January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------|-----|--|----------|----------|-----------------| | 10225 | CAC | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 | | 10226 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ±9.6 | | 10227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6 | | 10228 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ±9.6 | | 10233 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)
LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10237 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 10.25 | ±9.6 | | 10238 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10239 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 10240 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 04-QAM) | LTE-TDD | 10.25 | ±9.6 | | 10241 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.21 | ±9.6 | | 10242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.82 | ±9.6 | | 10243 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.86 | ±9.6 | | 10244 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.46 | ±9.6 | | 10245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 10.06 | ±9.6 | | 10247 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM) | LTE-TDD | 9.30 | ±9.6 | | 10248 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 9.91 | ±9.6 | | 10249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5MHz, QPSK) | LTE-TDD | 10.09 | ±9.6 | | 10250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.29 | ±9.6 | | 10251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TOD | 9.81 | ±9.6 | | 10252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TOD | 10.17 | ±9.6 | | 10253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.24 | ±9.6 | | 10254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 9.90 | ±9.6 | | 10255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | | 10.14 | ±9.6 | | 10256 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.20 | ±9.6 | | 10257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.96 | ±9.6 | | 10258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | | 10.08 | ±9.6 | | 10259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.34 | ±9.6 | | 10260 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.98 | ±9.6 | | 10261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.97 | ±9.6 | | 10262 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.24 | ±9.6 | | 10263 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 9.83 | ±9.6 | | 10264 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 10.16 | ±9.6 | | 10265 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.23 | ±9.6 | | 10266 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 9.92 | ±9.6 | | 10267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 | | 10268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 | | 10269 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.06 | ±9.6 | | 10270 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK) | LTE-TDD | 9.58 | +9.6 | | 10274 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ±9.6 | | 10275 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ±9.6 | | 10277 | CAA | PHS (QPSK) | PHS | 11.81 | | | 10278 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6 | | 10279 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | PHS | 12.18 | ±9.6 | | 10290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ±9.6 | | 10291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | | | 10292 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.46 | ±9.6 | | 10293 | AAB | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | | | 10295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ±9.6 | | 10297 | AAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | | | 10298 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 | | 10299 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ±9.6 | | 10300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 10301 | AAA | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) | WiMAX | 12.03 | ±9.6 | | 10302 | AAA | IEEE 802.16e WiMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols) | WiMAX | 12.57 | ±9.6 | | 10303 | AAA | IEEE 802.16e WiMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC) | WiMAX | 12.52 | ±9.6 | | 10304 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, 64QAM, PUSC) | WiMAX | 11.86 | ±9.6 | | 10305 | AAA | IEEE 802.16e WiMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) | WiMAX | 15.24 | ±9.6 | | 10000 | | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 64QAM, PUSC, 18 symbols) | | | 10.0 | Page 14 of 23 January 27, 2023 | UID
10307 | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |--------------|-----|---|----------|----------|-----------------| | | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols) | WIMAX | 14.49 | ±9.6 | | 10308 | AAA | IEEE 802.16e WIMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC) | WIMAX | 14.46 | ±9.6 | | 10309 | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols) | WIMAX | 14.58 | ±9.6 | | | AAA | IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols) | WiMAX | 14.57 | ±9.6 | | 10311 | AAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ±9.6 | | 10313 | AAA | IDEN 1:3 | iDEN | 10.51 | ±9.6 | | | AAA | iDEN 1:6 | iDEN | 13.48 | ±9.6 | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle) | WLAN | 1.71 | ±9.6 | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10317 | AAD | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ±9.6 | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ±9.6 | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ±9.6 | | 0355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ±9.6 | | 0356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ±9.6 | | 0387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ±9.6 | | 0388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ±9.6 | | 0396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ±9.6 | | 0399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ±9.6 | | 0400 | AAE | IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 0401 | AAE | IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.60 | ±9.6 | | 0402 | AAE | IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 0403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6 | | 0404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ±9.6 | | 0406 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 | | 0410 | AAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD | 7.82 | +9.6 | | 0414 | AAA | WLAN CCDF, 64-QAM, 40 MHz | Generic | 8.54 | ±9.6 | | 0415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle) | WLAN | 1.54 | ±9.6 | | 0416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 0417 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle) | WLAN | 8.23 | ±9.6 | | 0418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule) | WLAN | 8.14 | ±9.6 | | 0419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule) | WLAN | 8.19 | ±9.6 | | 0422 | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | +9.6 | | 0423 | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 | | 0424 | AAC | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ±9.6 | | 10425 | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6 | | 0426 | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 | | 0427 | AAC | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | | | | 10430 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.41 | ±9.6 | | 0431 | AAE | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | | 8.28 | ±9.6 | | 0432 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ±9.6 | | 0433 | AAD | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ±9.6 | | 0434 | AAB | W-CDMA (BS Test Model 1, 64 DPCH) | LTE-FDD | 8.34 | ±9.6 | | 0435 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | WCDMA | 8.60 | ±9.6 | | 0447 | AAE | | LTE-TDD | 7.82 | ±9.6 | | 0448 | AAE | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.56 | ±9.6 | | 0449 | AAD | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6 | | 0450 | AAD | LTE-FDD (OFDMA, 15MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.51 | ±9.6 | | 0450 | AAB | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 | |
0453 | AAE | Validation (Square, 10 ms, 1 ms) | WCDMA | 7.59 | ±9.6 | | 0456 | AAC | | Test | 10.00 | ±9.6 | | 0456 | AAB | IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle) UMTS-FDD (DC-HSDPA) | WLAN | 8.63 | ±9.6 | | 0457 | AAA | | WCDMA | 6.62 | ±9.6 | | 0458 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6 | | | | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.6 | | 0460 | AAB | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 | | 0461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 0462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.30 | ±9.6 | | 0463 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 0464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 0465 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 0466 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 0467 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 0468 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 0469 | AAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.56 | ±9.6 | | 0470 | AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | | AAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | January 27, 2023 | UID
10472 | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |--|-------------------|--|----------------------|----------------------|-----------------| | | | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 0473 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.82 | ±9.6 | | 0474 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 0475 | AAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 0477 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.32 | ±9.6 | | 0478 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.57 | ±9.6 | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 0480 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.18 | ±9.6 | | 0481 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.45 | ±9.6 | | 10482 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.71 | ±9.6 | | 10483 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.39 | ±9.6 | | 0484 | AAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.47 | ±9.6 | | 0485 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.59 | ±9.6 | | 0486 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.38 | ±9.6 | | 10487 | AAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.60 | ±9.6 | | 0488 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.70 | ±9.6 | | 0489 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.31 | ±9.6 | | 0490 | AAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 0491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 0492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.41 | ±9.6 | | 0493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.55 | ±9.6 | | 0494 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10495 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.37 | ±9.6 | | 0496 | AAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 10497 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.67 | ±9.6 | | 0498 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.40 | ±9.6 | | 0499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.68 | ±9.6 | | 0500 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.67 | ±9.6 | | 0501 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.44 | ±9.6 | | 0502 | AAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.52 | ±9.6 | | 0503 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.72 | ±9.6 | | 0504 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.31 | ±9.6 | | 0505 | AAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ±9.6 | | 0506 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 0507 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.36 | ±9.6 | | 10508 | AAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.55 | ±9.6 | | 0509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.99 | ±9.6 | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.49 | ±9.6 | | | AAF | LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.51 | ±9.6 | | 0512 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 7.74 | ±9.6 | | 10513
10514 | AAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.42 | ±9.6 | | 0515 | AAA | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.45 | ±9.6 | | 0516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle) | WLAN | 1.58 | ±9.6 | | 0517 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) | WLAN | 1.57 | ±9.6 | | 0517 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 1.58 | ±9.6 | | 0519 | AAC | | WLAN | 8.23 | ±9.6 | | 0520 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 0520 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle) | WLAN | 8.12 | ±9.6 | | 0522 | AAC | | WLAN | 7.97 | ±9.6 | | 0523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8.08 | ±9.6 | | 0525 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle) IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | 0526 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 0527 | AAC | IEEE 802 11ac WIEI (20 MHz, MCC), 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 0528 | AAC | IEEE 802 11ac WiFi (20 MHz, MCS2, 99pc duty cycle) | WLAN | 8.21 | ±9.6 | | _ | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle) IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | | AAC | IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | - | AAC | | WLAN | 8.43 | ±9.6 | | 0531 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 0529
0531
0532 | AAC | IEEE 802 11aa Wiei /20 MH- MCCO 00a | | 8.38 | ±9.6 | | 0531
0532
0533 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle) | WLAN | | | | 0531
0532
0533
0534 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0531
0532
0533
0534
0535 | AAC
AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) | WLAN
WLAN | 8.45
8.45 | ±9.6 | | 0531
0532
0533
0534
0535
0536 | AAC
AAC
AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle) | WLAN
WLAN
WLAN | 8.45
8.45
8.32 | | | 0531
0532
0533
0534
0535 | AAC
AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle) IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle) | WLAN
WLAN | 8.45
8.45 | ±9.6 | Page 16 of 23 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------|-----
--|--------|--------------|-----------------| | 10541 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | 10542 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8.65 | +9.6 | | 10543 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10544 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 10545 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10546 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10547 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10548 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10550 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.38 | +9.6 | | 10551 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10552 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10553 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10554 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 10555 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle) | WLAN | 8.47 | ±9.6 | | 10556 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10557 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.52 | ±9.6 | | 10558 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle) | WLAN | 8.61 | ±9.6 | | 10560 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10561 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.56 | ±9.6 | | 10562 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10563 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10564 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10565 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle) | WLAN | | | | 10566 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mops, 99pc duty cycle) | WLAN | 8.45
8.13 | ±9.6 | | 10567 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle) | | | ±9.6 | | 10568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle) | WLAN | 8.00 | ±9.6 | | 10569 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle) | WLAN | 8.37 | ±9.6 | | 10570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 46 Mbps, 99pc duty cycle) | WLAN | 8.10 | ±9.6 | | 10571 | AAA | The state of s | WLAN | 8.30 | ±9.6 | | 10572 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle) | WLAN | 1.99 | ±9.6 | | | | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) | WLAN | 1.99 | ±9.6 | | 10573 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 10574 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle) | WLAN | 1.98 | ±9.6 | | 10575 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10577 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10581 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10582 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 10583 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10584 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle) | WLAN | 8.60 | ±9.6 | | 10585 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10586 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10587 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10588 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10589 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle) | WLAN | 8.35 | ±9.6 | | 10590 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 10591 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle) | WLAN | 8.63 | ±9.6 | | 10592 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10593 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10594 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10595 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10596 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | 10597 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | 10598 | AAC | IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.50 | ±9.6 | | 10599 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10600 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.88 | ±9.6 | | 10601 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10602 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10603 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle) | WLAN | 9.03 | ±9.6 | | 10604 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10605 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.97 | ±9.6 | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.82 | +9.6 | | | AAC | IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle) | WLAN | 8.64 | ±9.6
±9.6 | | 10607 | | | AATMIA | 0.04 | | Page 17 of 23 EX3DV4 - SN:7517 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |---|-----|---|----------------------|----------------------|--------------| | 10609 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 0610 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 0611 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 0612 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 0613 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10614 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.59 | ±9.6 | | 10615 | AAC | IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10616 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10617 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10618 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10619 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10620 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.87 | ±9.6 | | 10621 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 0622 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.68 | ±9.6 | | 10623 | AAC | IEEE 802.11ac WiFi
(40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10624 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.96 | ±9.6 | | 10625 | AAC | IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.96 | ±9.6 | | 0626 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10627 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle) | WLAN | 8.88 | ±9.6 | | 10628 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.71 | ±9.6 | | 10629 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle) | WLAN | | | | 10630 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 10631 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle) | | 8.72 | ±9.6 | | 10632 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10633 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle) | | 8.74 | ±9.6 | | 10634 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10635 | AAC | IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | 0636 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10637 | AAD | | WLAN | 8.83 | ±9.6 | | 10638 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle) IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10639 | AAD | | WLAN | 8.86 | ±9.6 | | 10640 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle) | WLAN | 8.85 | ±9.6 | | 10641 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle) | WLAN | 8.98 | ±9.6 | | | | IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10642 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle) | WLAN | 9.06 | ±9.6 | | 10643 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10644 | AAD | IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle) | WLAN | 9.05 | ±9.6 | | 10645 | AAD | IEEE 802 11ac WiFi (160 MHz, MCS9, 90pc duty cycle) | WLAN | 9,11 | ±9.6 | | 10646 | AAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7) | LTE-TDD | 11,96 | ±9.6 | | 10647 | AAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7) | LTE-TDD | 11,96 | ±9.6 | | 10648 | AAA | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ±9.6 | | 10652 | AAF | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | +9.6 | | 10653 | AAF | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | +9.6 | | 10654 | AAE | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | +9.6 | | 10655 | AAF | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ±9.6 | | 10658 | AAB | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ±9.6 | | 10659 | AAB | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ±9.6 | | 10660 | AAB | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ±9.6 | | 10661 | AAB | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6 | | 10662 | AAB | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ±9.6 | | 10670 | AAA | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6 | | 10671 | AAC | IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle) | WLAN | 9.09 | ±9.6 | | 10672 | AAC | IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle) | WLAN | 8.57 | ±9.6 | | 10673 | AAC | IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10674 | AAC | IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 0675 | AAC | IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 10676 | AAC | IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10677 | AAC | IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10678 | AAC | IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10679 | AAC | IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10680 | AAC | IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle) | WLAN | 8.80 | ±9.6 | | 10000 | AAC | IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle) | WLAN | 8.62 | ±9.6 | | | 440 | IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle) | WLAN | 8.83 | ±9.6 | | 10681 | AAC | | | | | | 10681
10682 | AAC | IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) | I WLAN | 8.42 | | | 10681
10682
10683 | | IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle) IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10681
10682
10683
10684
10685 | AAC | | WLAN
WLAN
WLAN | 8.42
8.26
8.33 | ±9.6
±9.6 | Certificate No: EX-7517_Jan23 Page 18 of 23 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = | |-------|-----|---|-------|----------|----------------------| | 10687 | AAC | IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 0688 | AAC | IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle) | WLAN | 8,29 | ±9.6 | | 10689 | AAC | IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10690 | AAC | IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 0691 | AAC | IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10692 | AAC | IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10693 | AAC | IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10694 | AAC | IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle) | WLAN | 8.57 | ±9.6 | | 0695 | AAC | IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle) | WLAN | 8.78 | ±9.6 | | 10696 | AAC | IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle) | WLAN | 8.91 | ±9.6 | | 10697 | AAC | IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle) | WLAN | 8.61 | ±9.6 | | 10698 | AAC | IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle) | WLAN | 8.89 | ±9.6 | | 10699 | AAC | IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10700 | AAC | IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle) | WLAN | 8.73 | ±9.6 | | 10701 | AAC | IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle) | WLAN | 8.86 | ±9.6 | | 10702 | AAC | IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10703 | AAC | IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 10704 | AAC | IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle) | WLAN | 8.56 | ±9.6 | | 10705 | AAC | IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10706 | AAC | IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle) | WLAN | 8.66 | ±9.6 | | 10707 | AAC | IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle) | WLAN | 8.32 | ±9.6 | | 10708 | AAC | IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10709 | AAC | IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 10710 | AAC | IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle) | WLAN | 8.29 | | | 10711 | AAC | IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10712 | AAC | IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle) | WLAN | 8.39 | ±9.6 | | 10713 | AAC | IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle) | WLAN | | | | 10714 | AAC | IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle) | | 8.33 | +9.6 | | 10715 | AAC | IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle) | WLAN | 8.26 | ±9.6 | | 10716 | AAC | IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle) | WLAN | 8.45 | ±9.6 | | 10717 | AAC | IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle) | WLAN | 8.30 | ±9.6 | | 10718 | AAC | | WLAN | 8.48 | ±9.6 | | 10719 | AAC | IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle) | WLAN | 8.24 | ±9.6 | | 10720 | AAC | IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle) IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | | 10721 | AAC | | WLAN | 8.87 | ±9.6 | | 10722 | AAC | IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle) | WLAN | 8.76 | ±9.6 | | 10723 | AAC | IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle) | WLAN | 8.55 | ±9.6 | | 10724 | AAC | IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle) IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle) | WLAN | 8.70 | ±9.6 | | 10725 | AAC | | WLAN | 8.90 | ±9.6 | | 10726 | AAC | IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle) | WLAN | 8.74 | ±9.6 | | 10726 | | IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle) | WLAN | 8.72 | ±9.6 | | | AAC | IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle) | WLAN | 8.66 | ±9.6 | | 10728 | AAC | IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle) | WLAN | 8.65 | ±9.6 | | 10729 | AAC | IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle) | WLAN | 8.64 | ±9.6 | | 10730 | AAC | IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle) | WLAN | 8.67 | ±9.6 | | 10731 | AAC | IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10732 | AAC | IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle) | WLAN | 8.46 | ±9.6 | | 10733 | AAC | IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | 10734 | AAC | IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle) | WLAN | 8.25 | ±9.6 | | 10735 | AAC | IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle) | WLAN | 8.33 | ±9.6 | | 10736 | AAC | IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle) | WLAN | 8.27 | ±9.6 | | 10737 | AAC | IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle) | WLAN | 8.36 | ±9.6 | | 10738 | AAC | IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle) | WLAN | 8.42 | ±9.6 | | 10739 | AAC | IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle) | WLAN | 8.29 | ±9.6 | | 10740 | AAC | IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle) | WLAN | 8.48 | ±9.6 | | 10741 | AAC | IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle) | WLAN | 8.40 | ±9.6 | | 10742 | AAC | IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle) | WLAN | 8.43 | ±9.6 | | 10743 | AAC | IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10744 | AAC | IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle) | WLAN | 9.16 | ±9.6 | | 10745 | AAC | IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle) | WLAN | 8.93 | ±9.6 | | 10746 | AAC | IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle) | WLAN | 9.11 | ±9.6 | | 10747 | AAC | IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle) | WLAN | 9.04 | ±9.6 | | 10748 | AAC | IEEE 802.11ax (160 MHz,
MCS5, 90pc duty cycle) | WLAN | 8.93 | ±9.6 | | 10749 | AAC | IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle) | WLAN | 8.90 | ±9.6 | | 10750 | AAC | IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle) | WLAN | 8.79 | ±9.6 | | 10751 | AAC | IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle) | WLAN | 8.82 | ±9.6 | | 0752 | AAC | IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle) | WLAN | 8.81 | ±9.6 | Certificate No: EX-7517_Jan23 Page 19 of 23 EX3DV4 - SN:7517 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------|--------|---|---------------|----------|-----------------| | 10753 | AAC | IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle) | WLAN | 9.00 | ±9.6 | | 10754 | AAC | IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle) | WLAN | 8.94 | ±9.6 | | 10755 | AAC | IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle) | WLAN | 8.64 | ±9.6 | | 0756 | AAC | IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10757 | AAC | IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle) | WLAN | 8.77 | ±9.6 | | 10758 | AAC | IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle) | WLAN | 8.69 | ±9.6 | | 10759 | AAC | IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10760 | AAC | IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10761 | AAC | IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle) | WLAN | 8.58 | ±9.6 | | 10762 | AAC | IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle) | WLAN | 8.49 | ±9.6 | | 10763 | AAC | IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle) | WLAN | 8.53 | ±9.6 | | 10764 | AAC | IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 0765 | AAC | IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle) | WLAN | 8.54 | ±9.6 | | 0766 | AAC | IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle) | WLAN | 8.51 | ±9.6 | | 0767 | AAE | 5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 15kHz) | 5G NR FR1 TDD | 7.99 | ±9.6 | | 0768 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 0769 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10770 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10771 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 0772 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 | | 0773 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 | | 0774 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 0775 | AAD | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 0776 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10778 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 | | 0780 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 | | 10781 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6 | | 0782 | AAD | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ±9.6 | | 0783 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6 | | 0784 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ±9.6 | | 10785 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 10786 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10787 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ±9.6 | | 10788 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 10789 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 0790 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 10791 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ±9.6 | | 10792 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ±9.6 | | 10793 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ±9.6 | | 10794 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 | | 10795 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.6 | | 0796 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 | | 0797 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 0798 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 10799 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 0801 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 | | 10802 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ±9.6 | | 0803 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 | | 0805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 0809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0817 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 0818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 0819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ±9.6 | | 0820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 | | 10821 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 | | 0825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | | 2 2 22 | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | | | 10827 | AAD | 33 NA (CF-OFDM, 100% NB, 80 MH2, GFSK, 30 KH2) | SO MALLIDO | 8.42 | ±9.6 | January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |----------------------------------|------------|--|--------------------------------|--------------|-----------------| | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | +9.6 | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ±9.6 | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 15MHz, QPSK, 60 kHz)
5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ±9.6 | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ±9.6 | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 7.75
7.70 | ±9.6 | | 10836 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ±9.6 | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ±9.6 | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ±9.6 | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ±9.6 | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ±9.6 | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz)
5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.36
8.34 | ±9.6 | | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6
±9.6 | | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 | | 10864 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | +9.6 | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 | | 10869 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 10870 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ±9.6 | | 10871 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 10872 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR (DFT-s-OFDM, 1 RB, 100 MHz,
64QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ±9.6 | | 10874 | AAE | 5G NR (DFT-s-OFDM, 1 AB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 | | 10875 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD
5G NR FR2 TDD | 6.65 | ±9.6 | | 10876 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78
8.39 | ±9.6
±9.6 | | 10877 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ±9.6 | | 10878 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.6 | | 10879 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ±9.6 | | 10880 | AAE | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ±9.6 | | 10881 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 | | 10882 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ±9.6 | | 10883 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ±9.6 | | 10884 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ±9.6 | | 10885 | AAE | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 | | 10886 | AAE | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz)
5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 6.65 | ±9.6 | | 10888 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ±9.6 | | 10889 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD
5G NR FR2 TDD | 8.35 | ±9.6 | | 10890 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02
8.40 | ±9.6 | | 10891 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ±9.6 | | 10892 | AAE | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ±9.6 | | 10897 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ±9.6 | | 10898 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6 | | 10899 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6 | | 10900 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10901 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10902 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | | AAB | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10903 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10904
10905 | AAB | 5G NR (DET.s. OEDM 1 DR ROMHT COOK 2011) | | | | | 10904
10905
10906 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 | | 10904
10905 | AAB
AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ±9.6 | | 10904
10905
10906
10907 | AAB | | | | | EX3DV4 - SN:7517 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | UncE k = 2 | |----------------|-----|---|--------------------------------|--------------|--------------| | 10911 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ±9.6 | | 10912 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10913 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10914 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, OPSK, 30 kHz) 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, OPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ±9.6 | | 10916 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ±9.6 | | 10917 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ±9.6 | | 10918 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 | | 10919 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 5.86 | ±9.6 | | 10920 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86
5.87 | ±9.6 | | 10921 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10922 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ±9.6 | | 10923 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10924 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10925 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ±9.6 | | 10926 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 | | 10927 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 | | 10928 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 | | 10929 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 | | 10930 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 | | 10931 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10932 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10933 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10934 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10935 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5MHz, QPSK, 15kHz) | 5G NR FR1 FDD | 5.90 | ±9.6 | | 10937 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ±9.6 | | 10938 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ±9.6 | | 10939 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ±9.6 | | 10940 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ±9.6 | | 10941 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6 | | 10942 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 | | 10943 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ±9.6 | | 10944 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5MHz, QPSK, 15kHz) | 5G NR FR1 FDD | 5.81 | ±9.6 | | 10945 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 | | 10947 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6 | | 10948 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 25MHz, QPSK, 15kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 | | 10949 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 25MHz, QPSK, 15KHz) | 5G NR FR1 FDD | 5.94 | ±9.6 | | 10950 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 | | 10951 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD
5G NR FR1 FDD | 5.94
5.92 | ±9.6 | | 10952 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ±9.6
±9.6 | | 10953 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ±9.6 | | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ±9.6 | | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ±9.6 | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ±9.6 | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ±9.6 | | 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ±9.6 | | 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ±9.6 | | 10960 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6 | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ±9.6 | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ±9.6 | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 | | 10964 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6 | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ±9.6 | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6 | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ±9.6 | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ±9.6 | | 10973
10974 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ±9.6 | | 10974 | AAA | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) ULLA BDR | 5G NR FR1 TDD | 10.28 | ±9.6 | | 10978 | AAA | ULLA HDR4 | ULLA | 1.16 | ±9.6 | | 10980 | AAA | ULLA HDR8 | ULLA | 8.58 | ±9.6 | | 10981 | AAA | ULLA HDRp4 | ULLA | 10.32 | ±9.6 | | 10982 | AAA | ULLA HDRp8 | ULLA | 3.19 | ±9.6 | | . o ooc | row | Occurs (Incline) | ULLA | 3.43 | ±9.6 | EX3DV4 - SN:7517 January 27, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | $Unc^{E} k = 2$ | |-------|-----|--|---------------|----------|-----------------| | 10983 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.31 | ±9.6 | | 10984 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM,
15 kHz) | 5G NR FR1 TDD | 9.42 | +9.6 | | 10985 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.54 | +9.6 | | 10986 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.50 | +9.6 | | 10987 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.53 | +9.6 | | 10988 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.38 | +9.6 | | 10989 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.33 | +9.6 | | 10990 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.52 | ±9.6 | ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value, # **ANNEX H Dipole Calibration Certificate** ## 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No. D750V3-1017_Jul23 | Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GH Calibration date: July 14, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | |--| | Calibration date: July 14, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate AII calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration | | Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibra | | Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibra | | Sur Ballo (Continuation 170.) Scrieduled California | | Scheduled Calibra | | | | ower meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 | | ower sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 | | ower sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 | | eference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 | | ype-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 | | Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349 Jan23) Jan-24 | | DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 | | Secondary Standards ID # Check Date (in house) Scheduled Check | | Power motor F4440P | | in house check: O | | Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct 20) | | In house check Oct-22) | | Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: O | | Vower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: O SN: 100972 15-Jun-15 (in house check Oct-22) In house check: O SN: 100972 15-Jun-15 (in house check Oct-22) In house check: O | | Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: O SN: 100972 15-Jun-15 (in house check Oct-22) In house check: O h | | Power sensor HP 8481A SN: MY41093315 O7-Oct-15 (in house check Oct-22) In house check: O chec | | Power sensor HP 8481A SN: MY41093315 O7-Oct-15 (in house check Oct-22) In house check: O chec | | Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: O SN: 100972 15-Jun-15 (in house check Oct-22) In house check: O SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: O Name Function Signature | | Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: O RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: O Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: O Name Function Signature | Certificate No: D750V3-1017_Jul23 Page 1 of 6 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From
Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1017_Jul23 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 750 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.42 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.49 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1017_Jul23 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 53.4 Ω - 0.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.6 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.034 ns | |--|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D750V3-1017_Jul23 Page 4 of 6 #### **DASY5 Validation Report for Head TSL** Date: 14.07.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 10.01.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.17 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.19 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.38 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 66% Maximum value of SAR (measured) = 2.85 W/kg 0 dB = 2.85 W/kg = 4.55 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D750V3-1017_Jul23 Page 6 of 6 ## 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Certificate No. D835V2-4d069_Jul23 | Object | D835V2 - SN:4d0 | 069 | | |--|---|--|---| | Calibration procedure(s) | QA CAL-05.v12
Calibration Proce | dure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 14, 2023 | | | | The measurements and the uncert | ainties with confidence pr | onal standards, which realize the physical unitrobability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | | 1 | | | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No.
217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 30-Mar-23 (No. 217-03804/03805)
30-Mar-23 (No. 217-03804)
30-Mar-23 (No. 217-03805)
30-Mar-23 (No. 217-03809)
30-Mar-23 (No. 217-03810)
10-Jan-23 (No. EX3-7349_Jan23)
19-Dec-22 (No. DAE4-601_Dec22) | Mar-24
Mar-24
Mar-24
Mar-24
Mar-24
Jan-24
Dec-23 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 30-Mar-23 (No. 217-03804/03805)
30-Mar-23 (No. 217-03804)
30-Mar-23 (No. 217-03805)
30-Mar-23 (No. 217-03809)
30-Mar-23 (No. 217-03810)
10-Jan-23 (No. EX3-7349_Jan23) | Mar-24
Mar-24
Mar-24
Mar-24
Mar-24
Jan-24 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972 | 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) | Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 | 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 | Certificate No: D835V2-4d069_Jul23 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d069_Jul23 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.9 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.62 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω - 1.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 35.2 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.393 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | Manufactured by | SPEAG | ### **DASY5 Validation Report for Head TSL** Date: 14.07.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.54 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Smallest distance from peaks to all points 3 dB below = 16.8 mm Ratio of SAR at M2 to SAR at M1 = 65.9% Maximum value of SAR (measured) = 3.27 W/kg 0 dB = 3.27 W/kg = 5.15 dBW/kg Certificate No: D835V2-4d069_Jul23 Page 5 of 6 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d069_Jul23 Page 6 of 6 ## 1750 MHz Dipole Calibration Certificate #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For
The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## **Additional Documentation:** c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1003_Jul23 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.0 ± 6 % | 1.34 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 35.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.69 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.9 W/kg ± 16.5 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.4 Ω - 0.2 j Ω | |--------------------------------------|--------------------------------| | Return Loss | - 37.1 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.214 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1750V2-1003_Jul23 #### DASY5 Validation Report for Head TSL Date: 12.07.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 10.01.2023 · Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.6 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 8.84 W/kg; SAR(10 g) = 4.69 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 55.4% Maximum value of SAR (measured) = 13.3 W/kg 0 dB = 13.3 W/kg = 11.24 dBW/kg ## Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003_Jul23 ## 1900 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) **CALIBRATION CERTIFICATE** The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Certificate No. D1900V2-5d101_Jul23 | Object | D1900V2 - SN:50 | d101 | | |--|---|--|--| | Calibration procedure(s) | QA CAL-05.v12
Calibration Proce | edure for SAR Validation Sources | between 0.7-3 GHz | | Calibration date: | July 17, 2023 | | | | The measurements and the uncer | tainties with confidence pr | onal standards, which realize the physical un
robability are given on the following pages an | d are part of the certificate. | | | | y facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | All calibrations have been conduct Calibration Equipment used (M&T Primary Standards | | | | | Calibration Equipment used (M&T | E critical for calibration) | y facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) | Scheduled Calibration Mar-24 | | Calibration Equipment used (M&T | E critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&T
Primary Standards
Power meter NRP2 | E critical for calibration) ID # SN: 104778 | Cal Date (Certificate No.)
30-Mar-23 (No. 217-03804/03805) | Scheduled Calibration Mar-24 | | Calibration Equipment used (M&T
Primary Standards
Power meter NRP2
Power sensor NRP-Z91 | E critical for calibration) ID # SN: 104778 SN: 103244 | Cal Date (Certificate No.)
30-Mar-23 (No. 217-03804/03805)
30-Mar-23 (No. 217-03804) | Scheduled Calibration
Mar-24
Mar-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) | Scheduled Calibration
Mar-24
Mar-24
Mar-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) | Scheduled Calibration
Mar-24
Mar-24
Mar-24
Mar-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N
mismatch combination Reference Probe EX3DV4 | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 Scheduled Check | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 | | Calibration Equipment used (M&T Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 | Cal Date (Certificate No.) 30-Mar-23 (No. 217-03804/03805) 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 10-Jan-23 (No. EX3-7349_Jan23) 19-Dec-22 (No. DAE4-601_Dec22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) | Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Jan-24 Dec-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d101_Jul23 Calibrated by: Approved by: Network Analyzer Agilent E8358A SN: US41080477 Name Michael Weber Sven Kühn 31-Mar-14 (in house check Oct-22) Function Laboratory Technician Technical Manager In house check: Oct-24 Issued: July 17, 2023 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid sensitivity in TSL / NORM x,y,z ConvF N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. | ertificate No: D1900V2-5d101_Jul23 | Page 2 of 6 | | |------------------------------------|-------------|--| | | | | ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.7 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d101_Jul23 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $51.5 \Omega + 3.9 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.7 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D1900V2-5d101_Jul23 ## **DASY5 Validation Report for Head TSL** Date: 17.07.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d101 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.38$ S/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.35, 8.35, 8.35) @ 1900 MHz; Calibrated: 10.01.2023 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.1 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.17 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 55.1% Maximum value of SAR (measured) = 15.2 W/kg
0 dB = 15.2 W/kg = 11.82 dBW/kg Certificate No: D1900V2-5d101_Jul23 ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d101_Jul23 Page 6 of 6 ## 2300 MHz Dipole Calibration Certificate ## Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Certificate No. D2300V2-1018_Jul23 ## CALIBRATION CERTIFICATE Object D2300V2 - SN:1018 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: July 11, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 7349 | 10-Jan-23 (No. EX3-7349 Jan23) | Jan-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | fort | | Approved by: | Sven Kühn | Technical Manager | G | Certificate No: D2300V2-1018_Jul23 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL ConvF tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2300V2-1018_Jul23 Page 2 of 6 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.3 ± 6 % | 1.68 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.03 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | Certificate No: D2300V2-1018_Jul23 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.5 Ω - 2.7 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 30.1 dB | | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.169 ns | |----------------------------------|----------| | | 1 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SDEAG | |-----------------|-------| | Wallactured by | SPEAG | Certificate No: D2300V2-1018_Jul23 ## DASY5 Validation Report for Head TSL Date: 11.07.2023 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN:1018 Communication System: UID 0 - CW; Frequency: 2300 MHz Medium parameters used: f = 2300 MHz; σ = 1.68 S/m; ϵ_r = 38.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2300 MHz; Calibrated: 10.01.2023 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 19.12.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 116.0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 22.1 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 6.03 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 56.2% Maximum value of SAR (measured) = 19.2 W/kg Certificate No: D2300V2-1018_Jul23 ## Impedance Measurement Plot for Head TSL