

Project No.: ZKT-2203251897E-1 Page 1 of 78

FCC TEST REPORT FCC ID:ZNPWD-4505AC

Report Number	: ZKT-2203251897E-1	
Date of Test	. Mar. 24, 2022 to May. 06, 2022	
Date of issue	: May. 06, 2022	
Total number of pages	78	
Test Result	: PASS	
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.	
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China	
Applicant's name	SHENZHEN CENTURY XINYANG TECH CO., LTD	
Address	. 3F, North Building, Bantian High-tech industrial Zone, No. 2 of Bel Road, Longgang, Shenzhen, Guangdong	ll -
	SHENZHEN CENTURY XINYANG TECH CO., LTD	
Address	3F, North Building, Bantian High-tech industrial Zone, No. 2 of Bel Road, Longgang, Shenzhen, Guangdong	I
Test specification:		
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.407 : ANSI C63.10:2013 KDB 789033 D02 v01r02	
Test procedure	:/	
Non-standard test method	: N/A	
Test Report Form No	TRF-EL-113_V0	
Test Report Form(s) Originator	ZKT Testing	
Master TRF	Dated: 2020-01-06	
test (EUT) is in compliance with the F identified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment und FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document ma al only, and shall be noted in the revision of the document.	
Product name	: Wireless USB Adapter	
Trademark	: N/A	
Model/Type reference	: WD-4505AC	
Ratings	: Input: DC 5V	

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

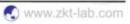
Table of Contents		Page
1. VERSION		5
2.SUMMARY OF TEST RESULTS		6
2.1 TEST FACILITY		7
2.2 MEASUREMENT UNCERTAINTY		7
3. GENERAL INFORMATION		8
3.1 GENERAL DESCRIPTION OF EUT		8
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 1	1
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	1	1
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	1	2
4.EMC EMISSION TEST	1	4
4.1 CONDUCTED EMISSION MEASUREMENT		4
4.1 CONDUCTED EMISSION MEASUREMENT 4.1.1 POWER LINE CONDUCTED EMISSION LIMITS		4
4.1.2 TEST PROCEDURE	1	4
4.1.3 DEVIATION FROM TEST STANDARD	1	4
4.1.4 TEST SETUP	1	5
4.1.5 EUT OPERATING CONDITIONS		5
4.1.6 TEST RESULT	1	6
4.2 RADIATED EMISSION MEASUREMENT		8
4.2.1 APPLICABLE STANDARD		8
4.2.2 CONFORMANCE LIMIT 4.2.3 MEASURING INSTRUMENTS		8 8
4.2.3 MEASORING INSTROMENTS 4.2.4 TEST CONFIGURATION		o 9
4.2.5 TEST PROCEDURE		0
4.2.6 TEST RESULT	2	-
5.POWER SPECTRAL DENSITY TEST	2	9
5.1 APPLIED PROCEDURES / LIMIT		9
5.2 TEST PROCEDURE	-	0
5.3 DEVIATION FROM STANDARD		0
5.4 TEST SETUP 5.5 EUT OPERATION CONDITIONS		0 0
5.6 TEST RESULTS	3	-
6. 26DB & 6DB & 99% EMISSION BANDWIDTH	3	7
6.1 APPLIED PROCEDURES / LIMIT	3	7
6.2 TEST PROCEDURE	3	7
6.3 EUT OPERATION CONDITIONS		8
6.4 TEST RESULTS	3	8

Project No.: ZKT-2203251897E-1 Page 4 of 78

Table of Contents	Page
7.MAXIMUM CONDUCTED OUTPUT POWER	45
7.1 PPLIED PROCEDURES / LIMIT	45
7.2 TEST PROCEDURE	45
7.3 DEVIATION FROM STANDARD	46
7.4 TEST SETUP	46
7.5 EUT OPERATION CONDITIONS	46
7.6 TEST RESULTS	47
8.OUT OF BAND EMISSIONS	48
8.1 APPLICABLE STANDARD	48
8.2 TEST PROCEDURE	48
8.3 DEVIATION FROM STANDARD	48
8.4 TEST SETUP	48
8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS	49 49
9.SPURIOUS RF CONDUCTED EMISSIONS	55
9.1 CONFORMANCE LIMIT	55
9.2 MEASURING INSTRUMENTS	55
9.3 TEST SETUP	55
9.4 TEST PROCEDURE	55
9.5 TEST RESULTS	55
10.FREQUENCY STABILITY MEASUREMENT	66
10.1 LIMIT	66
10.2 TEST PROCEDURES	66
10.3 TEST SETUP LAYOUT	66
10.4 EUT OPERATION DURING TEST	66
10.5 TEST RESULTS	66
11.ANTENNA REQUIREMENT	77
12. TEST SETUP PHOTO	78
13. EUT CONSTRUCTIONAL DETAILS	78

Ð

Project No.: ZKT-2203251897E-1 Page 5 of 78


1. VERSION

	Report No.	Version	Description	Approved
	ZKT-2203251897E-1	Rev.01	Initial issue of report	May. 06, 2022
			C.	
-				

2.SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

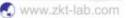
	FCC Part15 (15.407) , Subpart E		
Standard Section	Test Item	Judgment	Remar
15.209(a), 15.407 (b)(1) 15.407 (b)(4) 15.407 (b)(8)	Spurious Radiated Emissions	PASS	
15.207	Conducted Emission	PASS	
15.407 (a)(12) 15.1049	PASS		
15.407(e)	6 dB bandwidth	PASS	
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS	S.
2.1051, 15.407(b)(1) 15.407(b)(4)	Band Edge	PASS	
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS	
2.1051, 15.407(b)	Spurious Emissions at Antenna Terminals	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China


FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033 CAB identifier: CN0110

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB
5	Conducted disturbance	U=3.2dB
6	RF Band Edge	U=1.68dB
7	RF power conducted	U=1.86dB
8	RF conducted Spurious Emission	U=2.2dB
9	RF Occupied Bandwidth	U=1.8dB
10	RF Power Spectral Density	U=1.75dB
11	humidity uncertainty	U=5.3%
12	Temperature uncertainty	U=0.59°C

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

	Product Name:	Wireless USB Ada	pter					
	Model No.:	WD-4505AC						
	Model Different .:	N/A ZKT-2203251897-1						
	Sample ID							
	Sample(s) Status:	Engineer sample						
		IEEE 802.11 WLAN Mode Supported	 №802.11ac/n (20MHz channel bandwidth) №802.11ac/n (40MHz channel bandwidth) №802.11ac(80MHz channel bandwidth) 802.11ac/n(HT20/HT40):MCS0-MCS15; 					
		Data Rate	802.11ac(VHT80):NSS1, MCS0-MCS9					
		Modulation	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11n/ac;					
	Product Description	Operating Frequency Range	 ∑5180-5240MHz for 802.11ac/n(HT20); 5190-5230MHz for 802.11ac/n(HT40); 5210MHz for 802.11 ac80; ∑5745-5825 MHz for 802.11ac/n(HT20); 5755-5795 MHz for 802.11ac/n(HT40); 5775MHz for 802.11 ac80; 					
		Number of Channels	⊠4 channels for 802.11ac/n20 in the 5180-5240MHz band ; 2 channels for 802.11 ac/n40 in the 5190-5230 MHz band ; 1 channels for 802.11 ac80 in the 5210MHz band ; ⊠5 channels for 802.11ac/n20 in the 5745-5825MHz band ; 2 channels for 802.11 ac/n40 in the 5755-5795 MHz band ; 1 channels for 802.11 ac80 in the 5775MHz band ;					
	Channel List	Please refer to the	Note 2.					
	Antenna Type:	External Antenna						
	Antenna gain:	2dBi						
	Power supply:	Input: DC 5V						
	SWITCHING POWER ADAPTER:	N/A						

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

802.11ac/n(20MHz) Frequency Channel								
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	
36	5180	44	5220	-	-	-	-	
40	5200	48	5240		-	-	-	

	802.11ac/n(40MHz) Frequency Channel							
	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)
Ī	38	5190	-	-	-	-	-	-
	46	5230	-	-	-	-	-	-

802.11ac (80MHz) Frequency Channel					
Channel	Frequency (MHz)				
42 5210					

+86-400-000-9970

1

802.11ac/n(20 MHz) Frequency Channel							
Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)	Channel	Frequenc y (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-		-	-

802.11ac/n(40MHz) Frequency Channel								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
151	5755	159	5795	-	- 4 4			

802.11ac 80MHz Frequency Channel				
Channel Frequency (MHz)				
155 5775				

www.zkt-lab.com

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode

Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Pretest Mode	Description
Mode 1	802.11ac / n 20 CH36/ CH40/ CH 48 802.11ac /n 20 CH149/ CH157/ CH 165
Mode 2	802.11ac / n 40 CH38/ CH 46 802.11ac / n 40 CH 151 / CH 159
Mode 3	802.11 ac80 CH 42/CH 155
Mode 4	Link Mode

Conducted Emission			
Final Test Mode Description			
Mode 5	Link Mode		

For Radiated Emission				
Final Test Mode	Description			
Mode 1	802.11ac / n 20 CH36/ CH40/ CH 48 802.11ac /n 20 CH149/ CH157/ CH 165			
Mode 2	802.11ac / n 40 CH38/ CH 46 802.11ac / n 40 CH 151 / CH 159			
Mode 3	802.11 ac80 CH 42/CH 155			

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

Test Software	Realtek Test Tool	
Power level setup	<10dBm	

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

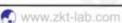
DC	Line	
_		

Radiated Emission

- 6	- 1		
- L	_		
	- '	9	

Conducted Spurious

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Wireless USB Adapter	N/A	WD-4505AC	N/A	EUT
A-1	Notebook	ook HP ZKT-001		N/A	Auxiliary
- 0	212				

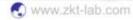
Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment


Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY45109572	Sep. 22, 2021	Sep. 21, 2022
2	Spectrum Analyzer (1GHz-40GHz)	Agilent	E4446A	100363	Sep. 22, 2021	Sep. 21, 2022
3	Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Sep. 22, 2021	Sep. 21, 2022
4	Bilog Antenna (30MHz-1400MHz)	Schwarzbeck	VULB9168	00877	Sep. 22, 2021	Sep. 21, 2022
5	Horn Antenna (1GHz-18GHz)	SCHWARZBEC K	BBHA9120D	1541	Sep. 22, 2021	Sep. 21, 2022
6	Horn Antenna (18GHz-40GHz)	A.H. System	SAS-574	588	Sep. 22, 2021	Sep. 21, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	N/A	Sep. 22, 2021	Sep. 21, 2022
8	Amplifier (1GHz-40GHz)	全聚达	DLE-161	097	Sep. 22, 2021	Sep. 21, 2022
9	Loop Antenna (9KHz-30MHz)	SCHWARZBEC K	FMZB1519B	014	Sep. 22, 2021	Sep. 21, 2022
10	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Sep. 22, 2021	Sep. 21, 2022
11	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
12	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Sep. 22, 2021	Sep. 21, 2022
13	CMW500 Test	R&S	CMW500	106504	Sep. 22, 2021	Sep. 21, 2022
14	ESG Signal Generator	Agilent	E4421B	GB40051203	Sep. 22, 2021	Sep. 21, 2022
15	Signal Generator	Agilent	N5182A	MY47420215	Sep. 22, 2021	Sep. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	١	/	λ
17	MWRF Power Meter Test system	MW	MW100-RPCB	١	Sep. 22, 2021	Sep. 21, 2022
17	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	١	١
18	RF Software	MW	MTS8310	V2.0.0.0	١	١
19	Turntable	MF	MF-7802BS	$\Lambda < \gamma$	/	١
20	Antenna tower	MF	MF-7802BS	$\Lambda \in \mathbb{R}$	1	١

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	N/A	Sep. 22, 2021	Sep. 21, 2022
2	LISN	CYBERTEK	EM5040A	N/A	Sep. 22, 2021	Sep. 21, 2022
3	Test Cable	N/A	C01	N/A	Sep. 22, 2021	Sep. 21, 2022
4	Test Cable	N/A	C02	N/A	Sep. 22, 2021	Sep. 21, 2022
5	EMI Test Receiver	R&S	ESCI3	101421	Sep. 22, 2021	Sep. 21, 2022
6	Triple-Loop Antenna	LAPLACE	RF300	9194	Sep. 22, 2021	Sep. 21, 2022

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

7 Absorbir	ng Clamp	DZ	ZN23201	N/A	Sep. 22, 2021	Page 13 of 78 Sep. 21, 2022
8 EMC S	oftware	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	١	1
	AB.			R		44

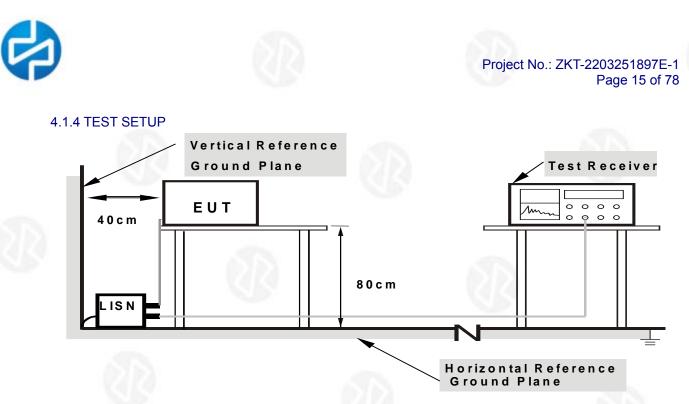
4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Limit (dBuV)		
	Quasi-peak	Average	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:


(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

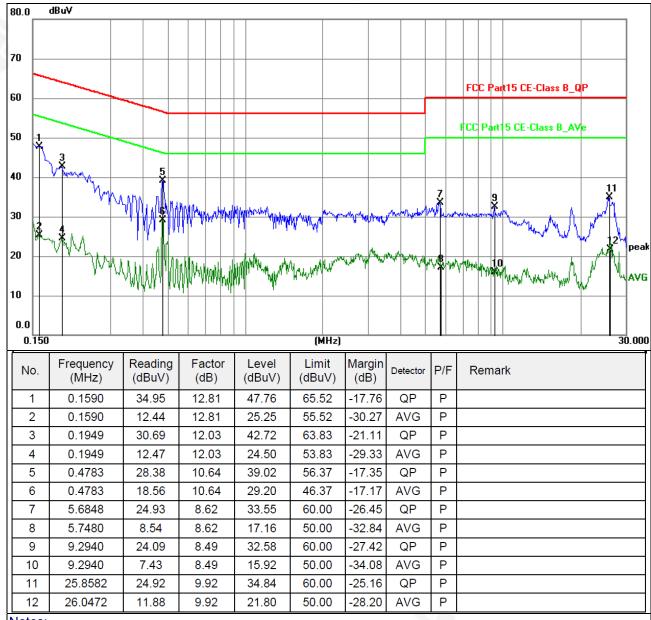
We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.



4.1.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		

Notes:


1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

4.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Γτεquency(ΙνιπΖ)	PEAK	AVERAGE	
Above 1000	74	54	

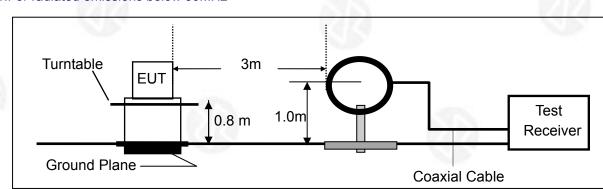
Remark :1. Emission level in dBuV/m=20 log (uV/m)

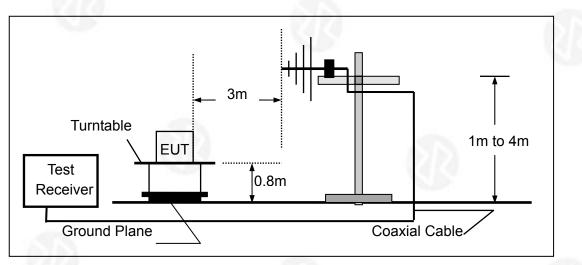
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

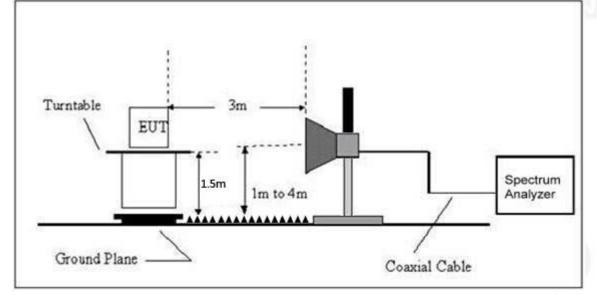
Limit line=Specific limits(dBuV) + distance extrapolation factor.

4.2.3 MEASURING INSTRUMENTS


The Measuring equipment is listed in the section 6.3 of this test report.



4.2.4 TEST CONFIGURATION



2.For radiated emissions from 30MHz to 1000MHz

3. Radiated Emission Test-Up Frequency Above 1GHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting	
Attenuation	Auto	
Start Frequency	1000 MHz	
Stop Frequency	10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average	

Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP	
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP	
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP	

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

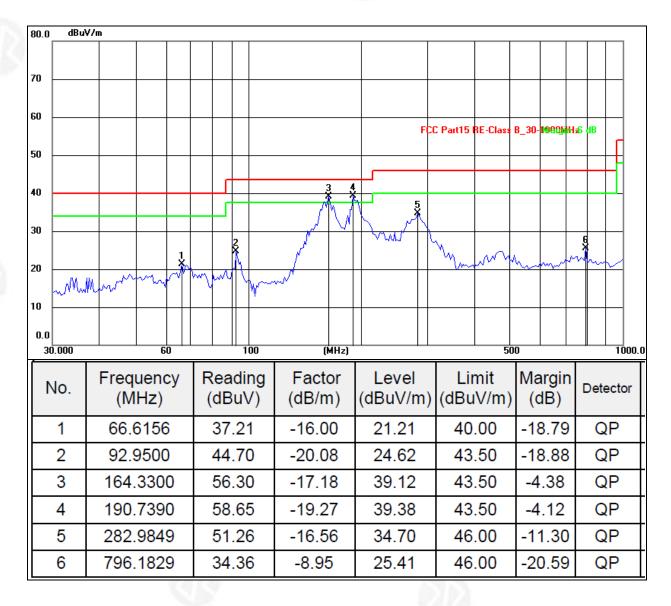
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Project No.: ZKT-2203251897E-1 Page 21 of 78

4.2.6 TEST RESULT

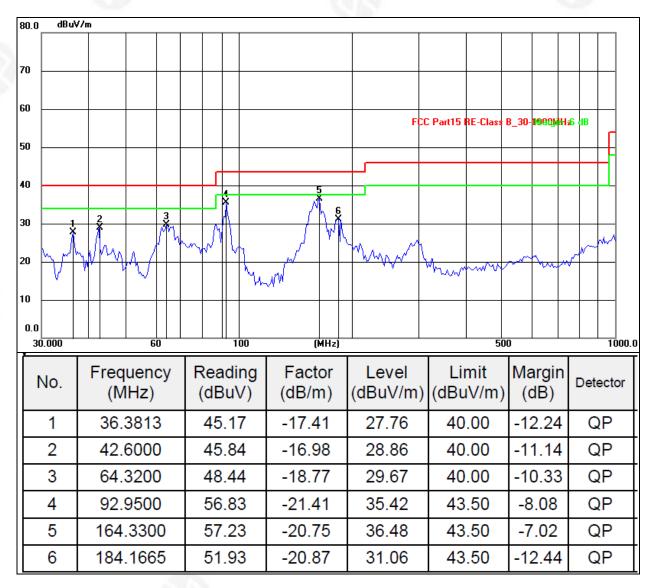
Between 9KHz – 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		



Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. The test data shows only the worst case 802.11n20 mode

Between 1GHz - 40GHz

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 5V
Test Mode :	5.2G TX- 802.11n20		

				802	.11n20							
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or			
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре			
Low Channel:5180MHz												
V	5150.00	42.12	30.45	8.77	38.66	59.10	74.00	-14.90	PK			
V	5150.00	32.07	30.45	8.77	38.66	49.05	54.00	-4.95	AV			
V	10360.00	42.26	30.45	8.77	38.66	59.24	74.00	-14.76	PK			
V	10360.00	32.14	30.45	8.77	38.66	49.12	54.00	-4.88	AV			
V	15540.00	41.85	30.44	9.31	38.55	59.27	74.00	-14.73	PK			
V	15540.00	31.58	30.44	9.31	38.55	49.00	54.00	-5.00	AV			
V	20720.00	42.58	30.72	9.45	38.69	60.00	74.00	-14.00	PK			
V	20720.00	32.65	30.72	9.45	38.69	50.07	54.00	-3.93	AV			
V	25900.00	42.55	30.65	9.99	38.57	60.46	74.00	-13.54	PK			
V	25900.00	32.68	30.65	9.99	38.57	50.59	54.00	-3.41	AV			
Н	5150.00	42.19	30.45	8.77	38.66	59.17	74.00	-14.83	PK			
Н	5150.00	32.55	30.45	8.77	38.66	49.53	54.00	-4.47	AV			
Н	10360.00	42.55	30.45	8.77	38.66	59.53	74.00	-14.47	PK			
Н	10360.00	32.65	30.45	8.77	38.66	49.63	54.00	-4.37	AV			
Н	15540.00	42.16	30.44	9.31	38.55	59.58	74.00	-14.42	PK			
Н	15540.00	32.66	30.44	9.31	38.55	50.08	54.00	-3.92	AV			
Н	20720.00	42.99	30.72	9.45	38.69	60.41	74.00	-13.59	PK			
Н	20720.00	32.15	30.72	9.45	38.69	49.57	54.00	-4.43	AV			
Н	25900.00	42.65	30.65	9.99	38.57	60.56	74.00	-13.44	PK			
Н	25900.00	32.25	30.65	9.99	38.57	50.16	54.00	-3.84	AV			

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:5200M	Hz			
V	5150.00	41.28	30.45	8.77	38.66	58.26	74.00	-15.74	PK
V	5150.00	31.34	30.45	8.77	38.66	48.32	54.00	-5.68	AV
V	10400.00	41.52	30.45	8.77	38.66	58.50	74.00	-15.50	PK
V	10400.00	32.66	30.45	8.77	38.66	49.64	54.00	-4.36	AV
V	15600.00	41.33	30.44	9.31	38.55	58.75	74.00	-15.25	PK
V	15600.00	32.28	30.44	9.31	38.55	49.70	54.00	-4.30	AV
V	20800.00	41.68	30.72	9.45	38.69	59.10	74.00	-14.90	PK
V	20800.00	32.06	30.72	9.45	38.69	49.48	54.00	-4.52	AV
V	26000.00	41.66	30.65	9.99	38.57	59.57	74.00	-14.43	PK
V	26000.00	32.15	30.65	9.99	38.57	50.06	54.00	-3.94	AV
Н	5150.00	41.67	30.45	8.77	38.66	58.65	74.00	-15.35	PK
Н	5150.00	32.19	30.45	8.77	38.66	49.17	54.00	-4.83	AV
Н	10400.00	42.57	30.45	8.77	38.66	59.55	74.00	-14.45	PK
Н	10400.00	32.98	30.45	8.77	38.66	49.96	54.00	-4.04	AV
Н	15600.00	42.11	30.44	9.31	38.55	59.53	74.00	-14.47	PK
Н	15600.00	33.02	30.44	9.31	38.55	50.44	54.00	-3.56	AV

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

	1							e 25 of 78
H 20800.00 H 20800.00	42.51 32.57	30.72 30.72	9.45 9.45	38.69 38.69	59.93 49.99	74.00 54.00	-14.07 -4.01	PK AV
H 26000.00	41.36	30.65	9.99	38.57	59.27	74.00	-14.73	PK
H 26000.00	32.16	30.65	9.99	38.57	50.07	54.00	-3.93	AV

Project No.: ZKT-2203251897E-1 Page 26 of 78

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Н	igh Chan	nel:5240MH	z			
V	5150.00	41.95	30.45	8.77	38.66	58.93	74.00	-15.07	PK
V	5150.00	32.47	30.45	8.77	38.66	49.45	54.00	-4.55	AV
V	10480.00	42.13	30.45	8.77	38.66	59.11	74.00	-14.89	PK
V	10480.00	32.77	30.45	8.77	38.66	49.75	54.00	-4.25	AV
V	15720.00	42.56	30.44	9.31	38.55	59.98	74.00	-14.02	PK
V	15720.00	33.06	30.44	9.31	38.55	50.48	54.00	-3.52	AV
V	20960.00	42.17	30.72	9.45	38.69	59.59	74.00	-14.41	PK
V	20960.00	32.65	30.72	9.45	38.69	50.07	54.00	-3.93	AV
V	26200.00	41.55	30.65	9.99	38.57	59.46	74.00	-14.54	PK
V	26200.00	32.24	30.65	9.99	38.57	50.15	54.00	-3.85	AV
Н	5150.00	42.18	30.45	8.77	38.66	59.16	74.00	-14.84	PK
Н	5150.00	32.55	30.45	8.77	38.66	49.53	54.00	-4.47	AV
Н	10480.00	42.16	30.45	8.77	38.66	59.14	74.00	-14.86	PK
Н	10480.00	32.65	30.45	8.77	38.66	49.63	54.00	-4.37	AV
Н	15720.00	42.16	30.44	9.31	38.55	59.58	74.00	-14.42	PK
Н	15720.00	32.65	30.44	9.31	38.55	50.07	54.00	-3.93	AV
Н	20960.00	42.16	30.72	9.45	38.69	59.58	74.00	-14.42	PK
Н	20960.00	32.65	30.72	9.45	38.69	50.07	54.00	-3.93	AV
Н	26200.00	42.16	30.65	9.99	38.57	60.07	74.00	-13.93	PK
Н	26200.00	32.65	30.65	9.99	38.57	50.56	54.00	-3.44	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11n20, only the worst data is recorded.

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 5V
Test Mode :	5.8G TX- 802.11n20		

				802	.11n20								
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or				
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре				
	Low Channel:5745MHz												
V	5150.00	42.33	30.45	8.77	38.66	59.31	74.00	-14.69	PK				
V	5150.00	32.67	30.45	8.77	38.66	49.65	54.00	-4.35	AV				
V	11490.00	42.51	30.45	8.77	38.66	59.49	74.00	-14.51	PK				
V	11490.00	32.37	30.45	8.77	38.66	49.35	54.00	-4.65	AV				
V	17235.00	40.62	30.44	9.31	38.55	58.04	74.00	-15.96	PK				
V	17235.00	33.08	30.44	9.31	38.55	50.50	54.00	-3.50	AV				
V	22980.00	41.12	30.72	9.45	38.69	58.54	74.00	-15.46	PK				
V	22980.00	32.98	30.72	9.45	38.69	50.40	54.00	-3.60	AV				
V	28725.00	41.22	30.65	9.99	38.57	59.13	74.00	-14.87	PK				
V	28725.00	32.98	30.65	9.99	38.57	50.89	54.00	-3.11	AV				
Н	5150.00	41.52	30.45	8.77	38.66	58.50	74.00	-15.5	PK				
Н	5150.00	31.22	30.45	8.77	38.66	48.20	54.00	-5.80	AV				
Н	11490.00	42.85	30.45	8.77	38.66	59.83	74.00	-14.17	PK				
Н	11490.00	32.75	30.45	8.77	38.66	49.73	54.00	-4.27	AV				
Н	17235.00	41.49	30.44	9.31	38.55	58.91	74.00	-15.09	PK				
Н	17235.00	32.75	30.44	9.31	38.55	50.17	54.00	-3.83	AV				
Н	22980.00	41.49	30.72	9.45	38.69	58.91	74.00	-15.09	PK				
Н	22980.00	32.75	30.72	9.45	38.69	50.17	54.00	-3.83	AV				
Н	28725.00	41.49	30.65	9.99	38.57	59.40	74.00	-14.60	PK				
Н	28725.00	31.75	30.65	9.99	38.57	49.66	54.00	-4.34	AV				

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:5785M	Hz			
V	5150.00	41.62	30.45	8.77	38.66	58.60	74.00	-15.40	PK
V	5150.00	32.17	30.45	8.77	38.66	49.15	54.00	-4.85	AV
V	11570.00	41.51	30.45	8.77	38.66	58.49	74.00	-15.51	PK
V	11570.00	32.42	30.45	8.77	38.66	49.40	54.00	-4.60	AV
V	17355.00	40.04	30.44	9.31	38.55	57.46	74.00	-16.54	PK
V	17355.00	32.08	30.44	9.31	38.55	49.50	54.00	-4.50	AV
V	23140.00	40.11	30.72	9.45	38.69	57.53	74.00	-16.47	PK
V	23140.00	32.08	30.72	9.45	38.69	49.50	54.00	-4.50	AV
V	28925.00	40.01	30.65	9.99	38.57	57.92	74.00	-16.08	PK
V	28925.00	32.08	30.65	9.99	38.57	49.99	54.00	-4.01	AV
Н	5150.00	42.49	30.45	8.77	38.66	59.47	74.00	-14.53	PK
Н	5150.00	32.58	30.45	8.77	38.66	49.56	54.00	-4.44	AV
Н	11570.00	42.87	30.45	8.77	38.66	59.85	74.00	-14.15	PK
Н	11570.00	32.43	30.45	8.77	38.66	49.41	54.00	-4.59	AV
Н	17355.00	41.58	30.44	9.31	38.55	59.00	74.00	-15.00	PK
Н	17355.00	32.21	30.44	9.31	38.55	49.63	54.00	-4.37	AV
Н	23140.00	43.58	30.72	9.45	38.69	61.00	74.00	-13.00	PK

Project No.: ZKT-2203251897E-1

								Page 2	28 01 78
Н	23140.00	33.21	30.72	9.45	38.69	50.63	54.00	-3.37	AV
Н	28925.00	41.08	30.65	9.99	38.57	58.99	74.00	-15.01	PK
Н	28925.00	32.21	30.65	9.99	38.57	50.12	54.00	-3.88	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Н	ligh Chan	nel:5825MH	Iz			
V	5150.00	41.35	30.45	8.77	38.66	58.33	74.00	-15.67	PK
V	5150.00	31.41	30.45	8.77	38.66	48.39	54.00	-5.61	AV
V	11650.00	41.23	30.45	8.77	38.66	58.21	74.00	-15.79	PK
V	11650.00	32.77	30.45	8.77	38.66	49.75	54.00	-4.25	AV
V	17475.00	43.74	30.44	9.31	38.55	61.16	74.00	-12.84	PK
V	17475.00	33.09	30.44	9.31	38.55	50.51	54.00	-3.49	AV
V	23300.00	43.74	30.72	9.45	38.69	61.16	74.00	-12.84	PK
V	23300.00	33.58	30.72	9.45	38.69	51.00	54.00	-3.00	AV
V	29125.00	42.74	30.65	9.99	38.57	60.65	74.00	-13.35	PK
V	29125.00	32.98	30.65	9.99	38.57	50.89	54.00	-3.11	AV
Н	5150.00	41.67	30.45	8.77	38.66	58.65	74.00	-15.35	PK
Н	5150.00	32.16	30.45	8.77	38.66	49.14	54.00	-4.86	AV
Н	11650.00	41.32	30.45	8.77	38.66	58.30	74.00	-15.7	PK
Н	11650.00	32.99	30.45	8.77	38.66	49.97	54.00	-4.03	AV
Н	17475.00	42.91	30.44	9.31	38.55	60.33	74.00	-13.67	PK
Н	17475.00	33.25	30.44	9.31	38.55	50.67	54.00	-3.33	AV
Н	23300.00	43.51	30.72	9.45	38.69	60.93	74.00	-13.07	PK
Н	23300.00	33.35	30.72	9.45	38.69	50.77	54.00	-3.23	AV
Н	29125.00	43.41	30.65	9.99	38.57	61.32	74.00	-12.68	PK
Н	29125.00	33.35	30.65	9.99	38.57	51.26	54.00	-2.74	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. The worst mode is 802.11n20, only the worst data is recorded.

5. POWER SPECTRAL DENSITY TEST

5.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(3) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

www.zkt-lab.com

5.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT

SPECTRUM ANALYZER

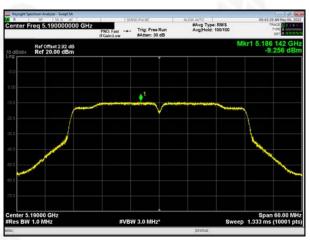
www.zkt-lab.com

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

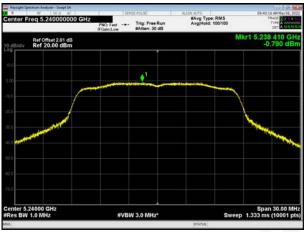
5.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1015 hPa	Test Voltage :	DC 5V
Test Mode :	ТХ		


Test mode	Test Channel (MHz)	PSD [dBm/MHz]	Limit (dBm/MHz)	Result
802.11n(HT20)	5180	-1.82	11	Pass
	5200	-0.024	11	Pass
	5240	-0.79	11	Pass
802.11n(HT40)	5190	-9.256	11	Pass
	5230	-9.165	11	Pass
802.11ac(VH20)	5180	-5.879	11	Pass
	5200	-5.448	11	Pass
	5240	-5.888	11	Pass
802.11ac(VH40)	5190	-9.129	11	Pass
	5230	-9.043	11	Pass
802.11ac(VH80)	5210	-11.339	11	Pass

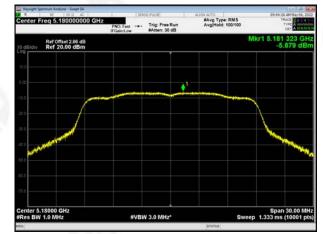
(802.11n40) PSD plot on channel 38

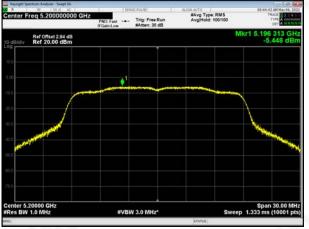
(802.11n40) PSD plot on channel 46

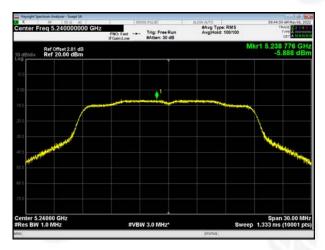


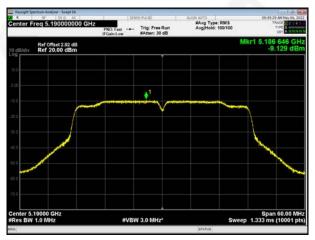
(802.11n20) PSD plot on channel 40

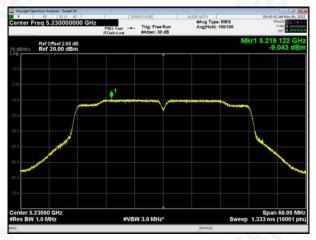
#Avg Type: RMS Avg(Hold: 100/100 r Freq 5.200000000 GHz Trig: Free Ru Ref Offset 2.94 dB Ref 20.00 dBm nter 5.20000 GH es BW 1.0 MHz Span 30.00 M Sweep 1.333 ms (10001 p #VBW 3.0 MHz

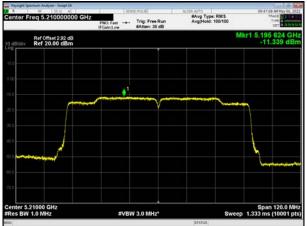

(802.11n20) PSD plot on channel 48




(802.11ac20) PSD plot on channel 36


(802.11ac20) PSD plot on channel 40


(802.11ac20) PSD plot on channel 48


(802.11ac40) PSD plot on channel 38

(802.11ac40) PSD plot on channel 46

(802.11ac80) PSD plot on channel 42

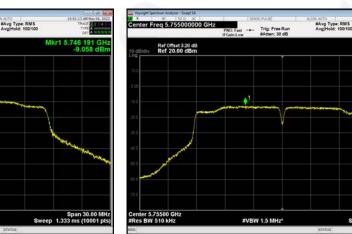
Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

2

Zkt@zkt-lab.com

www.zkt-lab.com

Test mode	Test Channel (MHz)	PSD [dBm/500kHz]	Limit (dBm/500kHz)	Result
802.11n(HT20)	5745	-9.058	30	Pass
	5785	-10.304	30	Pass
	5825	-10.724	30	Pass
802.11n(HT40)	5755	-12.361	30	Pass
	5795	-13.791	30	Pass
802.11ac(VH20)	5745	-8.877	30	Pass
	5785	-10.265	30	Pass
	5825	-11.032	30	Pass
802.11ac(VH40)	5755	-12.916	30	Pass
	5795	-13.766	30	Pass
802.11ac(VH80)	5775	-15.739	30	Pass


Span 60.00 N 1.333 ms (10001

Span 60. p 1.333 ms (100

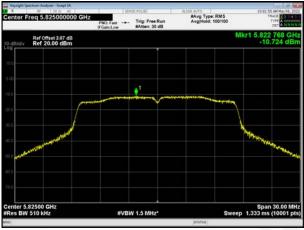
(802.11n40) PSD plot on channel 151

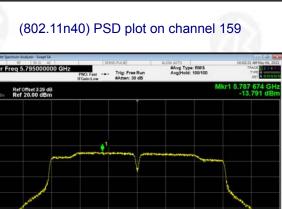
Center 5.79500 GH #Res BW 510 kHz

(802.11n20) PSD plot on channel 157

(802.11n20) PSD plot on channel 149

≬1


- Trig: Free Run #Atten: 30 dB


Ref Offset 3.24 di Ref 20.00 dBn

r Freq 5.785000000 GHz #Avg Type: RMS Avg[Hold: 100/100 Trig: Free Run Ref Offset 3.14 dB Ref 20.00 dBm **•**¹ nter 5.78500 GHz s BW 510 kHz Span 30.00 M Sweep 1.333 ms (10001 p #VBW 1.5 MHz

(802.11n20) PSD plot on channel 165

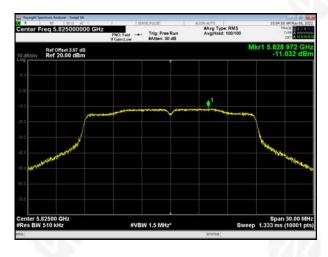
#VBW 1.5 MHz

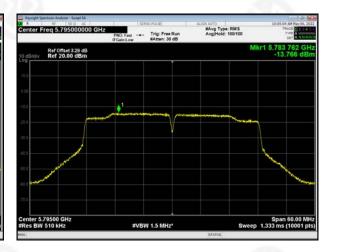
Shenzhen ZKT Technology Co., Ltd.

2

Project No.: ZKT-2203251897E-1 Page 36 of 78

(802.11ac40) PSD plot on channel 151




(802.11ac20) PSD plot on channel 157


(802.11ac20) PSD plot on channel 165

(802.11ac40) PSD plot on channel 159

(802.11ac80) PSD plot on channel 155

www.zkt-lab.com

Shenzhen ZKT Technology Co., Ltd.

6. 26DB & 6DB & 99% EMISSION BANDWIDTH

6.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

6.2 TEST PROCEDURE

- a) Set RBW = 100KHz.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.

e) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

EUT	SPECTRUM ANALYZER	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Ð

6.3 EUT OPERATION CONDITIONS

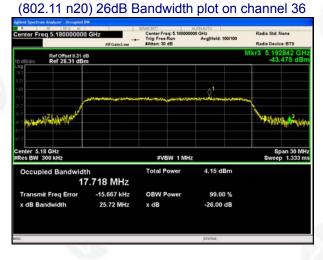
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

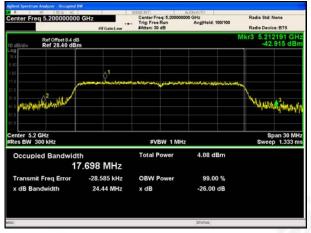
6.4 TEST RESULTS

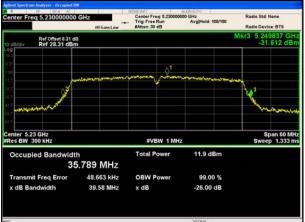
Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 5V
Test Mode :	ТХ		

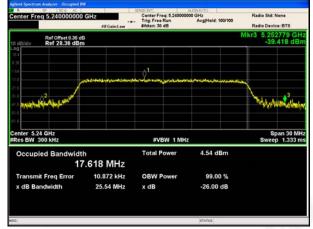
		-26dB Channe	el Bandwidth (M⊦	łz)	Limit(KUz)	Result
Test CH		802.11n(HT20)	802.11n(HT40)		Limit(KHz)	Result
Lowest	ć	25.72	39.52			
Middle		24.44			>500	Pass
Highest		25.54	39.58			2

d	Test CH	-26dB Channel Bandwid	th (MHz)	Limit(KHz)	Deput
Ú	Test CH	802.11ac(HT20) 802.11ac(H	HT40) 802.11ac(HT80)	Limit(KHz)	Result
	Lowest	19.42 40.75	5		
	Middle	19.54	79.67	>500	Pass
	Highest	19.52 41.14			




Test plot

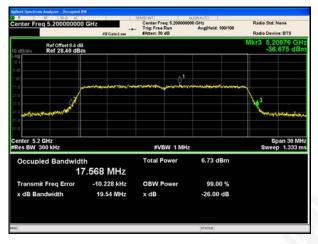

(802.11 n40) 26dBBandwidth plot on channel 38


(802.11 n20) 26dB Bandwidth plot on channel 40

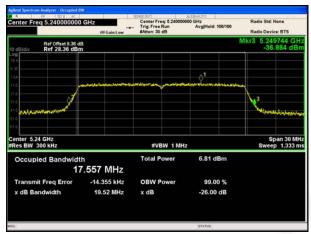
(802.11 n40) 99%Bandwidth plot on channel 46

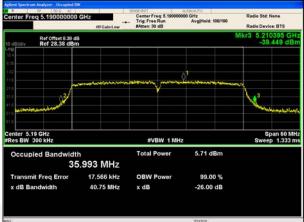
(802.11 n20) 26dB Bandwidth plot on channel 48

20

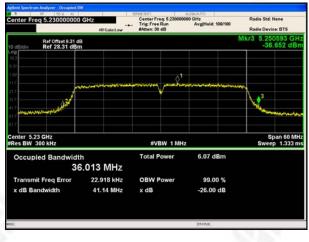

Test plot

(802.11ac20) 99% Bandwidth plot on channel 36


(802.11 ac40) 26dB Bandwidth plot on channel 42



(802.11ac20) 99%Bandwidth plot on channel 40



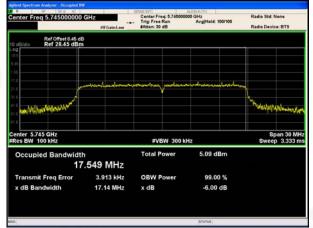

(802.11ac20) 99% Bandwidth plot on channel 48

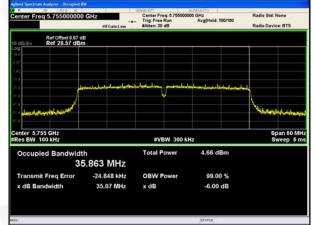
(802.11 ac40) 26dB Bandwidth plot on channel 42

(802.11 ac80) 26dB Bandwidth plot on channel 42

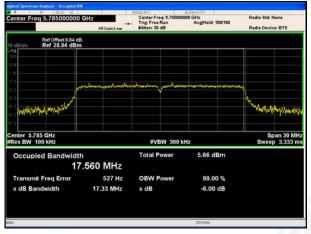
Project No.: ZKT-2203251897E-1 Page 41 of 78

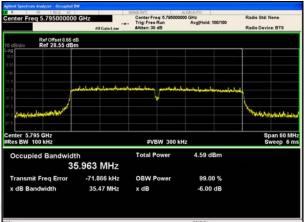
Test CH	-6dB Channe	el Bandwidth (MH	z)	Limit(KHz)	Result
	802.11n(HT20)	802.11n(HT40)			Result
Lowest	17.14	35.07		0	S
Middle	17.33			>500	Pass
Highest	17.12	35.47			

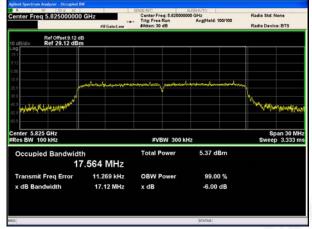

Test CH		-6dB Chann	el Bandwidth (MHz	<u>z)</u>	Limit(KHz)	Result
IESI CH		802.11ac(HT20)	802.11ac(HT40)	802.11ac(HT80)		Result
Lowest		20.19	40.03			
Middle		20.11		75.14	>500	Pass
Highest	Z	20.20	39.82			



Test plot


(802.11n20) 6dB Bandwidth plot on channel 149

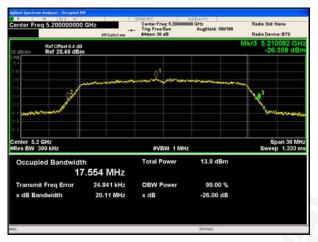

(802.11 n40) 6dB Bandwidth plot on channel 151


(802.11n20) 6dB Bandwidth plot on channel 157

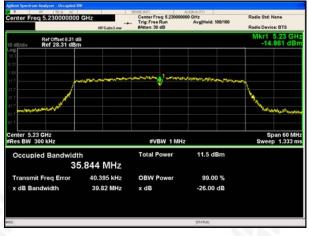
(802.11 n40) 6dB Bandwidth plot on channel 159

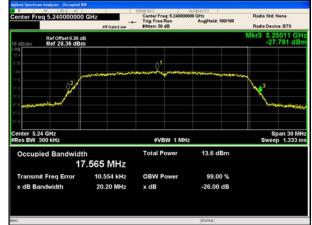
(802.11n20) 6dB Bandwidth plot on channel 165

212


Test plot

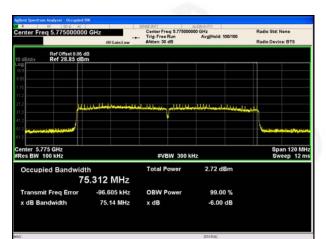
(802.11 ac40) 99%Bandwidth plot on channel 151


(802.11ac20) 99%Bandwidth plot on channel 149


(802.11ac20) 99%Bandwidth plot on channel 157

(802.11 ac40) 99%Bandwidth plot on channel 159

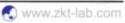
(802.11ac20) 99%Bandwidth plot on channel 165



(802.11 ac80) 6dB Bandwidth plot on channel 155

Project No.: ZKT-2203251897E-1 Page 44 of 78

Ð



7.MAXIMUM CONDUCTED OUTPUT POWER

7.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

7.2 TEST PROCEDURE

The EUT was directly connected to the Power meter

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

The EUT transmits continuously (or with a duty cycle ≥ 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

Project No.: ZKT-2203251897E-1 Page 46 of 78

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Test Mode :	ТХ	9	

Test Channel	Frequency	Maximum output power	LIMIT	Result
	(MHz)	(dBm)	dBm	- Result
		TX 802.11 n20M Mode		
CH36	5180	9.025	23.98	Pass
CH40	5200	9.014	23.98	Pass
CH48	5240	8.450	23.98	Pass
		TX 802.11 n40M Mode		62.02
CH38	5190	7.951	23.98	Pass
CH46	5230	7.782	23.98	Pass
		TX 802.11 ac20M Mode		
CH36	5180	8.816	23.98	Pass
CH40	5200	8.589	23.98	Pass
CH48	5240	8.398	23.98	Pass
		TX 802.11 ac40M Mode		
CH38	5190	7.882	23.98	Pass
CH46	5230	7.628	23.98	Pass
		TX 802.11 ac80M Mode		
CH42	5210	6.408	23.98	Pass

Test Channel	Frequency	Maximum output power.	LIMIT	Result
	(MHz) (dBm)		dBm	Result
		TX 802.11 n20M Mode		
CH149	5745	8.401	30	Pass
CH157	5785	8.331	30	Pass
CH165	5825	8.132	30	Pass
		TX 802.11 n40M Mode		
CH151	5755	7.832	30	Pass
CH159	5795	7.641	30	Pass
		TX 802.11 ac20M Mode	•	•
CH149	5745	8.225	30	Pass
CH157	5785	8.316	30	Pass
CH165	5825	8.002	30	Pass
		TX 802.11 ac40M Mode		
CH151	5755	7.632	30	Pass
CH159	5795	7.551	30	Pass
		TX 802.11 AC80M Mode		
CH155	5775	6.211	30	Pass

Shenzhen ZKT Technology Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwel Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8.OUT OF BAND EMISSIONS

8.1 APPLICABLE STANDARD

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2)

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

8.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT

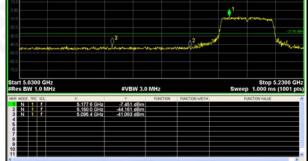
POWER METER

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V

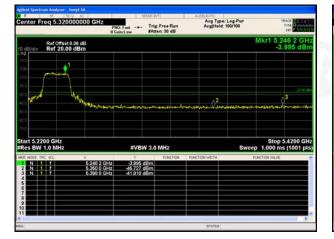

5.180~5.240 GHz

Ref Offset 8.38 dB Ref 20,00 dBm

(802.11n20) Band Edge, Left Side

Avg Type: Log-Pwr Avg[Held: 100/100 Trig: Free Ru Ref Offset 8.31 dB Ref 20.00 dBm #VBW 3.0 M 5.187 6 GHz -4.261 dBm 5.150 0 GHz -41.850 dBm 5.084 0 GHz -41.492 dBm

(802.11 n20) Band Edge, Right Side

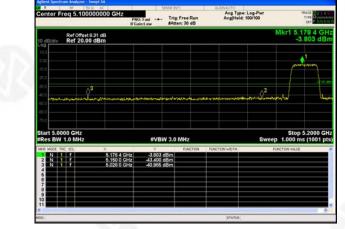



(802.11n40) Band Edge, Left Side

Trig: Free Ru

Avg Type: Log-Pwi Avg[Held: 100/100

(802.11n40) Band Edge, Right Side

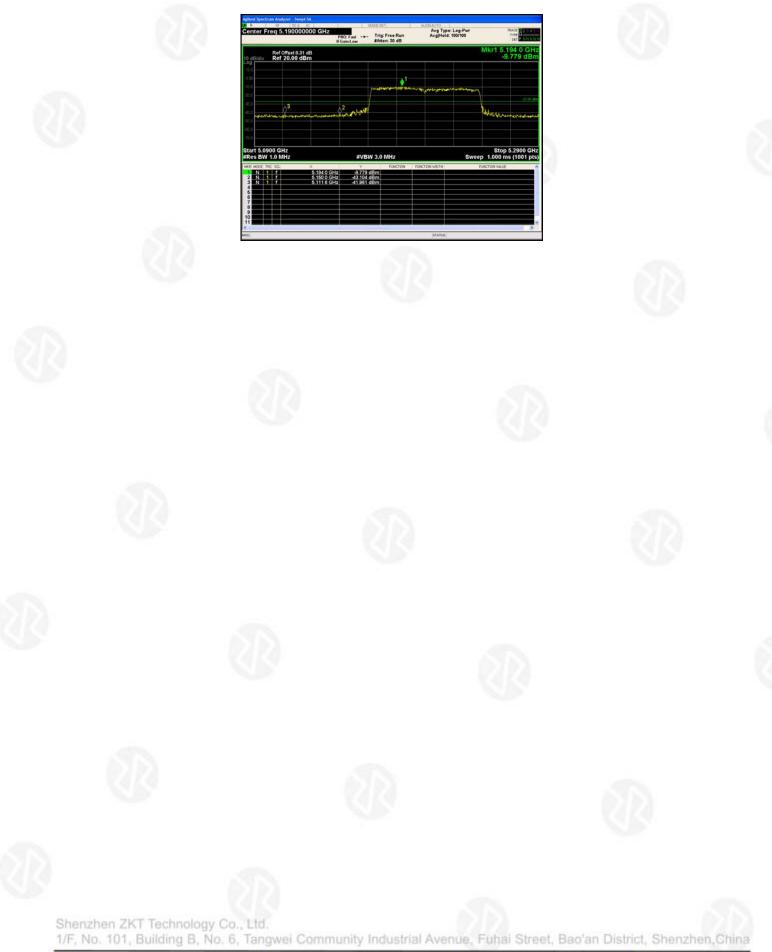


5.180~5.240 GHz

(802.1ac20) Band Edge, Left Side

(802.11ac20) Band Edge, Right Side

(802.11ac40) Band Edge, Right Side

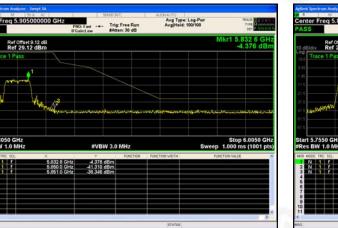

Freq 5.32000	PN	0:Fast Trig ain:Low #Att	Free Run en: 30 dB	Avg Type AvgPield	100/100	THACE DECISION
Ref Offset 8. Ref 20.00					Λ	4.427 dBn
1						
Luman						
	under an annual an		when he	inner andres	A3	الإجارية والمعالية و
2200 GHz W 1.0 MHz		#VBW 3.0	MHz		Sweep	Stop 5.4200 GH 1.000 ms (1001 pts
TRC SO.	× 5.235 4 GHz		RUNCTION	FUNCTION WOTH	ru	ICTION VALUE
	5.369 8 GHz	45.567 dBm 41.370 dBm				
			-			
				BUTATUS		

ter Freq 5.290000000 GHz	PNO: Fast Ti IFGainLow #/	rig: Free Run Atten: 30 dB	Avg Type: Log-Pu Avg[Held: 100/100	τ.	TYPE TOTAL
Ref Offset 8.31 dB Bidiv Ref 20.00 dBm					.232 2 GI 8.006 dB
				.2	-:* 00
where and	hannerstranse	man	agest and a second second second		and water
rt 5.1900 GHz s BW 1.0 MHz	#VBW 3	.0 MHz		Sto Sweep 1.000	p 5.3900 G ms (1001 p
MODE TRC SOL X	Ŷ	RUNCTION	FUNCTION WIDTH	FUNCTION VALU	
N 1 f 5,232,2 GH N 1 f 5,350 0 GH N 1 f 5,377 8 GH	z -45.510 dBm				

(802.11ac80) Band Edge

5.745~5.825 GHz

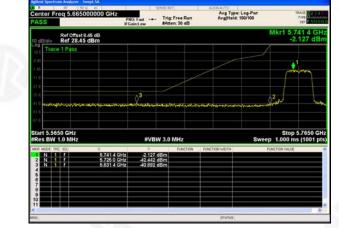
(802.11n20) Band Edge, Left Side



(802.11n20) Band Edge, Right Side

(802.11n40) Band Edge, Right Side

nter Freq 5.855000	PNO: Fast -	 Trig: Free Run #Atten: 30 dB 	Avg Type: Log-Pwr Avg Held: 100/100	TYPE M
Ref Offset 8.55 Bidly Ref 28.55 dB	#Gain1.ow dB	#Atten: 30 dB		Mkr1 5.787 2 GF -7.950 dB
Trace 1 Pass				
<u>م</u> 1				
(Anno	manaray			
Rentinduryhin	Marin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	retriere construction of the	unt altragenout goodt.
rt 5.7550 GHz Is BW 1.0 MHz	#\	/BW 3.0 MHz	Swee	Stop 5.9550 G p 1.000 ms (1001 p
MODE TRC SCL N 1 F N 1 F N 1 F	5.850 0 GHz -43.9	FUNCTION 50 dBm 95 dBm 58 dBm	FUNCTION WOTH	UNCTION VALUE



5.745~5.825 GHz

(802.11ac20) Band Edge, Left Side

(802.11ac20) Band Edge, Right Side

nter Freq 5.9050 SS	PN	D: Fast Trig	Free Run en: 30 dB	Avg Ty Avg[Hel	e: Log-Pwr e: 100/100		
Ref Offset 9 B/div Ref 29.12					N	1kr1 5.82 -2.4	7 2 GH: 83 dBn
Trace 1 Pass							
1		-					
hereit							
				<			
	A23						
Webstr	and the states	(frankenstelle,		allin the dealers	A	short-with the
rt 5.8050 GHz s BW 1.0 MHz		#VBW 3.0	MHz		Sweep	Stop 6 1.000 ms	.0050 GH
	×	¥.	FUNCTION	FUNCTION WIDTH		CTION VALUE	
	5.827 2 GHz	-2.483 dBm -43.809 dBm					
NODE TRC SCL	5.850 0 GHz 5.853 0 GHz	-39.354 dBm					
N 1 7 N 1 7	5.850 0 GHz	-39,354 dBm					
N 1 7 N 1 7	5.850 0 GHz	-39.354 dBm					
N 1 7 N 1 7	5.850 0 GHz	-49,603 GDM -39,354 dBm					
N 1 Y	5.850 0 GHz	-49,000 GBM -39,354 dBm					

(802.11ac40) Band Edge, Right Side

	K	58.74	98-3NT	ALENALITO	1134 C	
nter Freq 5.85500 SS	PNC): Fast	Trig: Free Run #Atten: 30 dB	Avg Type: L Avg[Hold: 10	.og-Pwr 10/100	THE DET
Ref Offset 8.5 dB/div Ref 28.55 d	6 dB				Mkr1	5.798 8 GH
Trace 1 Pass						
8	1					
	•					
//						
	ł		2 ²		03	
intraces)	in a second and a second	anteres anteres	ور ورور مر الارد ر المر مر ال	seems and some	and shaped and
rt 5.7550 GHz					\$	top 5.9550 Gi
		#VBW	3.0 MHz			00 ms (1001 p
			FUNCTION	FUNCTION WOTH	Function	VALUE
HODE THE SEL	5.798 8 GHz	-6.018 dB	m			
MODE THE SEL	5.798 8 GHz 5.850 0 GHz 5.914 4 GHz	-6.018 dB -44.256 dB -40.142 dB	m			
MODE THE SEL	5.850 0 GHz	-44.255 dB	m			
NIT	5.850 0 GHz	-44.255 dB	m			
MODE THE SEL	5.850 0 GHz	-44.255 dB	m			
MODE THE SEL	5.850 0 GHz	-44.255 dB	m			

Project No.: ZKT-2203251897E-1 Page 54 of 78

(802.11ac80) Band Edge

9.SPURIOUS RF CONDUCTED EMISSIONS

9.1 CONFORMANCE LIMIT

J	
Frequency Band (MHz)	Limit
5150 - 5250	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm
5250 - 5350	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm
5470 - 5725	Outside of the 5.47-5.725 GHz band: e.i.r.p27 dBm
5725 - 5850	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

9.2 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.

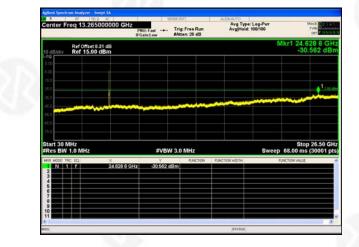
9.3 TEST SETUP

9.4 TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

9.5 TEST RESULTS

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. And above 26.5GHz of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. The lowest, middle and highest channels are tested to verify the spurious emissions and band edge measurement data.



5.2G

Test Plot

802.11n20 on channel 36

802.11n20 on channel 48

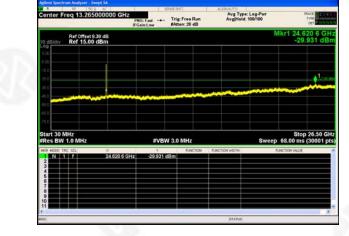
nter F	Freq	13.265000	P	NO: Fast -+- Sain:Low	Trig: Free Run #Atten: 26 dB	Avg Typ Avg[Hold	e: Log-Pwr : 100/100	TRACE D 2 2 4 4 TYPE D DET D 1 N 11
dB/div	Ref Ref	Offset 8.36 d 15.00 dBr	n n				Mkr1	24.638 3 GH -30.283 dBn
.0								
a d								maria
°	-			******				
.0								
art 30 Jes BW	MHz				3.0 MHz		0	Stop 26.50 GH 0 ms (30001 pts
ES BU		NHZ	×	#VBW	ANCTON RUNCTION	FUNCTION WOTH	Sweep 68.0	
	1 1		24,638 3 GHz	-30.283 dE			Tencro	
								3

802.11n20 on channel 40

ter Freq 13.265000	PNO: Fast · IFGain:Low	+ Trig: Free Run #Atten: 26 dB	Avg Type: Log-Pwr Avg[Held: 100/100	TRACE DE L
Ref Offset 8.4 dl			Mk	r1 24.619 7 G -30.382 dB
				1.1 or
			-	
rt 30 MHz				
s BW 1.0 MHz	#)	/BW 3.0 MHz	Sweep 6	Stop 26.50 G 8.00 ms (30001 p
MODE TRC SCL	24,6197 GHz -30.3	FUNCTION B2 dBm	FUNCTION WOTH FUNC	CTION VALUE
			STATUS	

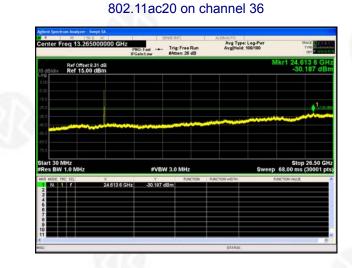
Ð

Ð


1

802.11n40 on channel 46

er Freq 13.26	55000000 GHz	PND: East -t-	E2/17] Trig: Free Run Atten: 26 dB	Avg Typ AvgPteld	e: Log-Pwr E 100/100	THACE D 2 TYPE LET D 11
Ref Offse Bidiv Ref 15.0	t 8.31 dB 00 dBm				N	1kr1 25.964 4 G -30.658 dl
	-					
						00
				Line in the second	-	
				عذك تنزد		
t 30 MHz						Stop 26.50 C
s BW 1.0 MHz		#VBW 3	3.0 MHz		Sweep	68.00 ms (30001
N 1 F	× 25.964.4 GHz	-30.658 dBr	FUNCTION	FUNCTION WOTH	1	UNCTION VALUE


Ð

802.11ac20 on channel 40

802.11ac20 on channel 48

anter Fred 13.26500		0: Fast Tri ain:Low #At	g: Free Run tten: 26 dB	Avg Type Avg Pield	: Log-Pwr 100/100		ACE DE TAN
Ref Offset 8.36 dB/div Ref 15.00 dB	dB Sm				N	1kr1 24.6	50 6 GH 489 dBr
00 m							
-0							
50 <u> </u>							-
	-						
0							
0							
art 30 MHz les BW 1,0 MHz		#VBW 3.0	0 MHz		Sweep	Stop 68.00 ms	26.50 GH 30001 pt
Co Diri ilo inite	×	¥.	RUNCTION	FUNCTION WOTH	1	UNCTION VALUE	
A MODE THE SEL	24,650 6 GHz	-30,489 dBm					
N MODE TRC SCL		-30.489 dBm					
N MODE THE SEL		-30.489 dBm					
R MODE TRC SCL		-30.489 dBm					

 Agend Scottupe Multiple:
 Sector
 Account

 Center Freq 13.265000000 GHz
 FRC Free Mark
 Arg Type: Log Part
 Mark Type: Log Part

 If Contract
 FRC Free Mark
 Arg Type: Log Part
 Mark Type: Log Part
 Mark Type: Log Part

 If Contract
 FRC Free Mark
 Arg Type: Log Part
 Mark Type: Log Part
 Arg Type: Log Part

 If Contract
 FRC Free Mark
 Arg Type: Log Part
 Arg Type: Log Part
 Arg Type: Log Part

 If Contract
 FRC Free Mark
 Arg Type: Log Part
 Arg Type: Log Part
 Arg Type: Log Part

 If Contract
 FRC Free Mark
 Arg Type: Log Part
 Arg Type: Log Part
 Arg Type: Log Part

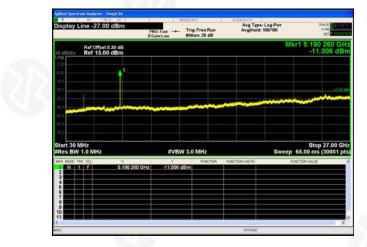
 If Contract
 Free Mark
 Arg Type: Log Part
 Mikr1 24.844 5 GHz
 SG GHZ

 If Contract
 Free Mark
 Stop 26.50 GHZ
 Arg Type: Log Part
 Stop 26.50 GHZ

 If Contract
 FVBW 3.0 MHZ
 Stop 26.50 GHZ
 Stop 26.50 GHZ
 Arg Type: Log Part

 If Contract
 Stop 26.50 GHZ
 Stop 26.50 GHZ
 Arg Type: Log Part
 Arg Type: Log Part

 If Contract
 Stop 26.50 GHZ
 Stop 26.50 GHZ
 Arg T

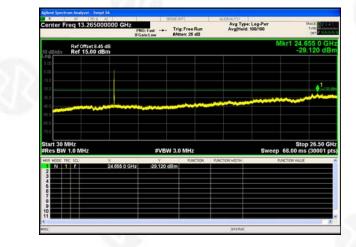


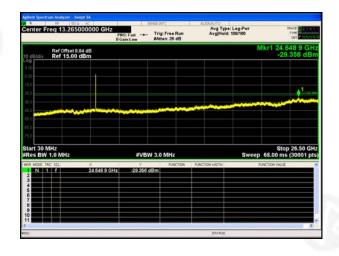
802.11ac40 on channel 38

802.11ac40 on channel 46

	15000000 GHz	PNO: Fast T IFGain:Low #	rig: Free Run Atten: 26 dB	Avg Type Avg[Hold	: Log-Pwr 100/100	TVPE
dB/div Ref 15.	et 8.31 dB 00 dBm				M	(r1 5.230 715 GH -9.768 dB)
00 m	1					
0	<u> </u>					
0 (d						
	monter	-			-	
0						
art 30 MHz es BW 1.0 MHz		#VBW 3	.0 MHz		Sweep	Stop 27.00 Gi 68.00 ms (30001 pi
Co BIT To MILL	¥.	Ŷ	FUNCTION	FUNCTION WOTH	1	INCTION VALUE
N 1 F	5.230 715 GH	z -9.768 dBn		++		
N 1 7		z -9.768 dBn				
R MODE TRC SOL		z -9.768 dBn				
R MODE THE SEL		-9.768 dBn				

R




5.8G

Test Plot

802.11n20 on channel 149

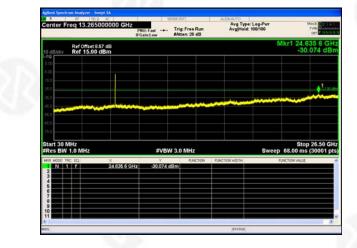
802.11n20 on channel 157

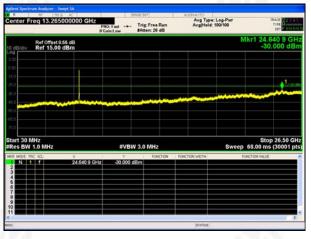
802.11n20 on channel 165

nter Freq 13.26500000	D GHZ PNO: Fast IFGainLow	Trig: Free Run #Atten: 26 dB	Avg Type: Log-Pwr AvgPield: 100/100	THACE DE TA
Ref Offset 9.12 dB dB/div Ref 15.00 dBm			Mkr	1 24.608 3 GH -29.154 dB
30				
а •				
				1. m
		States and	and the second s	and the second second
α				
C				
art 30 MHz es BW 1.0 MHz	#V	BW 3.0 MHz	Sweep 68	Stop 26.50 G
NODE THE SEL	Ŷ		UNCTION WOTH FUNCT	ION VALUE
N 1 F 24	608 3 GHz -29.15	4 dBm		
			STATUS	

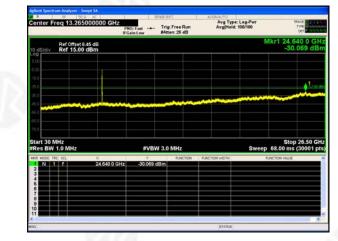
Ð

Ð


0



802.11n40 on channel 159



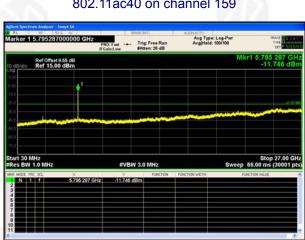
802.11ac20 on channel 149

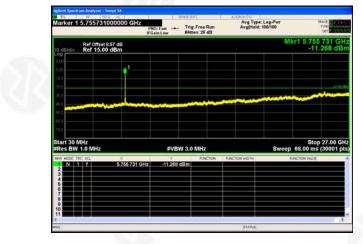
802.11ac20 on channel 157

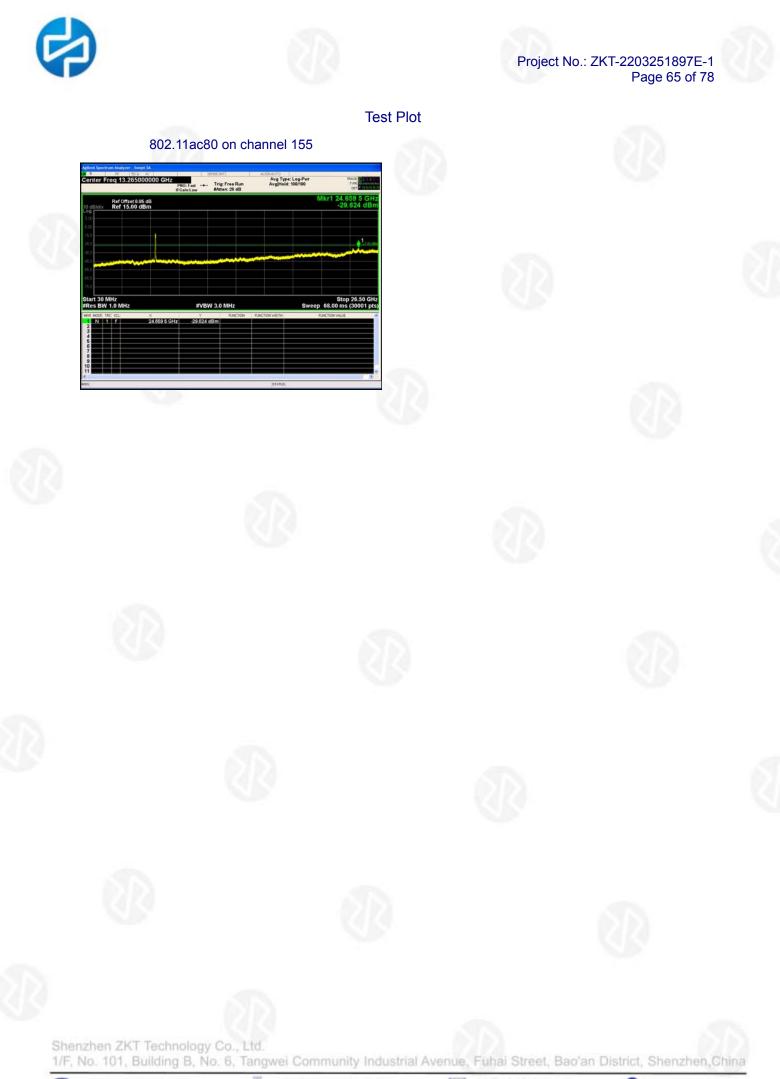
iter Freq 13.26		to: Fast Tr lain:Low #A	ig: Free Run tten: 26 dB	Avg Type Avg[Hold:	: Log-Pwr 100/100		
Ref Offset	9.84 dB 0 dBm				N	lkr1 24.64 -29.1	12 7 GI 835 dB
0							
2							.1
							and in the
				a land a land			
rt 30 MHz		#VBW 3.	0 MHz		Sweep	Stop 68.00 ms (26.50 G 30001 p
rt 30 MHz s BW 1.0 MHz	× 241642.7 GHz	#VBW 3. v -29.835 dBm	FUNCTION	FUNCTION WOTH		Stop 68.00 ms (action value	26.50 G 30001 p
rt 30 MHz 25 BW 1.0 MHz MODE TRC SC.		Ŷ	FUNCTION	FUNCTION WIDTH		68.00 ms (26.50 G 30001 p
rt 30 MHz 25 BW 1.0 MHz MODE TRC SC.		Ŷ	FUNCTION	FUNCTION W/DTH		68.00 ms (26.50 G 30001 p
rt 30 MHz 25 BW 1.0 MHz MODE TRC SC.		Ŷ	FUNCTION	FUNCTION WOTH		68.00 ms (26.50 G 30001 p

 Applied Source
 <th

802.11ac20 on channel 165







802.11ac40 on channel 159

10.Frequency Stability Measurement

10.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

10.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

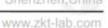
2. EUT have transmitted absence of modulation signal and fixed channelize.

- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

10.3 TEST SETUP LAYOUT

EUT	SPECTRUM
	ANALYZER


10.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

10.5 TEST RESULTS

Temperature :	26 ℃	Relative Humidity : 54%
Pressure :	1012 hPa	Test Voltage : DC 5V
Test Mode :	ТХ	

802.11n_HT20

Reference Frequency(Middle Channel): 5200MHz					
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature (°C)	(VDC)	MCF	Error (ppm)		
50	5.0	55	0.00951		
40	5.0	42	0.00726		
30	5.0	32	0.00553		
20	5.0	24	0.00415		
10	5.0	22	0.00380		
0	5.0	12	0.00207		
-10	5.0	13	0.00225		
-20	5.0	21	0.00363		
-30	5.0	32	0.00553		

0

Environment	Power Supplied	Frequency Measure with Time Elapsed	
Temperature (°C)	(VDC)	MCF	Error (ppm)
50	5.0	61	0.01053
40	5.0	54	0.00932
30	5.0	42	0.00725
20	5.0	44	0.00759
10	5.0	34	0.00587
0	5.0	32	0.00552
-10	5.0	34	0.00587
-20	5.0	42	0.00725
-30	5.0	51	0.00880

80<u>2.11 ac20</u>

Reference Frequency(Middle Channel): 5200 MHz						
Environment	Power Supplied	Frequency Measure	with Time Elapsed			
Temperature (°C)	(VDC)	MCF	Error (ppm)			
50	5.0	63	0.01089			
40	5.0	51	0.00882			
30	5.0	43	0.00743			
20	5.0	32	0.00553			
10	5.0	23	0.00398			
0	5.0	26	0.00449			
-10	5.0	22	0.00380			
-20	5.0	36	0.00622			
-30	5.0	43	0.00743			

802.11ac40

	Reference Frequency(Middle Channel): 5190MHz					
	Environment	Power Supplied	Frequency Measure with Time Elapsed			
	Temperature (°C)	(VDC)	MCF	Error (ppm)		
	50	5.0	61	0.01053		
5	40	5.0	52	0.00900		
2	30	5.0	43	0.00745		
	20	5.0	44	0.00759		
	10	5.0	34	0.00587		
	0	5.0	22	0.00380		
	-10	5.0	36	0.00622		
	-20	5.0	43	0.00743		
	-30	5.0	51	0.00880		

80<u>2.11ac80</u>

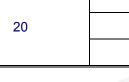
Reference Frequency(Middle Channel): 5210MHz					
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature (°C)	(VDC)	MCF	Error (ppm)		
50	5.0	63	0.01091		
40	5.0	52	0.00900		
30	5.0	43	0.00745		
20	5.0	41	0.00710		
10	5.0	36	0.00623		
0	5.0	32	0.00554		
-10	5.0	34	0.00589		
-20	5.0	43	0.00745		
-30	5.0	52	0.00900		

So, Frequency Stability Versus Input Voltage is:

802.11n HT20

	Reference Frequency(Middle Channel): 5200 MHz					
	Environment	Power Supplied	Frequency Measure with Time Elapsed			
	Temperature (°C)	(VDC)	Frequency	Error (ppm)		
	20	5.0	55	0.00951		
		4.5	21	0.00363		
		5.5	43	0.00743		

802.11n_HT40


Reference Frequency(Middle Channel): 5190 MHz					
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature (°C)	(VDC)	Frequency	Error (ppm)		
20	5.0	42	0.00725		
	4.5	44	0.00759		
	5.5	42	0.00725		

802.11ac20

Reference Frequency(Middle Channel): 5200 MHz					
Environment Temperature (°C)	Power Supplied	Frequency Measure	e with Time Elapsed		
	(VDC)	Frequency	Error (ppm)		
	5.0	34	0.00588		
20	4.5	32	0.00553		
	5.5	33	0.00570		

802.11ac40

Reference Frequency(Middle Channel): 5190 MHz					
Environment	Power Supplied (VDC)	Frequency Measure with Time Elapsed			
Temperature (°C)		Frequency	Error (ppm)		
	5.0	42	0.00725		
20	4.5	32	0.00553		
	5.5	42	0.00725		

80<u>2.11ac80</u>

	Reference Frequency(Middle Channel): 5210 MHz					
	Environment	Power Supplied	Frequency Measure with Time Elapsed			
	Temperature (°C)	(VDC)	Frequency	Error (ppm)		
-		5.0	33	0.00570		
Ð	20	4.5	44	0.00762		
		5.5	42	0.00727		
			202			

802.11n_HT20

	Reference Frequency(Middle Channel): 5785MHz			
	Environment Temperature (°C) Power Supplied (VDC)	Power Supplied	Frequency Measure with Time Elapsed	
		MCF	Error (ppm)	
	50	5.0	42	0.00726
	40	5.0	24	0.00415
	30	5.0	32	0.00553
	20	5.0	24	0.00415
	10	5.0	13	0.00225
	0	5.0	12	0.00207
	-10	5.0	13	0.00225
	-20	5.0	21	0.00363
	-30	5.0	32	0.00553

Ð

Environment	Power Supplied	Frequency Measure with Time Elapsed	
Temperature (°C)	(VDC)	MCF	Error (ppm)
50	5.0	61	0.01053
40	5.0	54	0.00932
30	5.0	42	0.00725
20	5.0	44	0.00759
10	5.0	34	0.00587
0	5.0	32	0.00552
-10	5.0	34	0.00587
-20	5.0	42	0.00725
-30	5.0	51	0.00880

80<u>2.11ac20</u>

Reference Frequency(Middle Channel): 5785 MHz				
Environment	Power Supplied Frequency Measure with Time Elapsed			
Temperature (°C)	(VDC)	MCF	Error (ppm)	
50	5.0	43	0.00743	
40	5.0	51	0.00882	
30	5.0	23	0.00398	
20	5.0	26	0.00449	
10	5.0	23	0.00398	
0	5.0	26	0.00449	
-10	5.0	22	0.00380	
-20	5.0	36	0.00622	
-30	5.0	26	0.00449	

802.11ac40

	Reference Frequency(Middle Channel): 5795MHz			
	Environment Temperature (°C) Power Supplied (VDC)	Power Supplied	Frequency Measure with Time Elapsed	
		MCF	Error (ppm)	
	50	5.0	61	0.01053
5	40	5.0	24	0.00415
	30	5.0	32	0.00553
	20	5.0	24	0.00415
	10	5.0	34	0.00587
	0	5.0	32	0.00552
	-10	5.0	34	0.00587
	-20	5.0	34	0.00589
	-30	5.0	32	0.00554

80<u>2.11ac80</u>

Reference Frequency(Middle Channel): 5775MHz				
Environment	Power Supplied	wer Supplied Frequency Measure with Time Elapsed		
Temperature (°C)	(VDC)	MCF	Error (ppm)	
50	5.0	52	0.00900	
40	5.0	41	0.00710	
30	5.0	43	0.00745	
20	5.0	41	0.00710	
10	5.0	36	0.00623	
0	5.0	32	0.00554	
-10	5.0	34	0.00589	
-20	5.0	32	0.00554	
-30	5.0	52	0.00900	

So, Frequency Stability Versus Input Voltage is:

802.11n_HT20

001					
	Environment	Power Supplied	Frequency Measure with Time Elapsed		
	Temperature (°C)	(VDC)	Frequency	Error (ppm)	
	20	5.0	33	0.00570	
		4.5	21	0.00363	
		5.5	43	0.00743	
				0.0001.10	

80<u>2.11n_HT40</u>

Reference Frequency(Middle Channel): 5795 MHz				
Environment	Power Supplied	Frequency Measure with Time Elapsed		
Temperature (°C)	(VDC)	Frequency	Error (ppm)	
	5.0	42	0.00725	
20	4.5	44	0.00759	
	5.5	43	0.00743	

80<u>2.11ac20</u>

	Reference Frequency(Middle Channel): 5785 MHz				
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature (°C)	(VDC)	Frequency	Error (ppm)		
	5.0	55	0.00951		
20	4.5	32	0.00553		
	5.5	33	0.00570		

80<u>2.11ac40</u>

Reference Frequency(Middle Channel): 5795 MHz				
Environment	Power Supplied	Frequency Measure with Time Elapsed		
Temperature (°C)	(VDC)	Frequency	Error (ppm)	
	5.0	32	0.00553	
20	4.5	33	0.00570	
	5.5	43	0.00743	

Project No.: ZKT-2203251897E-1 Page 76 of 78

	Reference Frequency(Middle Channel): 5775 MHz			
	Environment	Power Supplied	Frequency Measure with Time Elapsed	
	Temperature (°C)	(VDC)	Frequency	Error (ppm)
	20	5.0	43	0.00743
5		4.5	44	0.00762
		5.5	42	0.00727

11.ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is External Antenna, the best case gain of the antenna is 2dBi, reference to the appendix II for details

Project No.: ZKT-2203251897E-1 Page 78 of 78

12. TEST SETUP PHOTO

Reference to the appendix I for details.

13. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

******** END OF REPORT *******

