

RF Exposure Report

Report No.: SA170714E03

FCC ID: 188WAP6804

Test Model: WAP6804

Received Date: Apr. 20, 2016

Test Date: May. 05, 2016; Aug. 21, 2017

Issued Date: Sep. 05, 2017

Applicant: Zyxel Communications Corporation

Address: No.2 Industry East RD. IX, Hsinchu Science Park, Hsinchu 30075, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies.

Report No.: SA170714E03 Page No. 1 / 8 Report Format Version: 6.1.1

Report Format Version: 6.1.1

Table of Contents

Relea	se Control Record	3
1	Certificate of Conformity	4
2	RF Exposure	5
2.1	Limits for Maximum Permissible Exposure (MPE)	5
2.2	MPE Calculation Formula	5
2.3	Classification	5
2.4	Antenna Gain Table	6
2.5	Directional Gain Table	7
3	Calculation Result Of Conducted Power	8

Release Control Record

Issue No.	Description	Date Issued
SA170714E03	Original release.	Sep. 05, 2017

Certificate of Conformity 1

Product: Dual-Band AC2100 Gigabit Wireless Bridge

Brand: ZYXEL

Test Model: WAP6804

Sample Status: ENGINEERING SAMPLE

Applicant: Zyxel Communications Corporation

Test Date: May. 05, 2016; Aug. 21, 2017

Standards: FCC Part 2 (Section 2.1091)

KDB 447498 D01 General RF Exposure Guidance v06

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Approved by: Sep. 05, 2017 Date:

May Chen / Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

		Power Density (mW/cm ²)	Average Time (minutes)					
	Limits For General Population / Uncontrolled Exposure							
300-1500 F/1500 30								
1500-100,000			1.0	30				

F = Frequency in MHz

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 22cm away from the body of the user. So, this device is classified as **Mobile Device**.

Report No.: SA170714E03 Page No. 5 / 8 Report Format Version: 6.1.1

2.4 Antenna Gain Table

Frequency	For 2.4GHz						
(MHz)	Antenna Gain (dBi) ANT_0 ANT_1						
2400-2483.5		2.46			2.7		
2400 2400.0	2.40						
Frequency	Aı	ntenna Gain (dl			ntenna Gain (d	Bi)	
(MHz)	ANT_0			ANT_1			
	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz	
5180	2.52			3.13			
5190		2.49			3.33		
5200	2.92			3.33			
5210			2.77			3.48	
5230		2.27			2.91		
5240	1.96			2.66			
5745	3.46			3.46			
5755		3.31			3.23		
5775			3.3			2.7	
5785	3.42			2.69			
5795		3.55			2.47		
5825	3.33			2.92			
_	Aı	ntenna Gain (dl	Bi)	Aı	ntenna Gain (d	Bi)	
Frequency (MHz)	ANT_2			ANT_3			
(1411 12)	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz	
5180	2.55			3.03			
5190		2.35			3.18		
5200	2.69			3.39			
5210			3.27			3.15	
5230		2.86			2.77		
5240	2.92			2.89			
5745	4.51			3.12			
5755		3.83			3		
5775			3.11			3.24	
5785	3.2			3.26			
5795		3.35			2.9		
5825	3.96			2.92			

2.5 **Directional Gain Table**

		Max Gain (dBi)		Max Gain (dBi)		
Frequency	4TX Nss=1 for CDD and TX BF			4TX Nss=2 for TX BF		
	20 MHz	40 MHz	80 MHz	20 MHz	40 MHz	80 MHz
5180	6.83			3.82		
5190		6.65			3.64	
5200	6.8			3.79		
5210			6.81			3.8
5230		6.41			3.4	
5240	6.19			3.18		
5745	6.61			3.6		
5755		6.4			3.39	
5775			6.01			3
5785	6.38			3.37		
5795		6.5			3.49	
5825	6.27			3.26		

Note:

1. Non-TxBF mode & TxBF mode antenna gain refer to KDB 662911 F 2) f) (ii)

Directional Gain =
$$10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream; $N_{\rm SS}$ = the number of independent spatial streams of data; $N_{\rm ANT}$ = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the kth antenna is being fed by spatial stream j, or zero if it is not;

 G_k is the gain in dBi of the kth antenna.

3 Calculation Result Of Conducted Power

CDD Mode / Beamforming Mode (Nss=1)

Frequency Band (MHz)	Conducted Power (mW)	Directional Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm ²)
2412-2462	484.921	5.59	22	0.28881	1
5180-5240	767.523	6.8	22	0.60400	1
5745-5825	766.475	6.61	22	0.57735	1

NOTE:

1. 2.4GHz: Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20})^2 / 2] = 5.59dBi$

2. 5GHz:

UNII-1: Directional gain of CDD mode / Beamforming Mode (Nss=1) = 6.8dBi

UNII-3: Directional gain of CDD mode / Beamforming Mode (Nss=1) = 6.61dBi

3. Calculations for maximum RF exposure compliance are base on the directional gain and conducted power condition.

Beamforming Mode (Nss=2)

Frequency Band (MHz)	Conducted Power (mW)	Directional Gain (dBi)	Distance (cm)	Power Density (mW/cm ²)	Limit (mW/cm²)
5180-5240	769.216	3.4	22	0.30478	1
5745-5825	792.287	3.37	22	0.29842	1

NOTE:

- 1. For UNII-1: Directional gain of beamforming mode (Nss=2) = 3.79dBi
- 2. For UNII-3: Directional gain of beamforming mode (Nss=2) = 3.6dBi
- 3. Calculations for maximum RF exposure compliance are base on the directional gain and conducted power condition.

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

WLAN 2.4GHz + WLAN 5GHz = 0.28881 / 1 + 0.60400 / 1 = 0.89281

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---