FCC TEST REPORT ### **FOR** TownSteel Inc. TS Smart Deadbolt Test Model: e-Smart 5000-RF Additional Model No.: e-Smart 8000-RF : TownSteel Inc. Prepared for Address : 17901 Railroad Street, City of Industry, CA 91748, United States : Shenzhen LCS Compliance Testing Laboratory Ltd. Prepared by 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an Address District, Shenzhen, Guangdong, China Tel : (+86)755-82591330 : (+86)755-82591332 Fax Web : www.LCS-cert.com Mail webmaster@LCS-cert.com Date of receipt of test sample : October 31, 2018 Number of tested samples : 1 Serial number : Prototype Date of Test : October 31, 2018~March 20, 2019 Date of Report March 20, 2019 ## FCC TEST REPORT FCC CFR 47 PART 15 C (15.225) Report Reference No.: LCS181025038AEA Date of Issue: March 20, 2019 Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd. Address: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China Testing Location/ Procedure.....: Full application of Harmonised standards ■ Partial application of Harmonised standards Other standard testing method Applicant's Name.....: TownSteel Inc. Address: 17901 Railroad Street, City of Industry, CA 91748, United States **Test Specification** Standard.....: FCC CFR 47 PART 15 C(15.225) Test Report Form No.....: LCSEMC-1.0 TRF Originator: Shenzhen LCS Compliance Testing Laboratory Ltd. Master TRF: Dated 2019-03 ## Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Test Item Description.: : TS Smart Deadbolt Trade Mark.....: N/A Test Model: e-Smart 5000-RF Ratings: DC 6V by 4*AA Battery Result: Positive Compiled by: Supervised by: Approved by: LhLi Lh Li/ Administrators Calvin Weng/ Technique principal Gavin Liang/ Manager ## **FCC -- TEST REPORT** March 20, 2019 **Test Report No.:** LCS181025038AEA Date of issue Test Model.....: e-Smart 5000-RF EUT.....: TS Smart Deadbolt : TownSteel Inc. Applicant..... Address..... : 17901 Railroad Street, City of Industry, CA 91748, United States Telephone.....: : / Fax.....:: : / Manufacturer.....:: TownSteel Inc. Address.....: 17901 Railroad Street, City of Industry, CA 91748, United States Telephone.....: : / Fax.....: : / Factory.....: TownSteel Inc. Address..... : 17901 Railroad Street, City of Industry, CA 91748, United States Telephone.....: : / Fax.....: : / | Test Result | Positive | |-------------|----------| | | | The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. # **Revision History** | Revision | Issue Date | Revisions | Revised By | |----------|----------------|---------------|-------------| | 000 | March 20, 2019 | Initial Issue | Gavin Liang | | | | | | | | | | | # **TABLE OF CONTENTS** | 1. GENERAL INFORMATION | 6 | |---|----| | 1.1 DESCRIPTION OF DEVICE (EUT) | 6 | | 1.2 HOST SYSTEM CONFIGURATION LIST AND DETAILS | | | 1.3 EXTERNAL I/O | | | 1.4 DESCRIPTION OF TEST FACILITY | | | 1.5 STATEMENT OF THE MEASUREMENT UNCERTAINTY | | | 1.7 DESCRIPTION OF TEST MODES. | | | 2. TEST METHODOLOGY | | | 2.1. EUT Configuration | | | 2.2. EUT Exercise | | | 2.3 GENERAL TEST PROCEDURES | 8 | | 3. SYSTEM TEST CONFIGURATION | 9 | | 3.1. JUSTIFICATION | | | 3.2. EUT EXERCISE SOFTWARE | | | 3.3. SPECIAL ACCESSORIES | | | 3.4. BLOCK DIAGRAM/SCHEMATICS | | | 3.6. TEST SETUP | | | 4. SUMMARY OF TEST RESULTS | 10 | | 5. RADIATED MEASUREMENT | 11 | | 5.1. RADIATED EMISSION | | | 5.2. FIELD STRENGTH OF FUNDAMENTAL EMISSIONS AND MASK MEASUREMENT | | | 6. BANDWIDTH OF THE OPERATING FREQUENCY | 22 | | 6.1. STANDARD APPLICABLE | | | 6.2. TEST RESULT | 22 | | 7. FREQUENCY STABILITY MEASUREMENT | 23 | | 7.1 STANDARD APPLICABLE | 23 | | 7.2 Test Result | 23 | | 8. LINE CONDUCTED EMISSIONS (NOT APPLICABLE) | | | 8.1. STANDARD APPLICABLE | | | 8.2. BLOCK DIAGRAM OF TEST SETUP | | | 9. ANTENNA REQUIREMENTS | | | | | | 9.1 STANDARD APPLICABLE | | | 10. LIST OF MEASURING EQUIPMENTS | | | | | | 11. TEST SETUP PHOTOGRAPHS OF THE EUT | | | 12. EXTERIOR PHOTOGRAPHS OF THE EUT | 27 | | 12 INTERIOR BHOTOCRADIS OF THE ELT | 27 | ## 1. GENERAL INFORMATION ## 1.1 Description of Device (EUT) **EUT** : TS Smart Deadbolt Test Model : e-Smart 5000-RF Model Number : e-Smart 5000-RF, e-Smart 8000-RF Model Declaration : PCB board, structure and internal of these model(s) are the same, Only model's name, shell colors, side of frame and shell materials are different for these models. Hardware Version : TSB HW V2.0 Software Version : TSB FW V2.0 **Power Supply** : DC 6V by 4*AA Battery RFID Technology Operating Frequency : 13.56MHz **Channel Number** : 1 : ASK Modulation Technology Antenna Description : Internal Antenna, -2.0dBi (Max.) 915 MHz Transmitter Frequency Range : 915 MHz : ASK Modulation Type Antenna Description : Internal antenna, 3.37dBi (Max.) ## 1.2 Host System Configuration List and Details | Manufacturer | Description | Model | Serial Number | Certificate | |--------------|-------------|-------|---------------|-------------| | | | | | | ### 1.3 External I/O | I/O Port Description | Quantity | Cable | |----------------------|----------|-------| | | | - | ### 1.4 Description of Test Facility FCC Registration Number is 899208. Industry Canada Registration Number is 9642A-1. ESMD Registration Number is ARCB0108. UL Registration Number is 100571-492. TUV SUD Registration Number is SCN1081. TUV RH Registration Number is UA 50296516-001. NVLAP Registration Code is 600167-0. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz. ## 1.5 Statement of The Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. ### 1.6 Measurement Uncertainty | Test Item | | Frequency Range | Uncertainty | Note | |------------------------|---|-----------------|-------------|------| | | | 9KHz~30MHz | ±3.10dB | (1) | | | | 30MHz~200MHz | ±2.96dB | (1) | | Radiation Uncertainty | : | 200MHz~1000MHz | ±3.10dB | (1) | | | | 1GHz~26.5GHz | ±3.80dB | (1) | | | | 26.5GHz~40GHz | ±3.90dB | (1) | | Conduction Uncertainty | : | 150kHz~30MHz | ±1.63dB | (1) | | Power disturbance | : | 30MHz~300MHz | ±1.60dB | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. ### 1.7 Description of Test Modes The EUT has been tested under operating condition. This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position. Worst-case mode and channel used for 9 KHz-1000 MHz radiated emissions was the mode. ### 2. TEST METHODOLOGY All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd. ## 2.1. EUT Configuration The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application. ### 2.2. EUT Exercise The EUT was operated in the RFID tag provided by client to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.225 under the FCC Rules Part 15 Subpart C. ### 2.3 General Test Procedures #### 2.3.1 Conducted Emissions The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes. #### 2.3.2 Radiated Emissions The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013. ## 3. SYSTEM TEST CONFIGURATION ### 3.1. Justification The system was configured for testing in a continuous transmits condition. ### 3.2. EUT Exercise Software The EUT was operated in the RFID tag provided by client to fix the TX frequency that was for the purpose of the measurements. ## 3.3. Special Accessories | No. | Equipment | Manufacturer | Model No. | Serial No. | Length | shielded/
unshielded | Notes | |-----|---------------|--------------|-----------|------------|--------|-------------------------|-------| | 1 | PC | Lenovo | Ideapad | A131101550 | / | / | DOC | | 2 | Power adapter | Lenovo | CPA-A090 | 36200414 | 1.00m | unshielded | DOC | ## 3.4. Block Diagram/Schematics Please refer to the related document ## 3.5. Equipment Modifications Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT. ## 3.6. Test Setup Please refer to the test setup photo. # 4. SUMMARY OF TEST RESULTS | Applied Standard: FCC Part 15 Subpart C | | | | |---|----------------------|--------|--| | Test Items | FCC Rules | Result | | | AC Line Conducted Emissions | §15.207(a) | N/A* | | | Field Strength of Fundamental Emissions | §15.225(a)(b)(c) | PASS | | | Radiated Emissions | §15.225(d) & §15.209 | PASS | | | 20dB Bandwidth | § 2.1049 | PASS | | | Frequency Stability | §15.225(e) | PASS | | | Antenna Requirement | §15.203 | PASS | | ## Remark: - 1. Note 1 Test results inside test report; - 2. Note 2 N/A*: Not Applicable! ## 5. RADIATED MEASUREMENT ### 5.1. Radiated Emission ## 5.1.1. Standard Applicable 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |-------------------|---------------------|---------------|-------------| | 0.090-0.110 | 16.42-16.423 | 399.9-410 | 4.5-5.15 | | \1\ 0.495-0.505 | 16.69475-16.69525 | 608-614 | 5.35-5.46 | | 2.1735-2.1905 | 16.80425-16.80475 | 960-1240 | 7.25-7.75 | | 4.125-4.128 | 25.5-25.67 | 1300-1427 | 8.025-8.5 | | 4.17725-4.17775 | 37.5-38.25 | 1435-1626.5 | 9.0-9.2 | | 4.20725-4.20775 | 73-74.6 | 1645.5-1646.5 | 9.3-9.5 | | 6.215-6.218 | 74.8-75.2 | 1660-1710 | 10.6-12.7 | | 6.26775-6.26825 | 108-121.94 | 1718.8-1722.2 | 13.25-13.4 | | 6.31175-6.31225 | 123-138 | 2200-2300 | 14.47-14.5 | | 8.291-8.294 | 149.9-150.05 | 2310-2390 | 15.35-16.2 | | 8.362-8.366 | 156.52475-156.52525 | 2483.5-2500 | 17.7-21.4 | | 8.37625-8.38675 | 156.7-156.9 | 2690-2900 | 22.01-23.12 | | 8.41425-8.41475 | 162.0125-167.17 | 3260-3267 | 23.6-24.0 | | 12.29-12.293. | 167.72-173.2 | 3332-3339 | 31.2-31.8 | | 12.51975-12.52025 | 240-285 | 3345.8-3358 | 36.43-36.5 | | 12.57675-12.57725 | 322-335.4 | 3600-4400 | (\2\) | | 13.36-13.41 | | | | \1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. #### \2\ Above 38.6 According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. | Frequencies
(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009~0.490 | 2400/F(KHz) | 300 | | 0.490~1.705 | 24000/F(KHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## 5.1.2. Measuring Instruments and Setting Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver. | Spectrum Parameter | Setting | |---|---| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10 th carrier harmonic | | RB / VB (Emission in restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average | | RB / VB (Emission in non-restricted band) | 1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average | | Receiver Parameter | Setting | |------------------------|--| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG | | Start ~ Stop Frequency | 150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG | | Start ~ Stop Frequency | 30MHz~1000MHz / RB/VB 120kHz/1MHz for QP | #### 5.1.3. Test Procedures ### 1) Sequence of testing 9 kHz to 30 MHz ### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions. - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna height is 0.8 meter. - --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions - --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°). - --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector. - --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored. ## 2) Sequence of testing 30 MHz to 1 GHz ### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna is polarized vertical and horizontal. - --- The antenna height changes from 1 to 3 meter. - --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions. - --- The final measurement will be performed with minimum the six highest peaks. - --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. - --- The final measurement will be done with QP detector with an EMI receiver. - --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored. ## 3) Sequence of testing 1 GHz to 18 GHz ### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 3 meter. - --- The EUT was set into operation. #### **Premeasurement:** - --- The turntable rotates from 0° to 315° using 45° steps. - --- The antenna is polarized vertical and horizontal. - --- The antenna height scan range is 1 meter to 2.5 meter. - --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions. - --- The final measurement will be performed with minimum the six highest peaks. - --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations. - --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. - --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored. ## 4) Sequence of testing above 18 GHz ### Setup: - --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer. - --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used. - --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both. - --- Auxiliary equipment and cables were positioned to simulate normal operation conditions - --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable. - --- The measurement distance is 1 meter. - --- The EUT was set into operation. #### **Premeasurement:** --- The antenna is moved spherical over the EUT in different polarizations of the antenna. - --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector. - --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored. ### 5.1.4. Test Setup Layout Below 30MHz Below 1GHz Above 1GHz Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m. Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB]. #### 5.1.5. Test Results ### PASS. The test data please refer to following page: #### 9 KHz~30MHz Note: Only recorded the worst test result. | Freq. | Antenna | Reading | Factor | Measured | Limit | Margin | _ | |-------|---------|---------|--------|----------|--------|--------|--------| | MHz | Pol. | dBuV | dB | dBuV/m | dBuV/m | dB | Remark | | 0.20 | Н | | | | 101.41 | | | | 0.56 | Н | | | | 72.58 | | | | 5.14 | Н | 2.26 | 18.3 | 20.56 | 69.5 | -48.94 | QP | | 10.02 | Н | 0.98 | 19.3 | 20.28 | 69.5 | -49.22 | QP | | 13.56 | Н | 13.58 | 19 | 32.58 | 124.0 | -91.42 | QP | | 17.34 | Н | 0.25 | 19.0 | 19.25 | 69.5 | -50.25 | QP | | 20.20 | Н | 0.45 | 18.9 | 19.35 | 69.5 | -50.15 | QP | | 29.71 | Н | 0.13 | 18.6 | 18.73 | 69.5 | -50.77 | QP | *Note: Emission Level= Reading Level + Antenna Factor + Cable Loss Margin = Emission Limit - Emission Values "--" means noise floor. ### 30MHz ~ 1GHz ### Horizontal Freq Reading CabLos Antfac Measured Limit Over Remark | 0 | MHz | dBuV | dB | dB/m | dBuV/m | dBuV/m | dB | | |---|--------|------|------|-------|--------|--------|--------|----| | 1 | 44.55 | 3.24 | 0.41 | 13.55 | 17.20 | 40.00 | -22.80 | QP | | 2 | 54.25 | 3.98 | 0.46 | 13.05 | 17.49 | 40.00 | -22.51 | QP | | 3 | 104.69 | 3.00 | 0.61 | 12.73 | 16.34 | 43.50 | -27.16 | QP | | 4 | 177.44 | 4.84 | 0.89 | 9.50 | 15.23 | 43.50 | -28.27 | QP | | 5 | 291.90 | 4.60 | 1.01 | 12.90 | 18.51 | 46.00 | -27.49 | QP | | 6 | 628.49 | 4.69 | 1.60 | 18.55 | 24.84 | 46.00 | -21.16 | QP | Note: 1. All readings are Quasi-peak values. - 2. Measured= Reading + Antenna Factor + Cable Loss - 3. The emission that ate 20db blow the offficial limit are not reported ### Vertical | | Freq | Reading | CabLos | Antfac | Measured | Limit | Over | Remark | |---|--------|---------|--------|--------|----------|--------|--------|--------| | 0 | MHz | dBuV | dВ | dB/m | dBuV/m | dBuV/m | dВ | | | 1 | 41.64 | 4.19 | 0.50 | 13.57 | 18.26 | 40.00 | -21.74 | QP | | 2 | 55.22 | 3.15 | 0.46 | 13.01 | 16.62 | 40.00 | -23.38 | QP | | 3 | 100.81 | 3.68 | 0.60 | 13.09 | 17.37 | 43.50 | -26.13 | QP | | 4 | 188.11 | 3.44 | 0.98 | 10.39 | 14.81 | 43.50 | -28.69 | QP | | 5 | 353.98 | 2.82 | 1.15 | 14.34 | 18.31 | 46.00 | -27.69 | QP | | 6 | 619.76 | 3.70 | 1.62 | 18.52 | 23.84 | 46.00 | -22.16 | QP | | | | | | | | | | | Note: 1. All readings are Quasi-peak values. - 2. Measured= Reading + Antenna Factor + Cable Loss - 3. The emission that ate 20db blow the offficial limit are not reported #### Note: - 1). Pre-scan all modes and recorded the worst case results in this report. - 2). Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3). Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level. ## 5.2. Field Strength of Fundamental Emissions and Mask Measurement ## 5.2.1. Block Diagram of Test Setup Below 30MHz Below 1GHz ### 5.2.2. Field strength of fundamental emissions limit and Mask limit The field strength of fundamental emissions shall not exceed 15848 microvolts/meter at 30 meters. The emissions limit in this paragraph is based on measurement instrumentation employing a QP detector. | Frequencies | Field Strength | Field Strength | Field Strength | | |--------------------|--------------------|-----------------|----------------|--| | (MHz) | (microvolts/meter) | (dBµV/m) at 10m | (dBµV/m) at 3m | | | 13.553 ~ 13.567MHz | 15848 at 30m | 103.08 (QP) | 124 (QP) | | ### Mask Limit: | OK EITHG | | | | | | | | |-----------------|----------------|--------------|--|--|--|--|--| | Frequency (MHz) | Limit (dBuV/m) | Distance (m) | | | | | | | 1.705-13.110 | 69.5 | 3 | | | | | | | 13.110-13.410 | 80.5 | 3 | | | | | | | 13.410-13.553 | 90.5 | 3 | | | | | | | 13.553-13.567 | 124.0 | 3 | | | | | | | 13.567-13.710 | 90.5 | 3 | | | | | | | 13.710-14.010 | 80.5 | 3 | | | | | | | 14.010-30.000 | 69.5 | 3 | | | | | | ## 5.2.3. Test Results PASS. The test data please refer to following page: ### 90 Degree | | Freq.(MHz) | Reading
(dBuV) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Pol. | Remark | |---|------------|-------------------|----------------|--------------------|-------------------|------|--------| | 1 | 13.56 | 14.26 | 19 | 33.26 | 124 | Н | QP | *Note: Factor= Antenna Factor + Cable Loss Emission level (dB μ V/m) = 20 log Emission level (μ V/m). Measured distance is 3m. All emissions emit from non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits. ### 0 Degree | | Freq.(MHz) | Reading
(dBuV) | Factor
(dB) | Result
(dBuV/m) | Limit
(dBuV/m) | Pol. | Remark | |---|------------|-------------------|----------------|--------------------|-------------------|------|--------| | 1 | 13.56 | 14.27 | 19 | 33.27 | 124 | Η | QP | *Note: Factor= Antenna Factor + Cable Loss Emission level (dB μ V/m) = 20 log Emission level (μ V/m). Measured distance is 3m. All emissions emit from non-NFC function of digital unintentional emissions. All NFC's spurious emissions are below 20dB of limits. ## 6. BANDWIDTH OF THE OPERATING FREQUENCY ## 6.1. Standard Applicable Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (13.553 ~ 13.567MHz). ### 6.2. Test Result | EUT | TS Smart Deadbolt | |-------------------|-------------------| | RBW | 100Hz | | VBW | 100Hz | | SPAN | 1KHz | | Carrier Frequency | 20dB Bandwidth | | (MHz) | (KHz) | | 13.56 | 0.483 | ### Please refer to the test plot: ## 7. FREQUENCY STABILITY MEASUREMENT ## 7.1 Standard Applicable The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery. ### 7.2 Test Result Voltage vs. Frequency Stability | Voltage(V) | Measurement Frequency (MHz) | | | |----------------------|-----------------------------|--|--| | DC 6.90V | 13.56057 | | | | DC 6.00V | 13.56054 | | | | DC 5.10V | 13.56056 | | | | Max. Deviation (MHz) | 0.00057 | | | | Max. Deviation (ppm) | 42.035 | | | Temperature vs. Frequency Stability | Temperature (°C) | Measurement Frequency (MHz) | | | |----------------------|-----------------------------|--|--| | -20 | 13.56053 | | | | -10 | 13.56049 | | | | 0 | 13.56054 | | | | 10 | 13.56053 | | | | 20 | 13.56052 | | | | 30 | 13.56053 | | | | 40 | 13.56051 | | | | 50 | 13.56052 | | | | Max. Deviation (MHz) | 0.00054 | | | | Max. Deviation (ppm) | 39.823 | | | ## 8. LINE CONDUCTED EMISSIONS (NOT APPLICABLE) ## 8.1. Standard Applicable According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows: | Frequency Range | Limits (dBμV) | | | | |-----------------|---------------|----------|--|--| | (MHz) | Quasi-peak | Average | | | | 0.15 to 0.50 | 66 to 56 | 56 to 46 | | | | 0.50 to 5 | 56 | 46 | | | | 5 to 30 | 60 | 50 | | | ^{*} Decreasing linearly with the logarithm of the frequency ### 8.2. Block Diagram of Test Setup ### 8.3. Test Results Not Applicable!! The device was powered by AA battery!!! ## 9. ANTENNA REQUIREMENTS ## 9.1 Standard Applicable According to antenna requirement of §15.203. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded. ### 9.2 Antenna Connected Construction ### 9.2.1. Standard Applicable According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. #### 9.2.2. Antenna Connector Construction The gains of antenna used for transmitting is -2.0dBi, and the antenna is an Internal Antenna connect to PCB board and no consideration of replacement. Please see EUT photo for details. 9.2.3. Results: Compliance. # 10. LIST OF MEASURING EQUIPMENTS | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Next Cal. | |------|-----------------------------|--------------------|------------------------------|-------------|------------|------------| | 1 | Power Sensor | R&S | NRV-Z81 | 100458 | 2018-06-16 | 2019-06-15 | | 2 | Power Sensor | R&S | NRV-Z32 | 10057 | 2018-06-16 | 2019-06-15 | | 3 | Power Meter | R&S | NRVS | 100444 | 2018-06-16 | 2019-06-15 | | 4 | DC Filter | MPE | 23872C | N/A | 2018-06-16 | 2019-06-15 | | 5 | RF Cable | Harbour Industries | 1452 | N/A | 2018-06-16 | 2019-06-15 | | 6 | SMA Connector | Harbour Industries | 9625 | N/A | 2018-06-16 | 2019-06-15 | | 7 | Spectrum Analyzer | Agilent | N9020A | MY49100699 | 2018-06-16 | 2019-06-15 | | 8 | Signal analyzer | Agilent | E4448A(PIFA mixers to 40GHz) | US44300469 | 2018-06-16 | 2019-06-15 | | 9 | RF Cable | Hubersuhner | Sucoflex104 | FP2RX2 | 2018-06-16 | 2019-06-15 | | 10 | 3m Semi Anechoic
Chamber | SIDT FRANKONIA | SAC-3M | 03CH03-HY | 2018-06-16 | 2019-06-15 | | 11 | Amplifier | SCHAFFNER | COA9231A | 18667 | 2018-06-16 | 2019-06-15 | | 12 | Amplifier | Agilent | 8449B | 3008A02120 | 2018-06-16 | 2019-06-15 | | 13 | Amplifier | MITEQ | AMF-6F-260400 | 9121372 | 2018-06-16 | 2019-06-15 | | 14 | Loop Antenna | R&S | HFH2-Z2 | 860004/001 | 2018-06-16 | 2019-06-15 | | 15 | By-log Antenna | SCHWARZBECK | VULB9163 | 9163-470 | 2018-06-16 | 2019-06-15 | | 16 | Horn Antenna | EMCO | 3115 | 6741 | 2018-06-16 | 2019-06-15 | | 17 | Horn Antenna | SCHWARZBECK | BBHA9170 | BBHA9170154 | 2018-06-16 | 2019-06-15 | | 18 | RF Cable-R03m | Jye Bao | RG142 | CB021 | 2018-06-16 | 2019-06-15 | | 19 | RF Cable-HIGH | SUHNER | SUCOFLEX 106 | 03CH03-HY | 2018-06-16 | 2019-06-15 | | 20 | EMI Test Receiver | R&S | ESCI | 101142 | 2018-06-16 | 2019-06-15 | | 21 | Artificial Mains | R&S | ENV216 | 101288 | 2018-06-16 | 2019-06-15 | | 22 | EMI Test Software | AUDIX | E3 | N/A | N/A | N/A | | 23 | Spectrum Analyzer | R&S | FSP40 | 100503 | 2018-06-16 | 2019-06-15 | ## 11. TEST SETUP PHOTOGRAPHS OF THE EUT Please refer to separated files for Test Setup Photos of the EUT. ## 12. EXTERIOR PHOTOGRAPHS OF THE EUT Please refer to separated files for External Photos of the EUT. ## 13. INTERIOR PHOTOGRAPHS OF THE EUT Please refer to separated files for Internal Photos of the EUT. -----THE END OF REPORT-----