 GHz #Res BW 100 kHz

N 1 f N 1 f

MKR MODE

3 5

Page 49 of 99

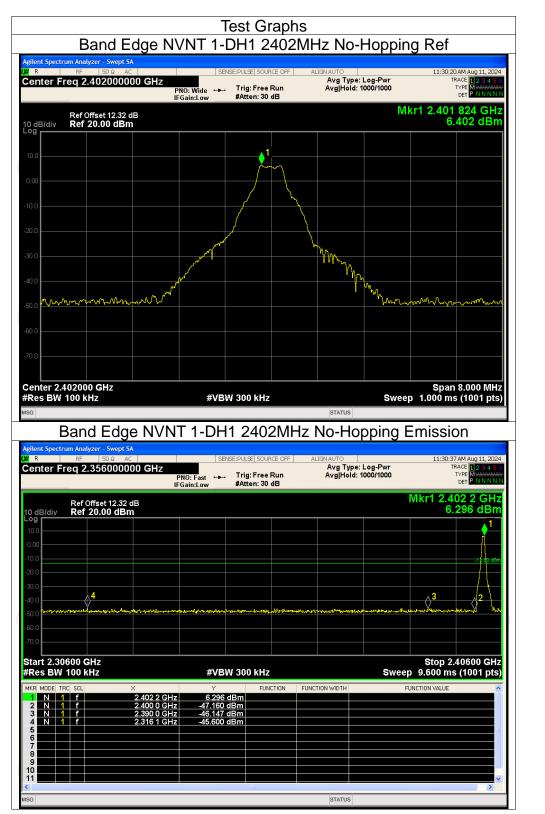
		480MHz	NT 3-DH1 2	CFS NV	Analyzer - Swept SA	Agilent Spectrum
6 ₩ N	03:15:53PM Aug 11, 2024 TRACE 123456 TYPE MWWWWW DET PNNNNN	ALIGN AUTO Avg Type: Log-Pwr Avg Hold>100/100	NSE:PULSE SOURCE OFF		RF 50Ω AC 1 2.479500000 G	LXI RL
	1 2.478 820 GHz 7.034 dBm	Mkr1			tef Offset 12.72 dB tef 20.00 dBm	10 dB/div Log
						0.00 ******* •10.0
						-30.0 -40.0 -50.0 -60.0
	Span 2.000 MHz 1.000 ms (1001 pts)	Sweep 1	W 300 kHz	#VB	9500 GHz 0 kHz	-70.0 Center 2.47 #Res BW 1
	TION VALUE	JNCTION WIDTH FUNCT	GBm dBm	20 GHz 7.034 24 GHz 7.030	CL X f 2.478 E f 2.479 E	MKR MODE TRC 1 N 1 2 N 1 3 4
						5 6 7 8 9 10
	×	STATUS				MSG

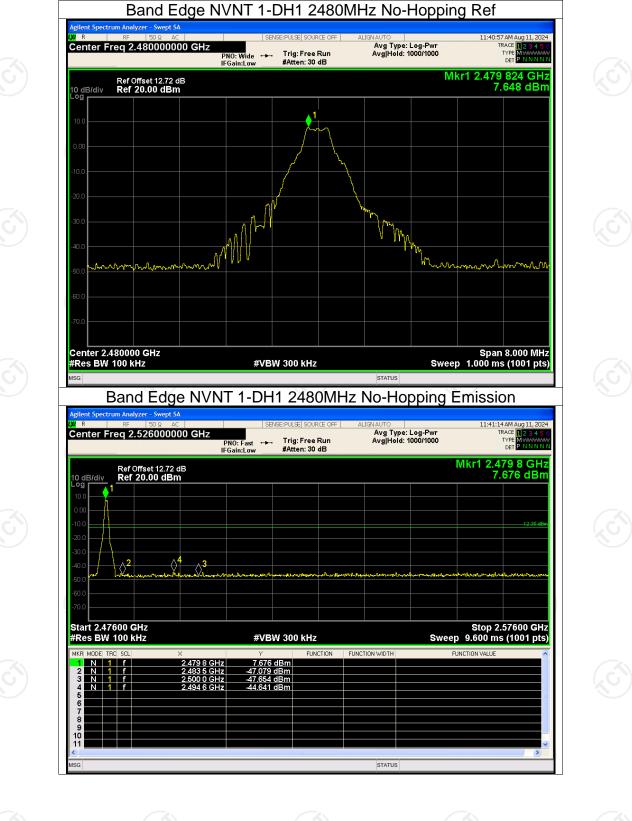
Hotline: 400-6611-140	Tel: 86-755-27673339	Fax: 86-755-27673332	http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-51.99	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-52.29	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-51.67	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-52.92	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-51.24	-20	Pass
NVNT 🖔	3-DH1	2480	No-Hopping 🖔	-52.07	-20	Pass

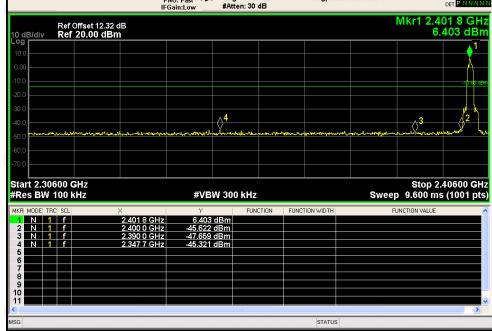
Report No.: TCT240812E028

Page 51 of 99



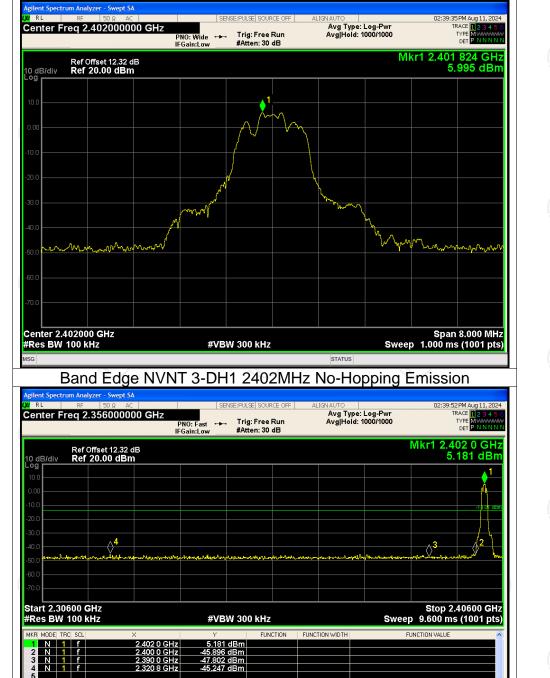


Report No.: TCT240812E028



Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 02:05:09 PM Aug 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N Center Freq 2.402000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 832 GHz 6.351 dBm Ref Offset 12.32 dB Ref 20.00 dBm m Margan unn nam m Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2-DH1 2402MHz No-Hopping Emission SENSE:PULSE SOURCE OFF 5 PM Aug 11, 2024 Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 TRACE TYPE N DET P PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB

Report No.: TCT240812E028


10 dB/div

l R

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

STATUS

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

10 11

ISG

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-51.11	-20	Pass
NVNT	1-DH1	2480	Hopping	-52.11	-20	Pass
NVNT	2-DH1	2402	Hopping	-50.89	-20	Pass
NVNT	2-DH1	2480	Hopping	-51.98	-20	Pass
NVNT	3-DH1	2402	Hopping	-50.04	-20	Pass
NVNT 🖔	3-DH1	2480	Hopping	-51.45	-20	Pass

Band Edge(Hopping)

TCT 通测检测 TESTING CENTRE TECHNOLOGY

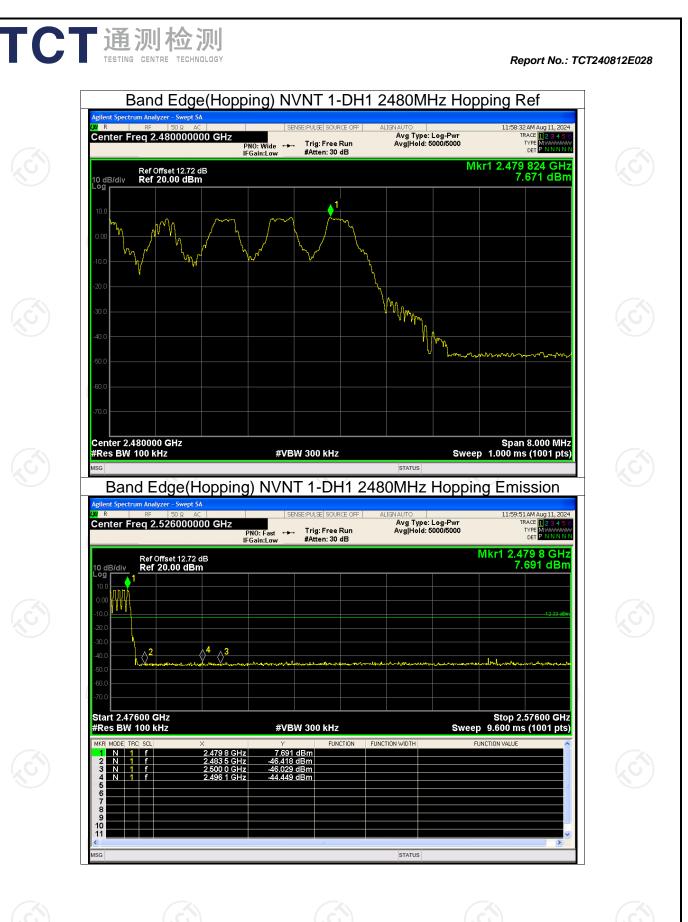
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref gilent Spectrum Analyzer - Swept SA 31 AM Aug 11, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.404 824 GHz 6.371 dBm Ref Offset 12.32 dB Ref 20.00 dBm MM Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission SENSE:PULSE SOURCE OFF ALIGN AU 11:44:51 AM Aug 11, 2024 TRACE 1 2 3 4 5 6 Center Freq 2.356000000 GHz Avg Type: Log-Pwr

Test Graphs

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

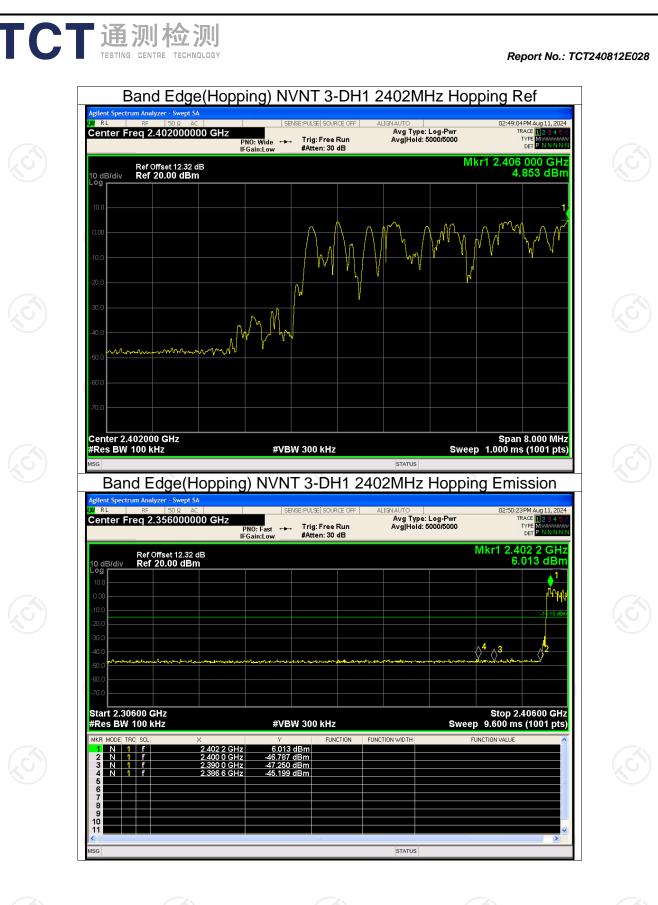

10 dB/div Log

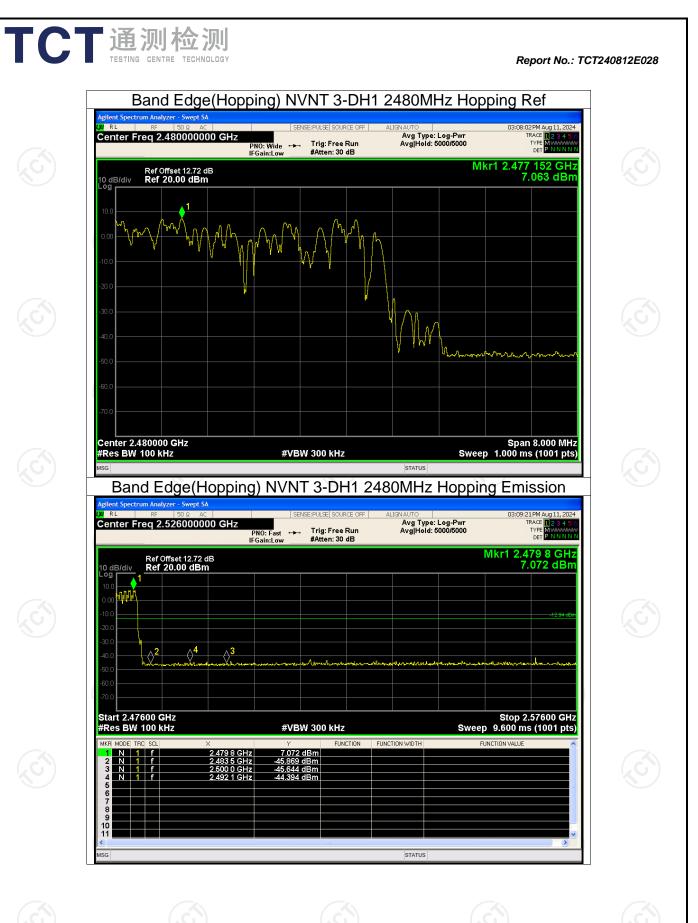
l R

			1.0	Gain:Low		ten: 30 dB		_					
		Offset 12.32 o									IVI	Kr1 2.4	404 8 G
dB/div	Ref	20.00 dBn	n							·		•	.355 dI
- 1													
0													h
o													
													-15.6
													-10.0
													2
	here and the	and wanter and	Ana march	have the second s	-	www.watarata		- when	-	and the section	4	har	Marine
	1600 (GH7										Ston 2	240600 (
rt 2.30				#VE	3W 30	0 kHz				Sw	/eep		
art 2.30 es BW	100	kHz			3W 301					Sw		9.600 m	
nt 2.30 es BW	100 RC SCL	kHz	×	Y		0 KHZ	DN I	FUNCT	ION WIDTH	Sw			
nt 2.30 es BW MODE TP	100 I	kHz	2.404 8 GHz	۲ 6.355	5 dBm		DN I	FUNCTI	ION WIDTH	Sw		9.600 m	
nt 2.30 es BW MODE TP	100 RC SCL f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm)N	FUNCTI	ION WIDTH	Sw		9.600 m	
Int 2.30 es BW MODE TR N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz	۲ 6.355	5 dBm 7 dBm 5 dBm)N	FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TF N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm		NC	FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TF N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm)N	FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TR N 1 N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm		NC NC	FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TR N 1 N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm			FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TF N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm		NC	FUNCTI	ION WIDTH	Sw		9.600 m	
MODE TF N 1 N 1 N 1	100 RC SCL f f	kHz	2.404 8 GHz 2.400 0 GHz 2.390 0 GHz	6.355 -46.317 -47.525	5 dBm 7 dBm 5 dBm			FUNCTI	ION WIDTH	Sw		9.600 m	2.40600 (s (1001

Report No.: TCT240812E028

Page 59 of 99



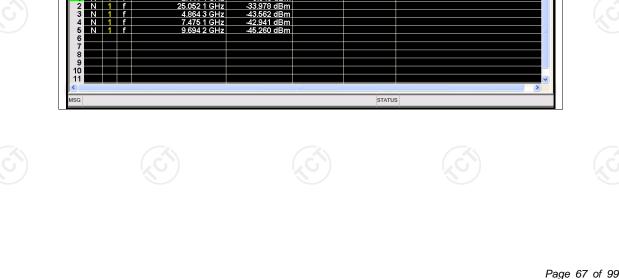

Page 60 of 99

Page 62 of 99

Page 64 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

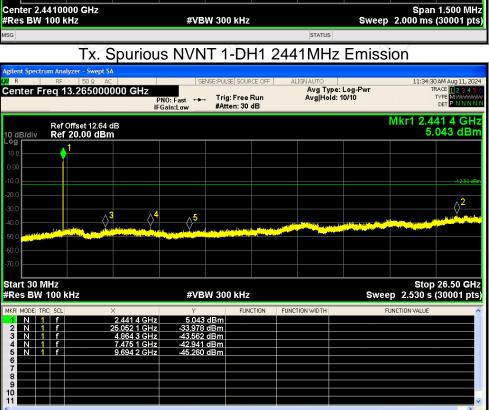
Conducted RF Spurious Emission Frequency (MHz) Max Value (dBc) Limit (dBc) Verdict Mode


Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-40.96	-20	Pass
NVNT	1-DH1	2441	-41.16	-20	Pass
NVNT	1-DH1	2480	-41.43	-20	Pass
NVNT	2-DH1	2402	-41.11	-20	Pass
NVNT	2-DH1	2441	-51.35	-20	Pass
NVNT	2-DH1	2480	-41.59	-20	Pass
NVNT 🚫	3-DH1	2402	-40.00	-20	Pass
NVNT	3-DH1	2441	-41.04	-20	Pass
NVNT	3-DH1	2480	-41.15	-20	Pass
	(

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 65 of 99

Fax: 86-755-27673332 Hotline: 400-6611-140 Tel: 86-755-27673339 http://www.tct-lab.com


#VBW 300 kHz STATUS

Tx. Spurious NVNT 1-DH1 2441MHz Ref

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

1

SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

TCT通测检测 TESTING CENTRE TECHNOLOGY

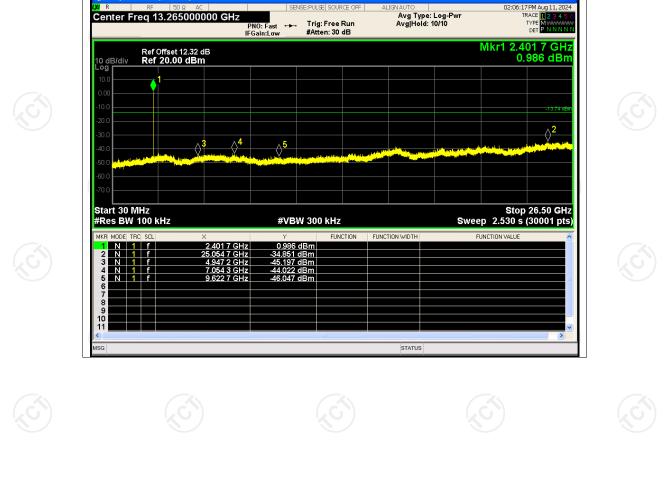
gilent Spect

10 dB/div


Center Freq 2.441000000 GHz

Ref Offset 12.64 dB Ref 20.00 dBm

11:33:59 AM Aug 11, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N


Mkr1 2.440 823 15 GHz 7.185 dBm

STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

MSG

TCT通测检测 TESTING CENTRE TECHNOLOGY

U F

Center Freq 13.265000000 GHz

Tx. Spurious NVNT 2-DH1 2402MHz Emission

SENSE:PULSE SOURCE OFF

TX. Spurious NVNT 2-DH1 2480MHz Ref

U F

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 12.72 dB Ref 20.00 dBm

 \bigcirc ³

Tx. Spurious NVNT 2-DH1 2480MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Page 71 of 99

Report No.: TCT240812E028

02:10:13PM Aug 11, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N

______<mark>2</mark>

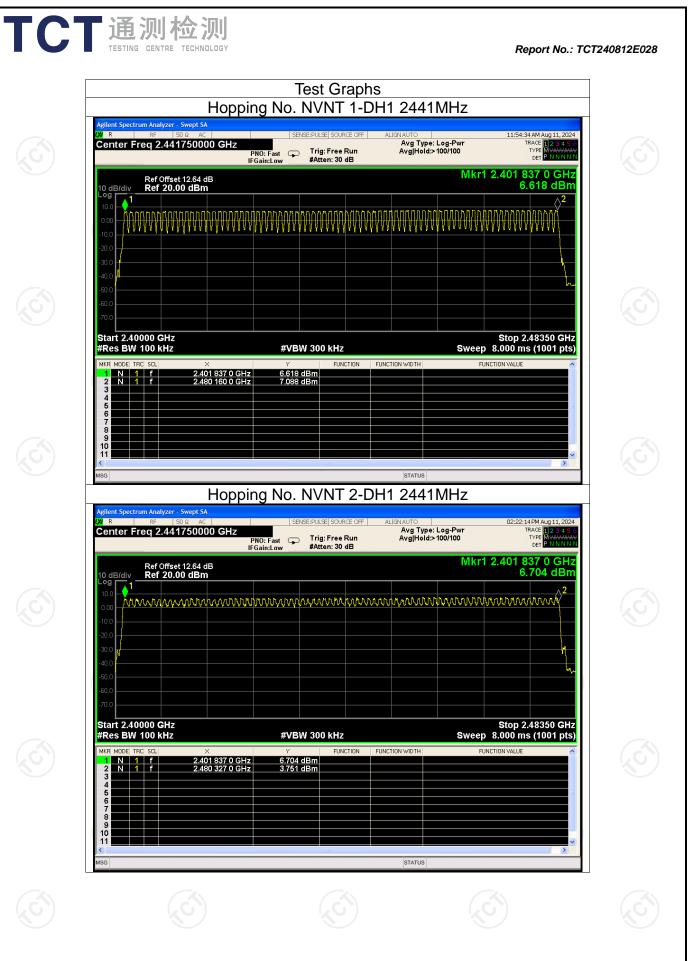
Mkr1 2.480 2 GHz 4.813 dBm

TCT通测检测 TESTING CENTRE TECHNOLOGY

Tx. Spurious NVNT 3-DH1 2441MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spect


Report No.: TCT240812E028

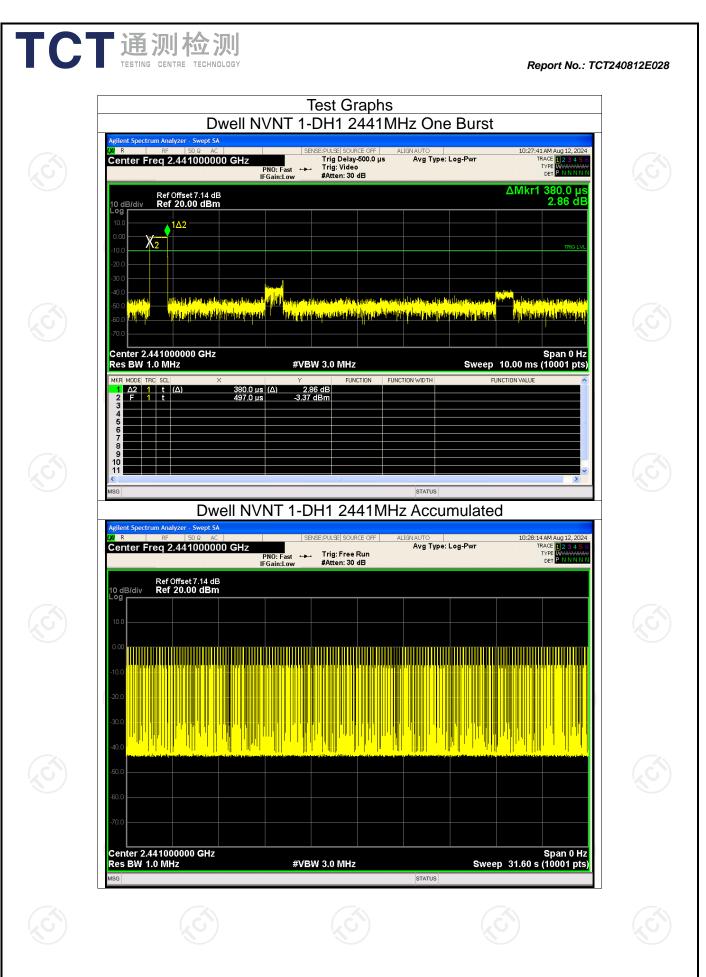
Page 73 of 99

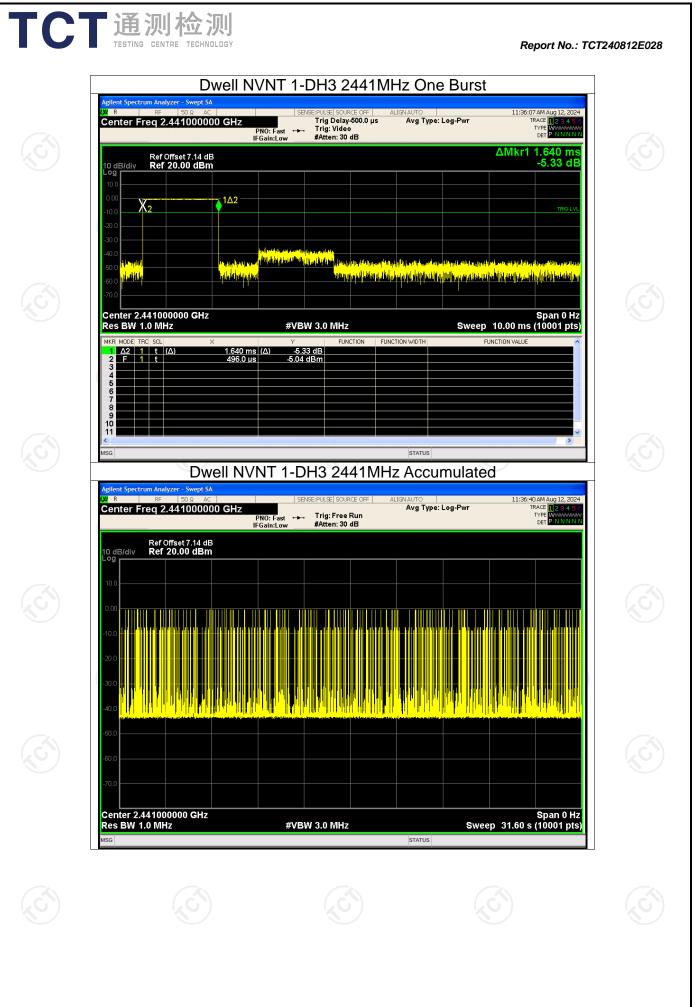
Report No.: TCT240812E028

		则检测 CENTRE TECHNOLOGY	of Honning	r Channal	Re	port No.: TCT.	240812E028
C	Condition NVNT	Mode 1-DH1	Hopping N 79	g Channel lumber	Limit 15	Verd Pas	SS
	NVNT NVNT	2-DH1 3-DH1	79 79		15 15	Pas Pas	
						Page	75 of 99

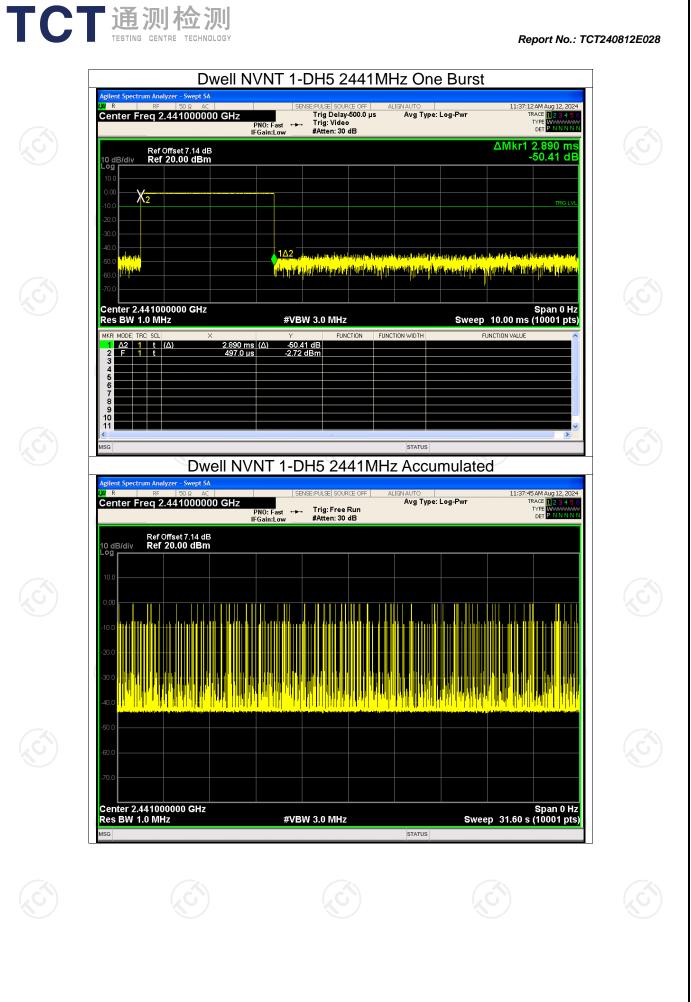
Page 76 of 99

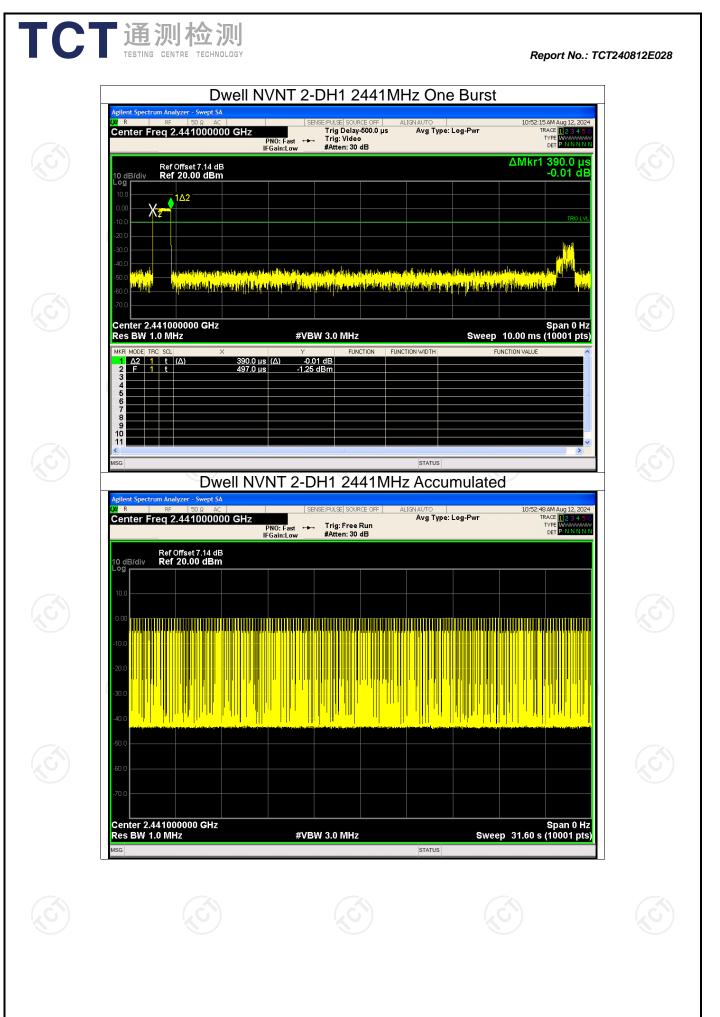
Center Fre	Analyzer - Swept SA RF 50 ג בכ q 2.441750000 (Ref Offset 12.64 dB Ref 20.00 dBm	SHZ PN0: Fast IFGain:Low	#Atten: 30 dB	ALIGNAUTO Avg Type: Lo Avg Hold>100	g-Pwr proo Mkr1 2.401	2.775 dBm ^2	
-60.0 -70.0 #Res BW 10 #KR MODE TRC 1 N 1 2 N 1 3 4 4 5 5 5 6 7 8	00 kHz scl × f 2.401 58	Y 86 5 GHz 2.775	S dBm	FUNCTION WIDTH	Stop Sweep 8.000 n FUNCTION VALUE		
9 10 11 MSG				STATUS		×	

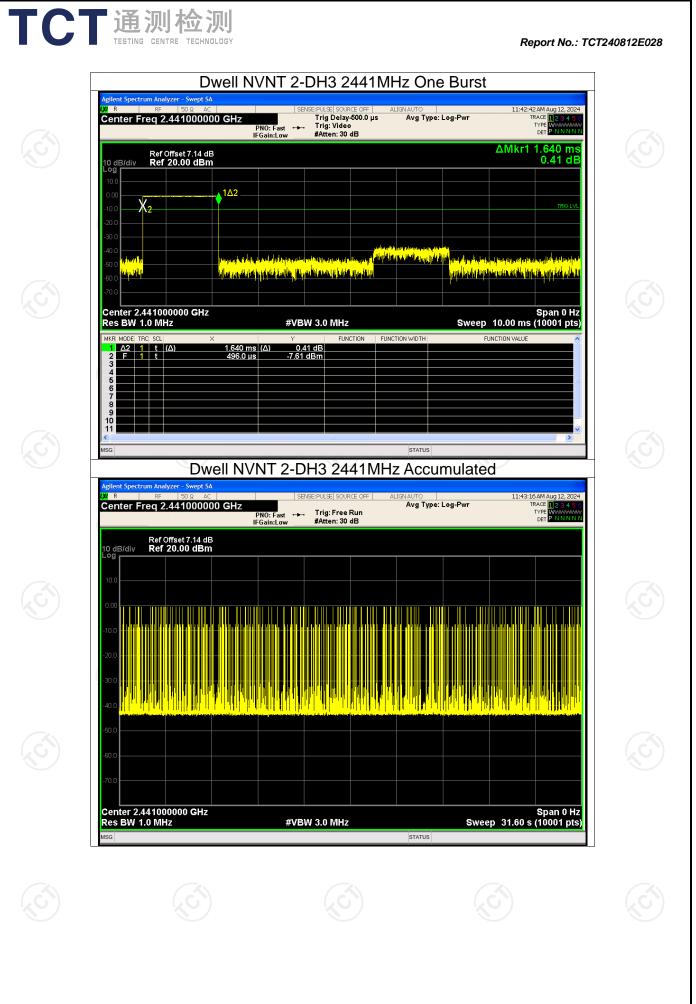

TCT	通测检测
	TESTING CENTRE TECHNOLOGY

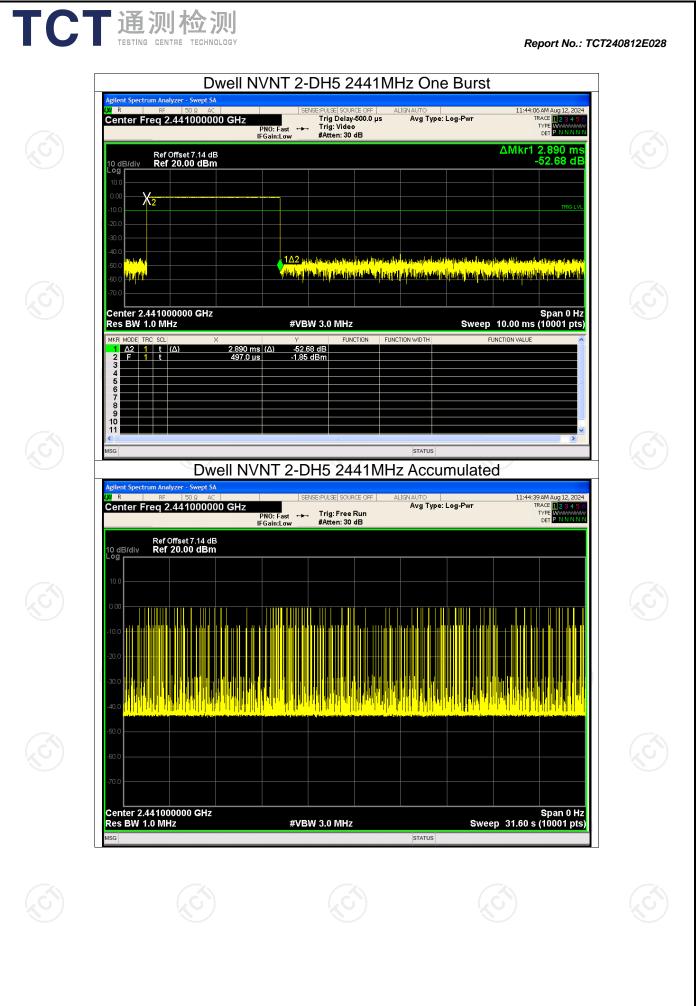

Report No.: TCT240812E028

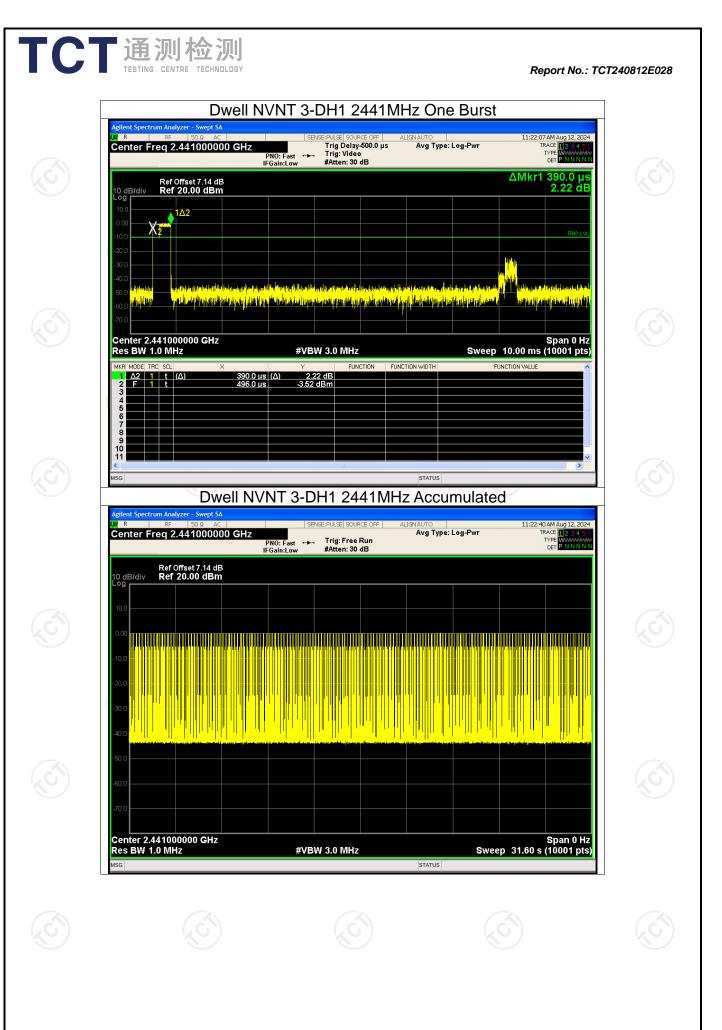
Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict	
NVNT	1-DH1	2441	0.38	121.22	319	31600	400	Pass	
NVNT	1-DH3	2441	1.64	254.20	155	31600	400	Pass	
NVNT	1-DH5	2441	2.89	242.76	84	31600	400	Pass	
NVNT 🐇	2-DH1	2441	0.39	123.24	316	31600	400	Pass	
NVNT	2-DH3	2441	1.64	260.76	159	31600	400	Pass	
NVNT	2-DH5	2441	2.89	306.34	106	31600	400	Pass	
NVNT	3-DH1	2441	0.39	124.41	319	31600	400	Pass	
NVNT	3-DH3	2441	1.64	250.92	153	31600	400	Pass	
NVNT	3-DH5	2441	2.89	315.01	109	31600	400	Pass	

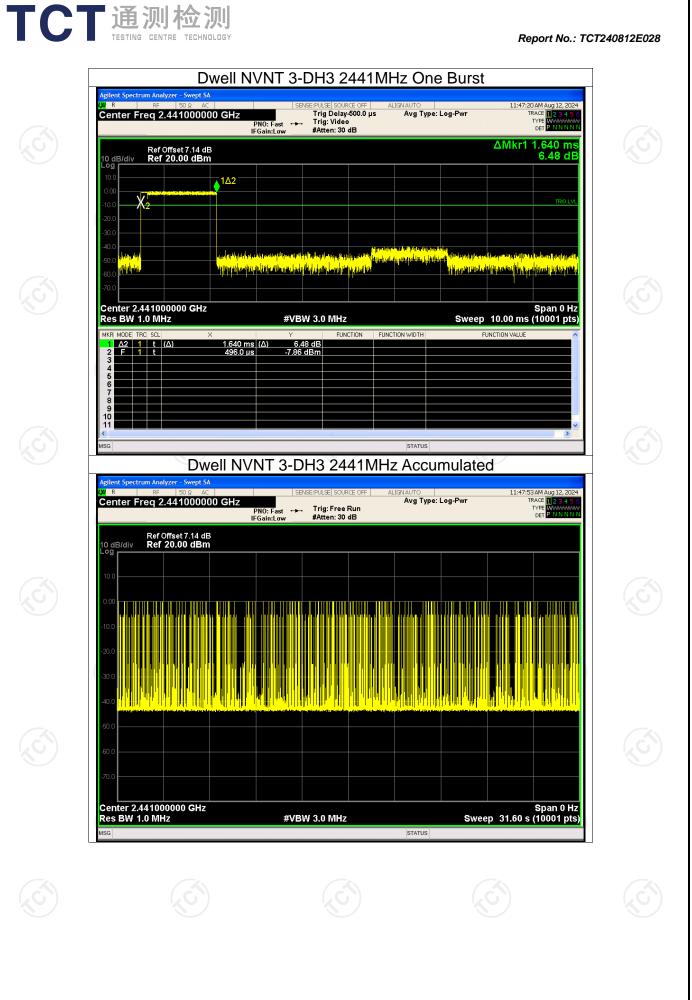

Page 78 of 99

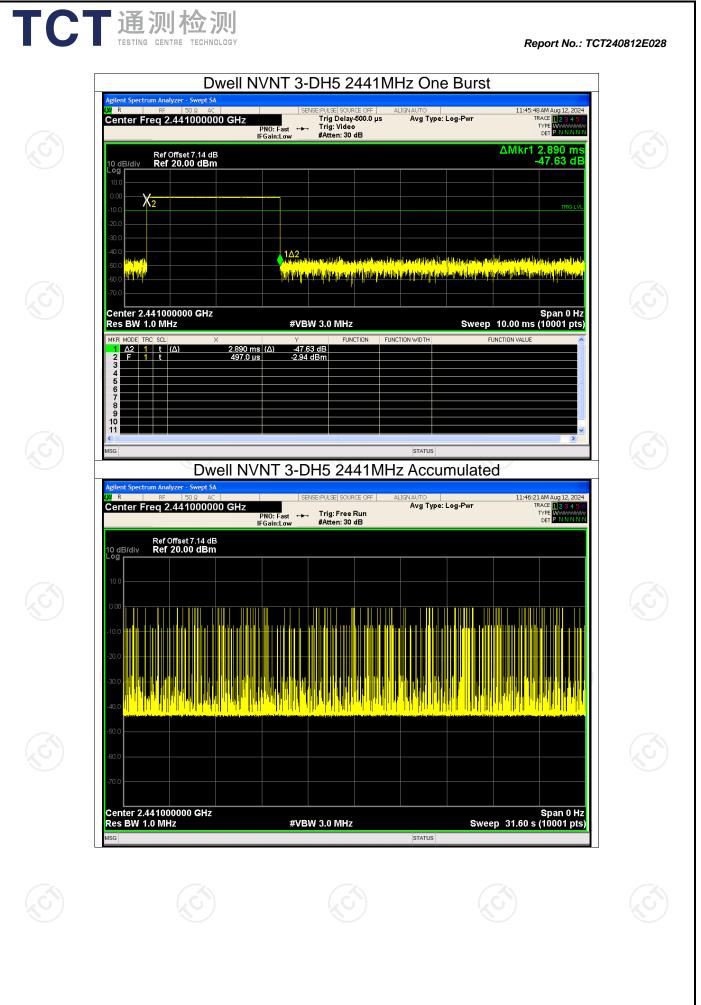

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Page 80 of 99




Page 82 of 99


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 84 of 99

Page 87 of 99