Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

CTATESTING FCC Ru	TEST REPORT les and Regulations Part PART 15.249
Report Reference No	CTA25022100201
FCC ID	2AQ4S-RV-218
Compiled by (position+printed name+signature	File administrators Joan Wu
Supervised by (position+printed name+signature Approved by (position+printed name+signature	RF Manager Eric Wang
Date of issue	
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	RITASC ELECTRONICS CO., LTD.
Address	B3, Zone 2, Jiangmen Chanye Industrial Area Enping City, Guangdong
Standard	FCC Rules and Regulations PART 15.249
	ogy Co., Ltd. All rights reserved.
Shenzhen CTA Testing Technolog material. Shenzhen CTA Testing T	d in whole or in part for non-commercial purposes as long as the y Co., Ltd. is acknowledged as copyright owner and source of the echnology Co., Ltd. takes no responsibility for and will not assume the reader's interpretation of the reproduced material due to its
Test item description	2.4G WIRELESS MICROPHONE
Trade Mark	
Manufacturer	·· RITASC ELECTRONICS CO., LTD.
Model/Type reference	
Listed Models	Refer to page 2
Modulation	Refer to page 2 GFSK 2402-2480MHz
Frequency	2402-2480MHz
	DC 2.7)/ From bottom, and DC 5.0)/ From outputs laire vit
Ratings	DC 3.7 V From battery and DC 5.0 V From external circuit

TEST REPORT Equipment under Test 2.4G WIRELESS MICROPHONE Model /Type **RV-218** RV-100, RV-110, RV-111, RV-112, RV-113, RV-115, RV-116, RV-117, Listed Models RV-118, RV-119, RV-120, RV-122, RV-123, RV-125, RV-126, RV-128, RV-129, RV-200, RV-210, RV-211, RV-212, RV-213, RV-215, RV-216, RV-217, RV-219, RV-220, RV-222, RV-223, RV-225, RV-226, RV-228, RV-229 Model difference The PCB board, circuit, structure and internal of these models are the CTA TESTING same, Only model number and colour is different for these model. **RITASC ELECTRONICS CO., LTD.** Applicant B3, Zone 2, Jiangmen Chanye Industrial Area Enping City, Guangdong Address Province, China Manufacturer **RITASC ELECTRONICS CO., LTD.** B3, Zone 2, Jiangmen Chanye Industrial Area Enping City, Guangdong Address Province, China CTATESTING

Test Result:

Report No.: CTA25022100201

PASS

Page 2 of 29

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

Constants.	TEST STANDADDS			TING	
<u>1.</u>	<u>.TEST STANDARDS</u>	<u></u>	<u></u>	4	
			TAIL		
<u>2.</u>	SUMMARY		<u></u>	<u>5</u>	
2.1.	General Remarks			GV	
2.1.	Product Description			55	
2.3.	Equipment Under Test			5	
2.4.	Short description of the Equip	ment under Test (FU	T)	5	
2.5.	EUT configuration		•)	5	
2.6.	EUT operation mode			6	
2.7.	Block Diagram of Test Setup			6	
2.8.	Modifications			6	
	Construction of the second sec		TES	.6	
-				TING	
<u>3.</u>	TEST ENVIRONMENT	. <u></u>		<u></u>	
3.1.	Address of the test laboratory	,		7	
3.2.	Test Facility			7	
3.3.	Environmental conditions			7	
3.4.	Summary of measurement res	ults		8	
3.5.	Statement of the measuremen	t uncertainty		8	
3.6.	Equipments Used during the 1	Test .		8	
	TEST CONDITIONS A	ND DECILITE		10	
	ILST CONDITIONS A	ND KLOULIS	<u></u>		
	4.1. AC Power Condu	cted Emission			
	4.4. Antenna Requirer	ment			
5	TEST SETUP PHOTOS			23	
<u>y.</u>					
<u>6.</u>	<u>TEST PHOTOS OF TH</u>	<u>E EUT</u>			
		C1F			
			TESTING	TES	

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

CTATE ANSI C63.4: 2014: - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz GA CTATESTING

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample		Feb. 21, 2025	
	3.11		. 1
Testing commenced on	De service	Feb. 21, 2025	ATO
Testing concluded on	:	Mar. 11, 2025	Constant of the second se

	-STING
Name of EUT	2.4G WIRELESS MICROPHONE
Model Number	RV-218
Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
Hardware version:	V1.0
Software version:	V1.0
Sample ID:	CTA250221002-1# (Engineer sample) CTA250221002-2# (Normal sample)
Operation frequency	2402-2480MHz
Modulation	GFSK
Antenna Type	PCB antenna
Antenna Gain	-0.58 dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply system util	lised		TATESTIN	
Power supply voltage		○ 230V / 50 Hz	0 120V / 60Hz	
		O 12 V DC	○ 24 V DC	
		• Other (specified in blan	k below)	
DC 3	.7V From	battery and DC 5.0V From	external circuit	

2.4. Short description of the Equipment under Test (EUT)

This is a 2.4G WIRELESS MICROPHONE.

For more details, refer to the user's manual of the EUT.

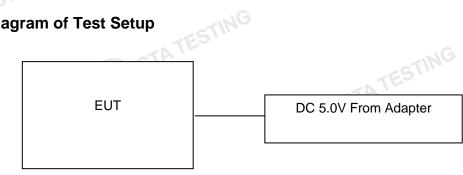
2.5. EUT configuration

TATESTING The following peripheral devices and interface cables were connected during the measurement:

• - supplied by the manufacturer

\bigcirc - supplied by the lab	
----------------------------------	--

 ○ Adapter 	FESTING	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
	GA CTA IL	CTA TESTING


2.6. EUT operation mode

The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 40 channels provided to the EUT. Channel Low, Mid and High was selected to test.

	Operation Frequency:	CTA V			
	Cha	annel	Fred	Frequency (MHz)	
		00		2402	
		01		2404	
		02	and the second s	2406	TAT-
				÷	CHA L
		19		2440	
		. G		÷	
C/r	:	37		2476	
Î.		38	. C.	2478	
		39		2480	
	Test frequency:		CTATES		TING
	Channel	Frequency (MHz)		CTATE	
	Low	2402			
	Mid	2440			
	High	2/80			

Channel	Frequency (MHz)
Low	2402
Mid	2440
High	2480
TESTING	

2.7. Block Diagram of Test Setup

CTATESTING 2.8. Modifications

GA CTATESTING No modifications were implemented to meet testing criteria.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127 The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio TATEST equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTA TE

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
ING	
Atmospheric pressure:	950-1050mbar

CTATES AC Main Conducted testing:

C Main Conducted testing:	
Temperature:	24 ° C
G	
Humidity:	45 %
and the second se	Ci
Atmospheric pressure:	950-1050mbar

Conducted testina:

enadeted teeting.	
Temperature:	24 ° C
Humidity:	45 %
-STIN	
Atmospheric pressure:	950-1050mbar 👝
	CTA TESTING

3.4. Summary of measurement results

FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.5. Statement of the measurement uncertainty

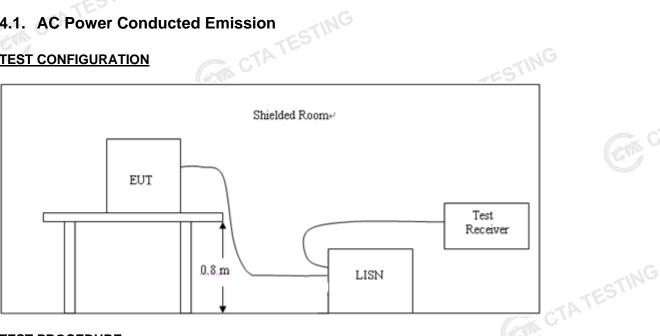
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	65.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence CTA TESTIN level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	G R&S	ENV216	CTA-308	2024/08/03	2025/08/02
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
G					CIA


GA CTA

	Report No.: CTA2502	Page	Page 9 of 29			
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
F	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
TE	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
(A)	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
ATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

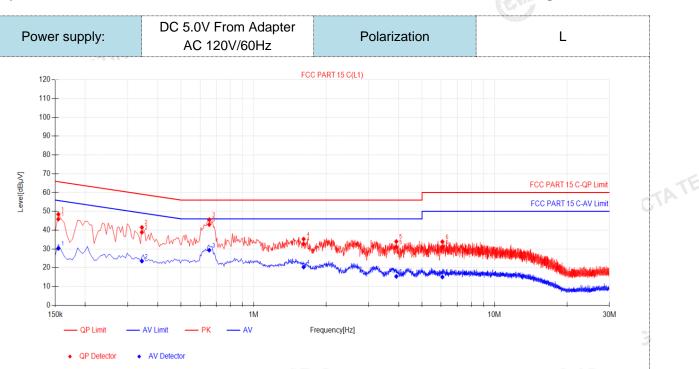
TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


Frequency range (MHz)	Limit	(dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
Decreases with the logarithm of the freque		

Decreases with the logarithm of the frequency.

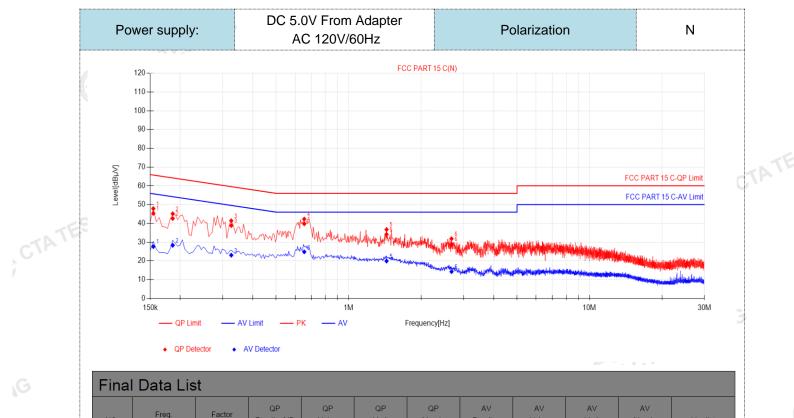
TEST RESULTS

Remark:

- All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19 1 was reported as below:
- CTATE Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result 2. of 120 VAC, 60 Hz was reported as below:.

Page 11 of 29

GECTATE


Final	Data	List	

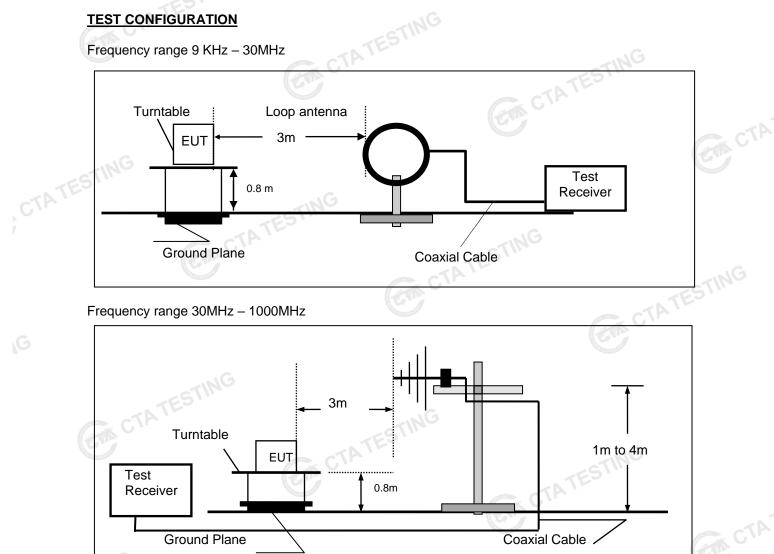
CTATE

ппа	Data Lis	51									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	A∨ Margin [dB]	Verdict
1	0.1545	9.89	35.98	45.87	65.75	19.88	20.38	30.27	55.75	25.48	PASS
2	0.3435	9.88	29.02	38.90	59.12	20.22	13.64	23.52	49.12	25.60	PASS
3	0.654	9.97	33.00	42.97	56.00	13.03	19.38	29.35	46.00	16.65	PASS
4	1.6125	9.91	22.79	32.70	56.00	23.30	10.44	20.35	46.00	25.65	PASS
5	3.912	9.93	21.16	31.09	56.00	24.91	5.45	15.38	46.00	30.62	PASS
6	6.0765	10.16	20.91	31.07	60.00	28.93	4.92	15.08	50.00	34.92	PASS
). Fac	.QP Value tor (dB)=in ⁄largin(dB)	sertion lo	oss of LIS	N (dB) +	Cable los	ss (dB)		CTA	76-		

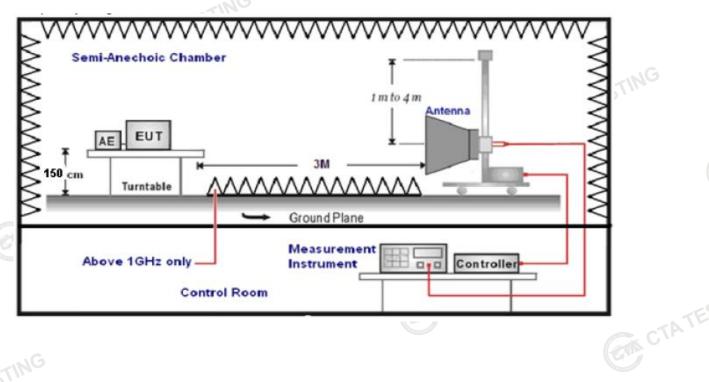
,. AVI 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

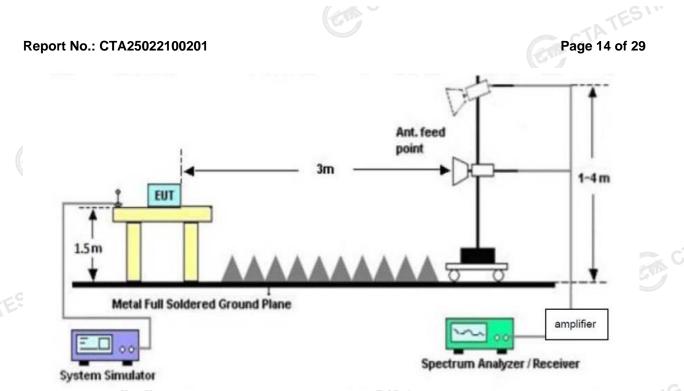
Page 12 of 29

	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1545	10.00	35.32	45.32	65.75	20.43	17.62	27.62	55.75	28.13	PASS	
	2	0.186	10.01	32.57	42.58	64.21	21.63	18.30	28.31	54.21	25.90	PASS	
	3	0.3255	9.86	28.98	38.84	59.57	20.73	13.20	23.06	49.57	26.51	PASS	
	4	0.654	10.10	29.64	39.74	56.00	16.26	14.73	24.83	46.00	21.17	PASS	
	5	1.437	10.14	24.00	34.14	56.00	21.86	9.79	19.93	46.00	26.07	PASS	
	6	2.6745	10.16	18.78	28.94	56.00	27.06	4.12	14.28	46.00	31.72	PASS	
62.674510.1618.7828.9456.0027.064.1214.2846.0031.72PASSNote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)													


4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTA TESTING

CTATE


4.2. Radiated Emission and Band Edges


TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing 1. frequency range 9 KHz -25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 26MHz and maximum operation frequency 5 was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states: 6

Test Frequency range	Test Antenna Type	Test Distance		
9KHz-30MHz	Active Loop Antenna	3		
30MHz-1GHz	Ultra-Broadband Antenna	3		TE
1GHz-18GHz	Double Ridged Horn Antenna	3	18 11d	YA Y
18GHz-25GHz	Horn Anternna	1		
Setting test receiver/spec	trum as following table states:		and the second s	-
Test Frequency range	Test Receiver/Spectrum Setting		Detector	

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

7.

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	.NG	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	STIN	AG = Amplifier Gain
AF = Antenna Factor	TEC	16
Transd=AF +CL-AG	C	TESTING
		CTA IL

RADIATION LIMIT

CTATE According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

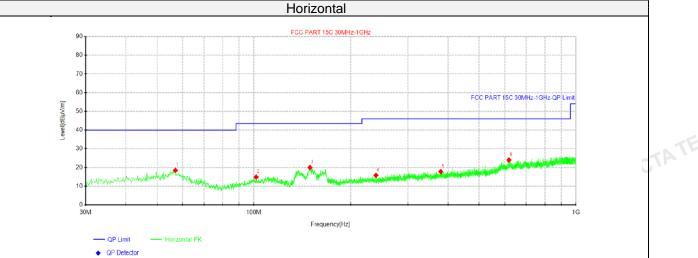
Page 15 of 29

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

	Contraction of the second seco	Rac	liated emission limits	ING
	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
CTATE	88-216	3.NG	43.5	150
	216-960	3	46.0	200
r	Above 960	CTA 3	54.0	500
	TEST DESIII TS		120	

TEST RESULTS Remark:

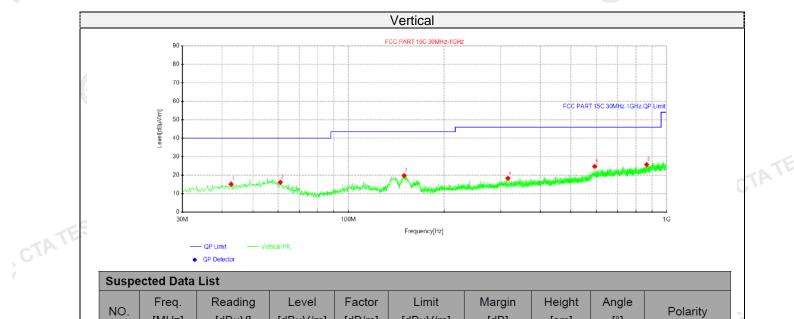

1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

2. GFSK were tested at Low, Middle, and High channel and recorded worst mode at the High channel.

Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected Data List


CTATE

-										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty	
1	57.0388	30.51	18.47	-12.04	40.00	21.53	100	71	Horizontal	
2	101.658	27.86	14.89	-12.97	43.50	28.61	100	328	Horizontal	
3	149.431	35.39	19.98	-15.41	43.50	23.52	200	165	Horizontal	
4	238.792	28.16	15.80	-12.36	46.00	30.20	100	142	Horizontal	
5	379.685	28.12	17.77	-10.35	46.00	28.23	100	188	Horizontal	
6	618.79	29.72	24.01	-5.71	46.00	21.99	200	304	Horizontal	

Note:1).Level (dB μ V/m)= Reading (dB μ V)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) GA CTATESTING

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Page 17 of 29

	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
		[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
	1	42.7312	26.79	15.11	-11.68	40.00	24.89	100	302	Vertical
	2	61.04	29.13	16.12	-13.01	40.00	23.88	100	156	Vertical
	3	149.673	35.15	19.75	-15.40	43.50	23.75	200	360	Vertical
	4	316.513	29.24	18.32	-10.92	46.00	27.68	100	326	Vertical
	5	594.055	30.91	24.73	-6.18	46.00	21.27	100	2	Vertical
	6	865.412	29.24	25.72	-3.52	46.00	20.28	200	314	Vertical

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m) GA CTATESTING

CA CTA

Page 18 of 29

For 1GHz to 25GHz

		. C		GFSK (abo	ve 1GHz)				
Freque	ncy(MHz)):	2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2402.00	88.57	PK	114.00	25.43	99.85	27.47	3.43	42.18	-11.28
2402.00	79.97	AV	94.00	14.03	91.25	27.47	3.43	42.18	-11.28
4804.00	48.58	PK	74.00	25.42	52.85	32.33	5.12	41.72	-4.27
4804.00	41.15	AV	54.00	12.85	45.42	32.33	5.12	41.72	-4.27
7206.00	50.90	PK	74.00	23.10	51.42	36.6	6.49	43.61	-0.52
7206.00	37.43	AV	54.00	16.57	37.95	36.6	6.49	43.61	-0.52
. C.		•			•	•	•		

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2402.00	86.97	PK	114.00	27.03	98.25	27.47	3.43	42.18	-11.28
2402.00	78.82	AV	94.00	15.18	90.10	27.47	3.43	42.18	-11.28
4804.00	46.58	PK	74.00	27.42	50.85	32.33	5.12	41.72	-4.27
4804.00	39.06	AV	54.00	14.94	43.33	32.33	5.12	41.72	-4.27
7206.00	47.97	PK	74.00	26.03	48.49	36.6	6.49	43.61	-0.52
7206.00	34.89	AV	54.00	19.11	35.41	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)):	2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2440.00	87.99	PK	114.00	26.01	99.24	27.52	3.45	42.22	-11.25
2440.00	80.71	AV	94.00	13.29	91.96	27.52	3.45	Jest 42.22	-11.25
4880.00	49.82	PK	74.00	24.18	53.70	32.6	5.34	41.82	-3.88
4880.00	40.91	AV	54.00	13.09	44.79	32.6	5.34	41.82	-3.88
7320.00	49.99	PK	74.00	24.01	50.10	36.8	6.81	43.72	-0.11
7320.00	37.76	AV	54.00	16.24	37.87	36.8	6.81	43.72	-0.11
									C
Frequency(MHz):			24	40	Pola	arity:		VERTICAL	

Freque	Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2440.00	85.99	PK	114.00	28.01	97.24	27.52	3.45	42.22	-11.25	
2440.00	78.68	AV	94.00	15.32	89.93	27.52	3.45	42.22	-11.25	
4880.00	48.18	PK	74.00	25.82	52.06	32.6	5.34	41.82	-3.88	
4880.00	38.75	AV	54.00	15.25	42.63	32.6	5.34	41.82	-3.88	
7320.00	47.55	PK	74.00	26.45	47.66	36.8	6.81	43.72	-0.11	
7320.00	36.51	AV	54.00	17.49	36.62	36.8	6.81	43.72	-0.11	
								¥		

Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2480.00	87.31	PK	114.00	26.69	97.42	27.7	4.47	42.28	-10.11	
2480.00	81.66	AV	94.00	12.34	91.77	27.7	4.47	42.28	-10.11	
4960.00	48.90	PK	74.00	25.10	51.98	32.73	5.66	41.47	-3.08	
4960.00	40.99	AV	54.00	13.01	44.07	32.73	5.66	41.47	-3.08	
7440.00	49.39	PK	74.00	24.61	48.94	37.04	7.25	43.84	0.45	
7440.00	38.26	AV	54.00	15.74	37.81	37.04	7.25	43.84	0.45	
								13.81		

cTA

cTA

Page 19 of 29

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le ^v (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2480.00	85.25	PK	114.00	28.75	95.36	27.7	4.47	42.28	-10.11
2480.00	77.52	AV	94.00	16.48	87.63	27.7	4.47	42.28	-10.11
4960.00	47.29	PK	74.00	26.71	50.37	32.73	5.66	41.47	-3.08
4960.00	38.94	AV	54.00	15.06	42.02	32.73	5.66	41.47	-3.08
7440.00	48.02	PK	74.00	25.98	47.57	37.04	7.25	43.84	0.45
7440.00	36.60	AV	54.00	17.40	36.15	37.04	7.25	43.84	0.45
REMARKS: 1. 2. 3.	Correctior Margin va	n Factor (dB lue = Limit v	m) =Raw Value (d m) = Antenna Fac alue- Emission lev	tor (dB/m)+Cable /el.	Factor (dB)- P	re-amplifier			GIA CTP

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

CTATESTIN Results of Band Edges Test (Radiated)

HORIZONTAL ble Pre- Correction amplifier Factor B) (dB) (dB/m)		
ctor amplifier Factor		
B) (dB) (dB/m)		
31 42.15 -10.42		
31 42.15 -10.42		
31 42.17 -10.43		
31 42.17 -10.43		
VERTICAL		
ble Pre- Correction ctor amplifier Factor B) (dB) (dB/m)		
31 42.15 -10.42		
31 42.15 -10.42		
31 42.17 -10.43		
31 42.17 -10.43		
HORIZONTAL		
ble Pre- ctor amplifier Factor B) (dB) (dB/m)		
47 42.28 -10.11		
47 42.28 -10.11		
VERTICAL		
ble Pre- ctor amplifier Factor B) (dB) (dB/m)		
47 42.28 -10.11		
47 42.28 -10.11		

Note:

Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)

Margin value = Limits-Emission level. 2)

3) -- Mean the PK detector measured value is below average limit.

The other emission levels were very low against the limit. 4)

5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV .cct value.

4.3. 20dB Bandwidth Measurement

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTATESTING CTATE 20dB.

LIMIT

N/A

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result	
CTATE -	Low	1.198		
GFSK	Mid	1.195	PASS	
and the second se	High	1.194		NG
Note: 1.The test res	sults including the cal	ble loss.	CTATES.	

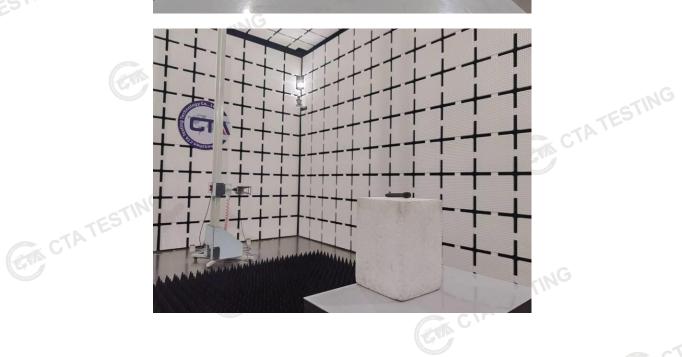
4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information


The maximum gain of antenna was -0.58 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

ring

5. Test Setup Photos of the EUT

TING

ring

Constant of the second

CTA TESTING

6. <u>Test Photos of the EUT</u>

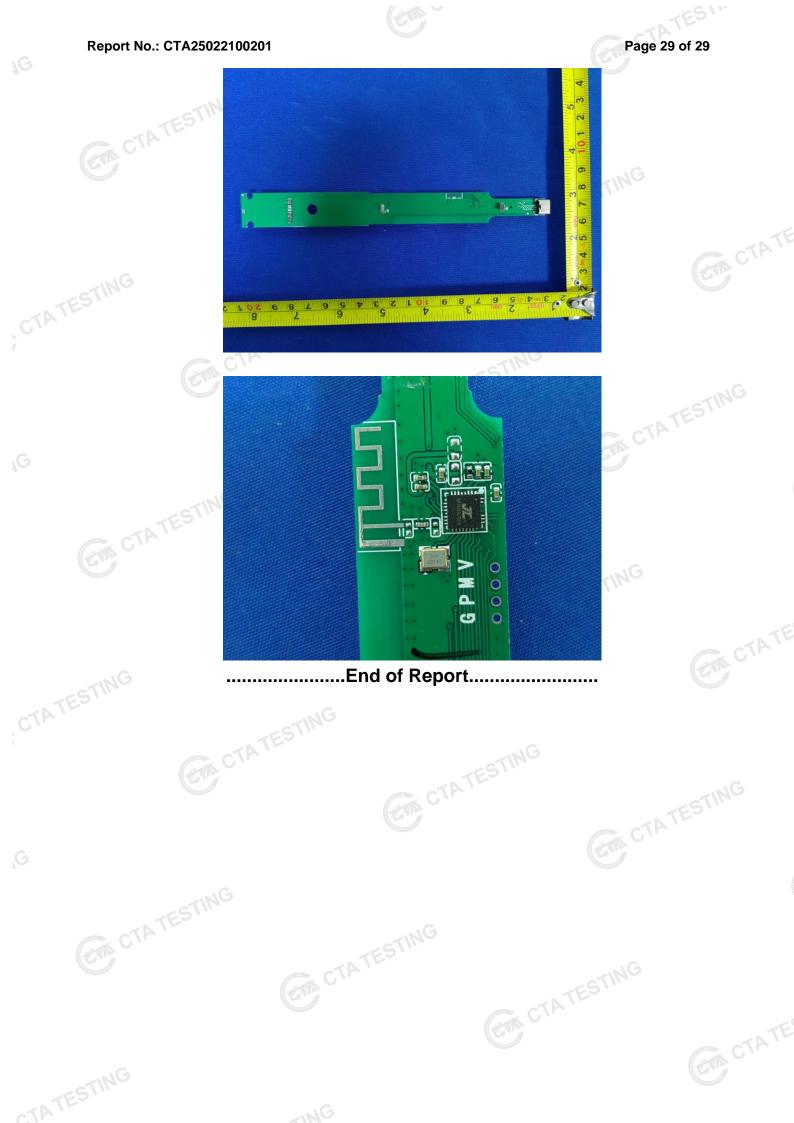
CTA TESTIN

CTA TESTING

CTA TESTING

TING

ring


5 3 4 2 9 5 4 2 8 8 101 5 3 4 2 9 1 8 8 501 5 3 4 2 9

IN

