

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com

Report No.: SZEM170500533106

Page: 1 of 48

FCC REPORT

Application No:SZEM1705005331RGApplicant:Kyocera CorporationManufacturer:Kyocera CorporationFactory:Kyocera Corporation

Product Name: Tablet
Model No.(EUT): FA85
Trade Mark: Kyocera
FCC ID: JOYFA85

Standards: 47 CFR Part 15, Subpart C (2017)

Test Method KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10 (2013)

Date of Receipt: 2017-12-28

Date of Test: 2017-12-29 to 2018-01-07

Date of Issue: 2018-01-08

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derele yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170500533106

Page: 2 of 48

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2018-01-08		Original			

Authorized for issue by:		
Tested By	(Mike Hu) /Project Engineer	2018-01-08 Date
Checked By	Jihn Hog	2018-01-08
	(Jim Huang) /Reviewer	Date

Report No.: SZEM170500533106

Page: 3 of 48

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e) ANSI C63.10 2013		PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

Report No.: SZEM170500533106

Page: 4 of 48

4 Contents

			Page
			1
2	. VI	ERSION	2
3	т	EST SUMMARY	3
4		ONTENTS	
		ENERAL INFORMATION	
5	G		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8 5.9	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.10	MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
	5.10	EQUIPMENT LIST	
6	TE	EST RESULTS AND MEASUREMENT DATA	12
	6.1	Antenna Requirement	12
	6.2	CONDUCTED EMISSIONS	13
	6.3	CONDUCTED PEAK OUTPUT POWER	16
	6.4	6DB OCCUPY BANDWIDTH	19
	6.5	POWER SPECTRAL DENSITY	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	SPURIOUS RF CONDUCTED EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSION	
	_	.8.1 Radiated Emission below 1GHz	
	_	.8.2 Transmitter Emission above 1GHz	
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	43
7	' Pi	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	48

Report No.: SZEM170500533106

Page: 5 of 48

5 General Information

5.1 Client Information

Applicant:	Kyocera Corporation		
Address of Applicant:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan		
Manufacturer:	Kyocera Corporation		
Address of Manufacturer:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan		
Factory:	Kyocera Corporation		
Address of Factory:	2-1-1 Kagahara, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan		

5.2 General Description of EUT

Product Name:	Tablet
Model No.:	FA85
Trade Mark:	Kyocera
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	Bluetooth V4.2 Dual-mode
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Portable Device
Antenna Type:	PIFA
Antenna Gain:	2.62dBi
Power Supply	DC3.8V (1 x 3.8V Rechargeable battery)7000mAh Battery: Charge by DC 5V

Report No.: SZEM170500533106

Page: 6 of 48

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

Report No.: SZEM170500533106

Page: 7 of 48

5.3 Test Environment

Operating Environment				
Temperature:	25.0 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010 mbar			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

Report No.: SZEM170500533106

Page: 8 of 48

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Total RF power, conducted	0.75dB	
2	RF power density, conducted	2.84dB	
3	Spurious emissions, conducted	0.75dB	
		4.5dB (30MHz-1GHz)	
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)	
5	Conduct emission test	3.12 dB(9KHz- 30MHz)	
6	Temperature test	1℃	
7	Humidity test	3%	
8	DC and low frequency voltages	0.5%	

Report No.: SZEM170500533106

Page: 9 of 48

5.11 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-10	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-10-09	2018-10-09	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-14	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017-09-28	2018-09-28	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017-09-28	2018-09-28	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017-09-28	2018-09-28	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-14	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	

	RF connected test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2017-03-06	2018-03-06	
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14	
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017-10-09	2018-10-09	
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017-10-09	2018-10-09	

Report No.: SZEM170500533106

Page: 10 of 48

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017-10-09	2018-10-09	
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017-11-01	2020-11-01	
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17	
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017-11-24	2020-11-24	
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14	
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017-10-09	2018-10-09	
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13	

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017-05-10	2018-05-10	
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017-04-14	2018-04-14	
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016-06-29	2019-06-29	
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017-07-06	2018-07-06	
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015-08-14	2018-08-14	

Report No.: SZEM170500533106

Page: 11 of 48

	RE in Chamber						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-10	
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017-07-19	2018-07-19	
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017-11-15	2020-11-15	
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-10-09	2018-10-09	
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-14	
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017-11-24	2020-11-24	
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12	
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017-10-09	2018-10-09	
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A	

Report No.: SZEM170500533106

Page: 12 of 48

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.62dBi.

Report No.: SZEM170500533106

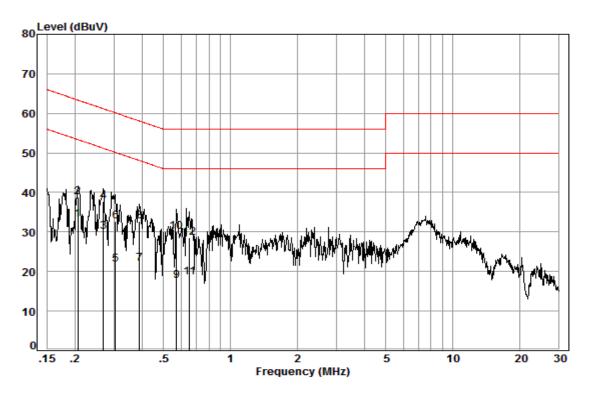
Page: 13 of 48

6.2 Conducted Emissions

Tool Downing	47 OFD Dark 150 Continue 15 (207			
Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz			1	
	Frequency range (MHz)	Limit (dBuV)	T		
		Quasi-peak	Average		
Limit:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.			
Test Procedure:	 The mains terminal disturbation. The EUT was connected to Stabilization. Network) which power cables of all other which was bonded to the for the unit being measur multiple power cables to exceeded. The tabletop EUT was plane reference plane. And for food horizontal ground reference. The test was performed we EUT shall be 0.4 m from the reference plane was bond was placed 0.8 m from the ground reference plane food This distance was between units of the EUT and associated in the interface cables much and control in the food. In order to find the maximulation of the interface cables much and control in the food. 	o AC power source the ich provides a 50Ω/50 units of the EUT were ground reference planed. A multiple socket a single LISN provided a vertical ground reference to the horizontal ground at the boundary of the unit of the closest points of ciated equipment was a um emission, the relating to the single provided according to the	rough a LISN 1 (Line 0μ H + 5Ω linear imple connected to a secence in the same way a coutlet strip was used the rating of the Lillic table 0.8m abovement, the EUT was preference plane. The vertical reference plane. The vertical reference plane and op of the ground reference plane the LISN 1 and the Eat least 0.8 m from the live positions of equiping to	e Impedance edance. The cond LISN 2, s the LISN 1 d to connect ISN was not e the ground laced on the erear of the ertical ground. The LISN 1 bonded to a prence plane. UT. All other te LISN 2.	
Test Setup:	Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver		
Test Mode:	Transmitting with GFSK modulation. Charge +Transmitting mode.				
Instruments Used:	Refer to section 5.10 for detail	ls.			
Test Results:	Pass	,-available on request or accessible at http			

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions-Terms-

Report No.: SZEM170500533106


Page: 14 of 48

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

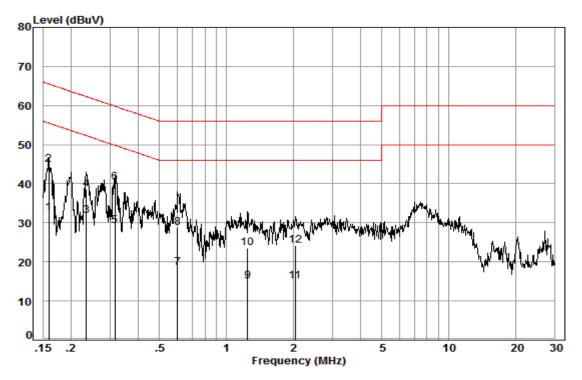
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Site : Shielding Room

Condition: Line Job No. : 05331RG

Test mode: d


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.21	0.02	9.50	23.62	33.14	53.36	-20.22	Average
2	0.21	0.02	9.50	29.22	38.74	63.36	-24.62	QP
3	0.27	0.01	9.51	20.57	30.09	51.16	-21.07	Average
4	0.27	0.01	9.51	28.24	37.76	61.16	-23.40	QP
5	0.30	0.01	9.51	12.19	21.71	50.15	-28.44	Average
6	0.30	0.01	9.51	23.21	32.73	60.15	-27.42	QP
7	0.39	0.01	9.49	12.41	21.91	48.08	-26.17	Average
8	0.39	0.01	9.49	23.21	32.71	58.08	-25.37	QP
9	0.57	0.01	9.52	8.12	17.65	46.00	-28.35	Average
10	0.57	0.01	9.52	20.56	30.09	56.00	-25.91	QP
11	0.65	0.02	9.51	8.96	18.49	46.00	-27.51	Average
12	0.65	0.02	9.51	19.11	28.64	56.00	-27.36	QP

Report No.: SZEM170500533106

Page: 15 of 48

Neutral line:

Site : Shielding Room

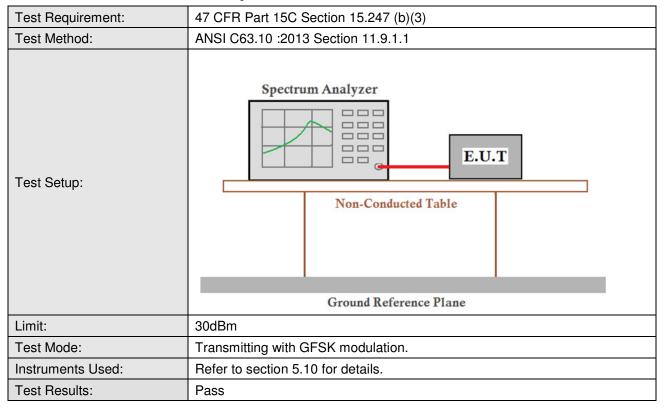
Condition: Neutral Job No. : 05331RG

Test mode: d

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.16	0.02	9.58	22.98	32.58	55.52	-22.94	Average
2	0.16	0.02	9.58	35.20	44.80	65.52	-20.72	QP
3	0.23	0.01	9.58	22.15	31.74	52.30	-20.56	Average
4	0.23	0.01	9.58	29.06	38.65	62.30	-23.65	QP
5	0.31	0.01	9.58	19.66	29.25	49.84	-20.59	Average
6	0.31	0.01	9.58	30.70	40.29	59.84	-19.55	QP
7	0.60	0.02	9.62	8.78	18.42	46.00	-27.58	Average
8	0.60	0.02	9.62	19.19	28.83	56.00	-27.17	QP
9	1.25	0.02	9.64	5.44	15.10	46.00	-30.90	Average
10	1.25	0.02	9.64	13.88	23.54	56.00	-32.46	QP
11	2.04	0.02	9.65	5.35	15.02	46.00	-30.98	Average
12	2.04	0.02	9.65	14.63	24.30	56.00	-31.70	QP

Notes

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exponerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

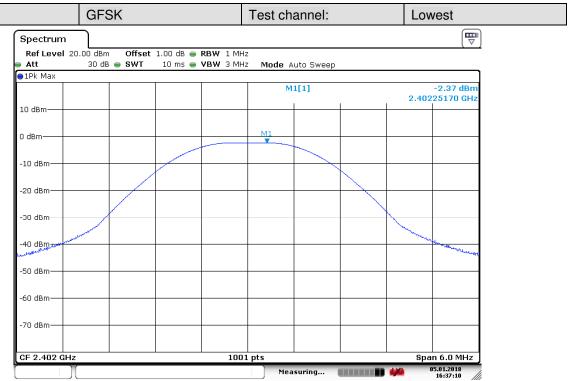
Report No.: SZEM170500533106

Page: 16 of 48

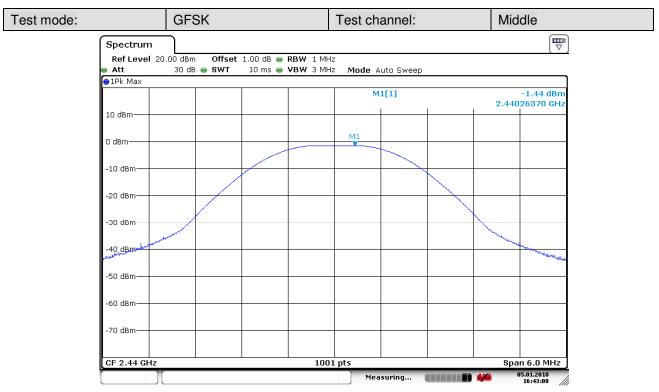
6.3 Conducted Peak Output Power

Measurement Data

GFSK mode						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.37	30.00	Pass			
Middle	-1.44	30.00	Pass			
Highest	-3.95	30.00	Pass			



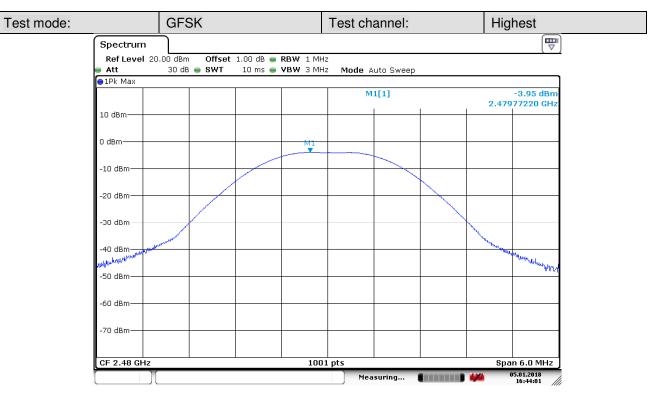
Report No.: SZEM170500533106


Page: 17 of 48

Test plot as follows:

Test mode:

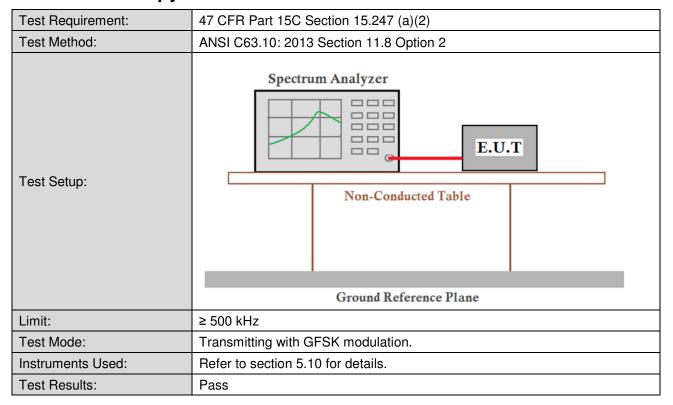
Date: 5.JAN.2018 16:37:10



Date: 5.JAN.2018 16:43:08

Report No.: SZEM170500533106

Page: 18 of 48


Date: 5.JAN.2018 16:44:01

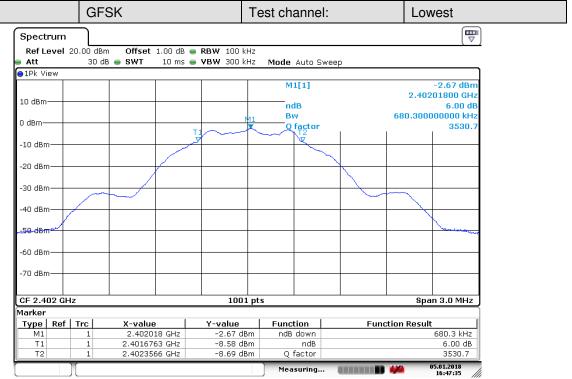
Report No.: SZEM170500533106

Page: 19 of 48

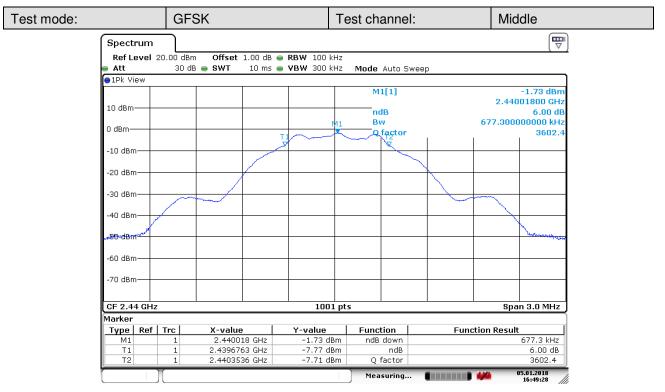
6.4 6dB Occupy Bandwidth

Measurement Data

GFSK mode						
Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result			
Lowest	680.3	≥500	Pass			
Middle	677.3	≥500	Pass			
Highest	677.3	≥500	Pass			



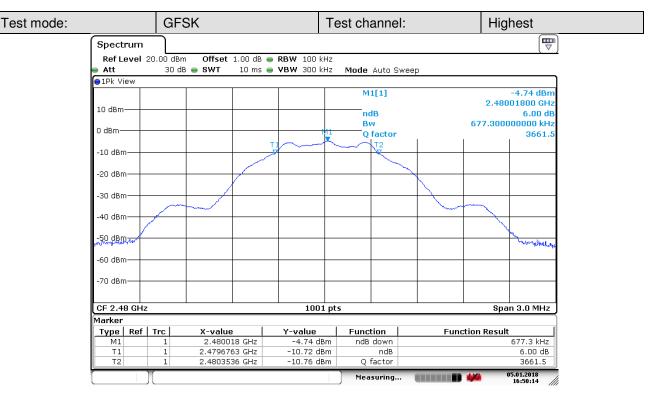
Report No.: SZEM170500533106


Page: 20 of 48

Test plot as follows:

Test mode:

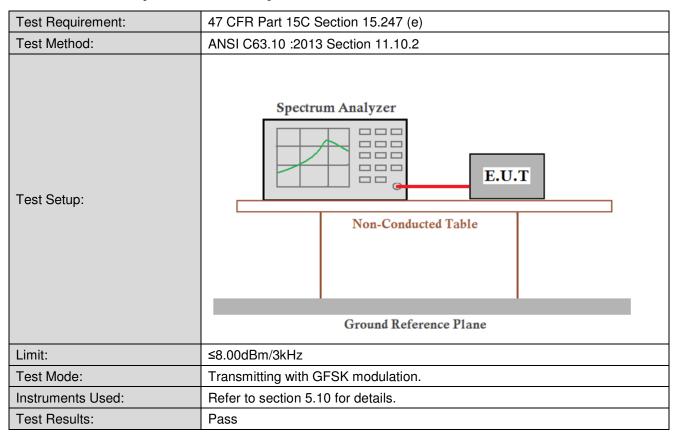
Date: 5.JAN.2018 16:47:36



Date: 5.JAN.2018 16:49:28

Report No.: SZEM170500533106

Page: 21 of 48

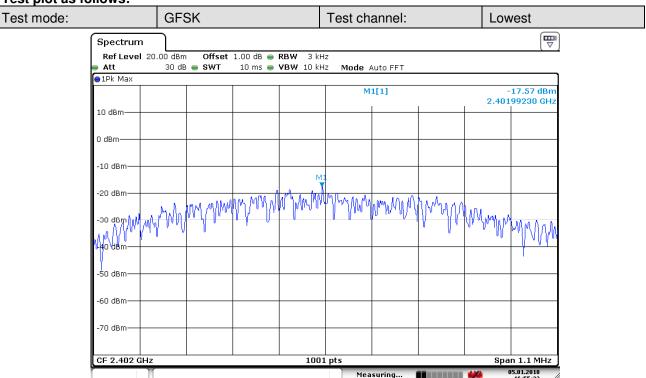

Date: 5.JAN.2018 16:50:14

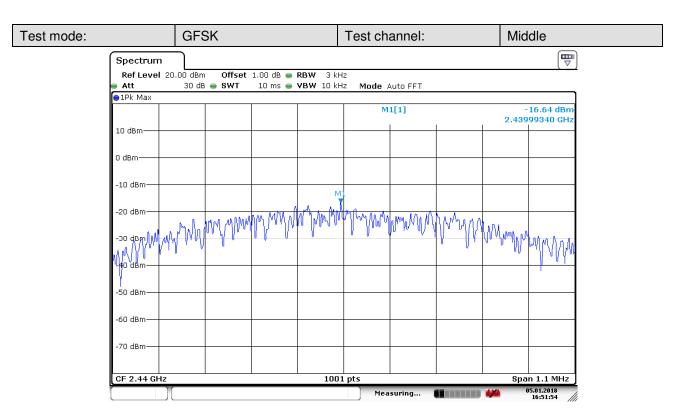
Report No.: SZEM170500533106

Page: 22 of 48

6.5 Power Spectral Density

Measurement Data

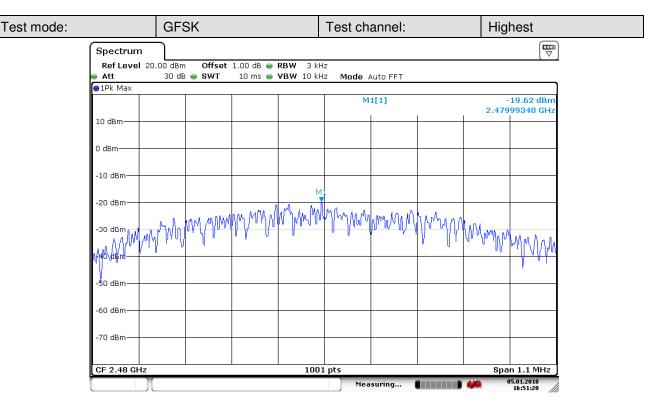

	GFSK mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result				
Lowest	-17.27	≤8.00	Pass				
Middle	-16.64	≤8.00	Pass				
Highest	-19.62	≤8.00	Pass				


Report No.: SZEM170500533106

Page: 23 of 48

Test plot as follows:

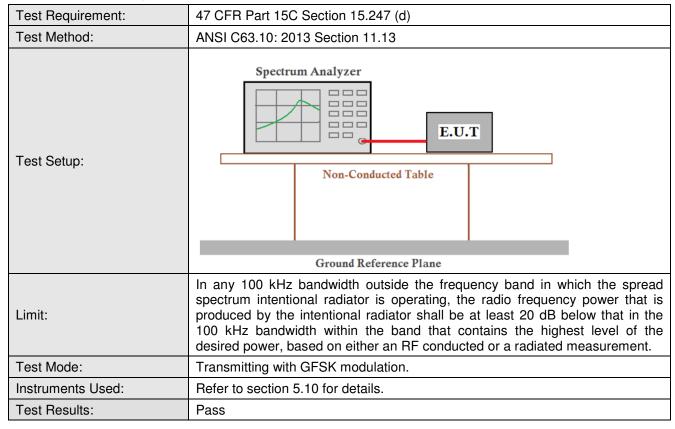
Date: 5.JAN.2018 16:55:23



Date: 5.JAN.2018 16:51:54

Report No.: SZEM170500533106

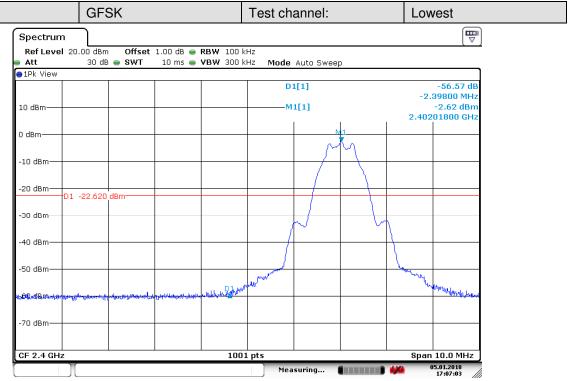
Page: 24 of 48


Date: 5.JAN.2018 16:51:20

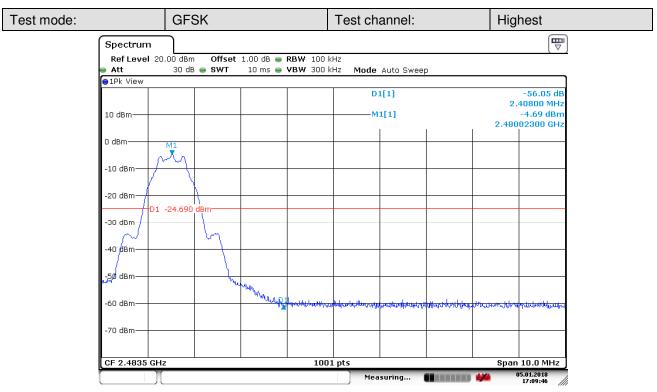
Report No.: SZEM170500533106

Page: 25 of 48

6.6 Band-edge for RF Conducted Emissions



Report No.: SZEM170500533106


Page: 26 of 48

Test plot as follows:

Test mode:

Date: 5.JAN.2018 17:07:04

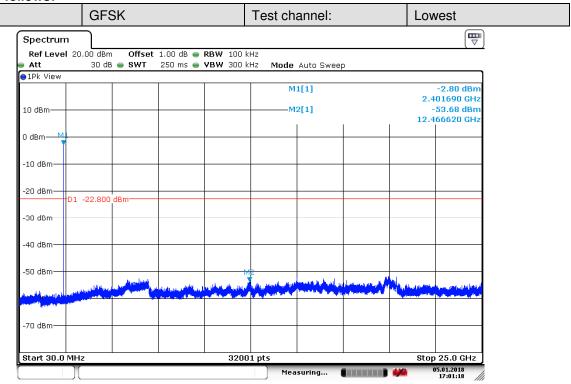
Date: 5.JAN.2018 17:09:46

Report No.: SZEM170500533106

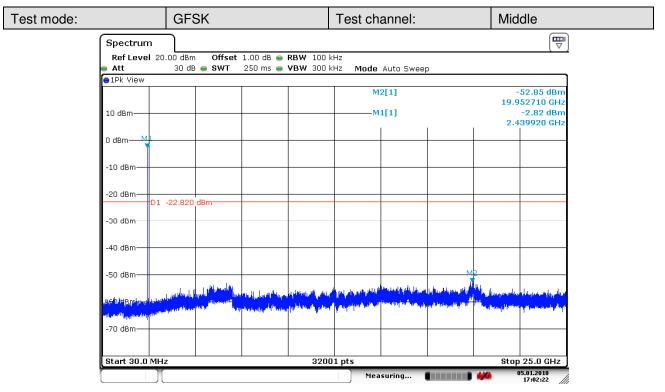
Page: 27 of 48

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)			
Test Method:	ANSI C63.10: 2013 Section 11.11			
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test Mode:	Transmitting with GFSK modulation.			
Instruments Used:	Refer to section 5.10 for details.			
Test Results:	Pass			



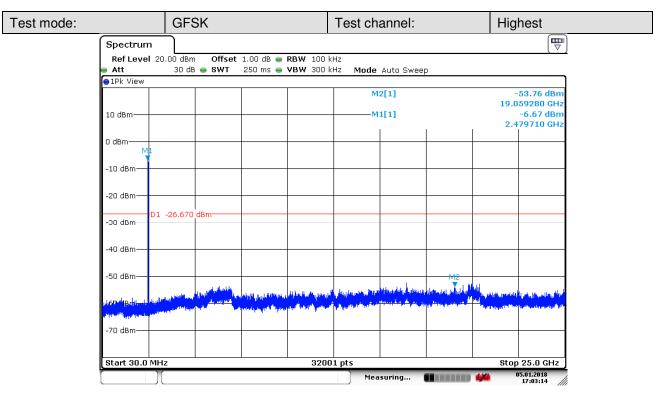
Report No.: SZEM170500533106


Page: 28 of 48

Test plot as follows:

Test mode:

Date: 5.JAN.2018 17:01:18



Date: 5.JAN.2018 17:02:22

Report No.: SZEM170500533106

Page: 29 of 48

Date: 5.JAN.2018 17:03:14

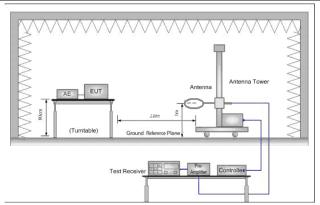
Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM170500533106

Page: 30 of 48

6.8 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10 :2013 Section 11.12						
Test Site:	Measurement Distance	: 3m	n or 10m (Semi	-Anechoic (Chamber)		
	Frequency		Detector	RBW	VBW		Remark
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz		Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz		Average
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz		Quasi-peak
Receiver Setup:	0.110MHz-0.490MH	z	Peak	10kHz	30kHz		Peak
neceiver Setup.	0.110MHz-0.490MH	z	Average	10kHz	30kHz		Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz		Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kHz	300kHz		Quasi-peak
	Above 1GHz		Peak	1MHz	3MHz		Peak
			Peak	1MHz	10Hz		Average
	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)		-	-		300
	0.490MHz-1.705MHz	24	4000/F(kHz)	-	-		30
	1.705MHz-30MHz		30	-	-		30
	30MHz-88MHz		100	40.0	Quasi-pe	ak	3
Limit:	88MHz-216MHz		150	43.5	Quasi-pe	ak	3
	216MHz-960MHz		200	46.0	Quasi-pe	ak	3
	960MHz-1GHz		500	54.0	Quasi-pe	ak	3
	Above 1GHz		500	54.0	Average)	3
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.						

Report No.: SZEM170500533106

Page: 31 of 48

Test Setup:

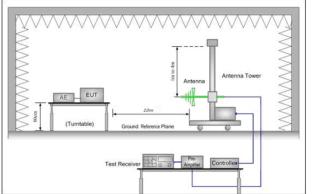


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

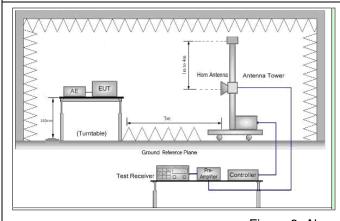


Figure 3. Above 1 GHz

measurement.

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Test Procedure:

Report No.: SZEM170500533106

Page: 32 of 48

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.			
h. Test the EUT in the lowest channel (2402MHz),the middle cl (2440MHz),the Highest channel (2480MHz)				
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.			
	j. Repeat above procedures until all frequencies measured was complete.			
Evploratory Toot Mode:	Transmitting with GFSK modulation.			
Exploratory Test Mode:	Charge + Transmitting mode.			
	Transmitting with GFSK modulation.			
	Pretest the EUT at Charge + Transmitting mode,			
Final Test Mode:	For below 1GHz part, through pre-scan, the worst case is the lowest channel.			
Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details.			
Test Results:	Pass			

Report No.: SZEM170500533106

Page: 33 of 48

6.8.1 Radiated Emission below 1GHz

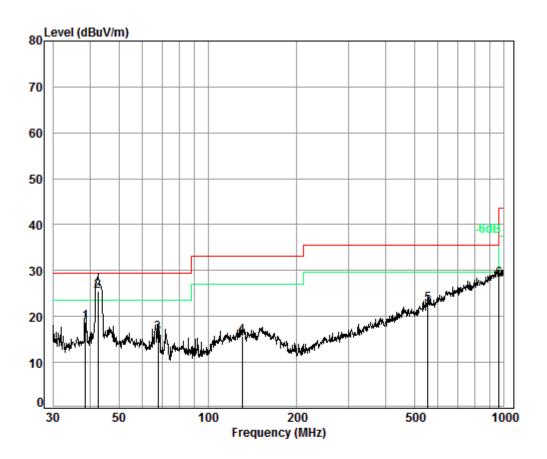
The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

 $L_3 / L_{10} = D_{10} / D_3$

Note:

L₃: Level @ 3m distance. Unit: uV/m; L₁₀: Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m
D₁₀: 10m distance. Unit: m
The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
38.62	18.66	8.57	28.57	29.12	40.00	-10.88	V
42.60	25.42	18.66	62.21	35.88	35.88 40.00		V
67.91	16.40	6.61	22.02	26.86	40.00	-13.14	V
130.38	15.73	6.12	20.39	26.19	43.50	-17.31	V
554.83	22.59	13.47	44.91	33.05	46.00	-12.95	V
962.16	28.02	25.18	83.92	38.48	54.00	-15.52	V
43.20	19.43	9.36	31.22	29.89	40.00	-10.11	Н
54.07	13.75	4.87	16.23	24.21	40.00	-15.79	Н
154.28	15.49	5.95	19.83	25.95	43.50	-17.55	Н
419.11	18.84	8.75	29.17	29.30	46.00	-16.70	Н
658.84	24.74	17.26	57.53	35.20	46.00	-10.80	Н
893.86	27.63	24.07	80.24	38.09	46.00	-7.91	Н

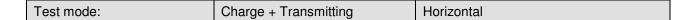
Report No.: SZEM170500533106

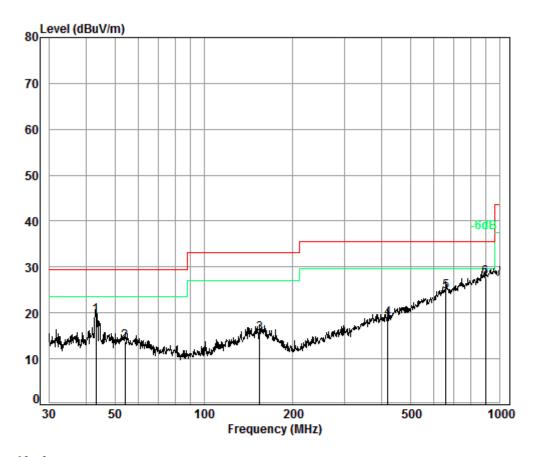
Page: 34 of 48

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL

Job No. : 05331RG


Test Mode: d


	Frea			Preamp Factor				
_	MHz	dB		dB				
1	38.62	6.77	13.14	32.47	31.22	18.66	29.50	-10.84
2 pp	42.60	6.80	13.10	32.45	37.97	25.42	29.50	-4.08
3	67.91	6.94	10.45	32.47	31.48	16.40	29.50	-13.10
4	130.38	7.35	12.06	32.47	28.79	15.73	33.10	-17.37
5	554.83	8.79	17.82	32.28	28.26	22.59	35.60	-13.01
6	962.16	9.60	22.77	30.90	26.55	28.02	43.50	-15.48

Report No.: SZEM170500533106

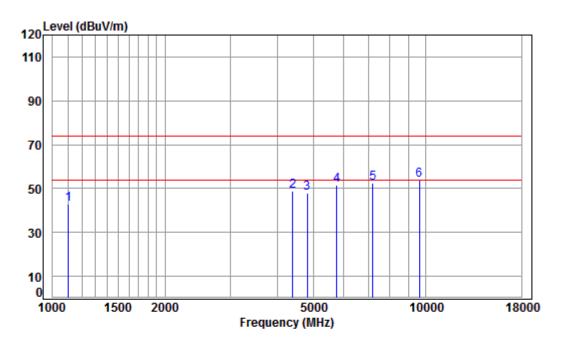
Page: 35 of 48

Condition: 10m HORIZONTAL

Job No. : 05331RG

Test Mode: d

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	43.20	6.80	13.05	32.45	32.03	19.43	29.50	-10.07
2	54.07	6.98	12.45	32.43	26.75	13.75	29.50	-15.75
3	154.28	7.47	13.40	32.43	27.05	15.49	33.10	-17.61
4	419.11	8.35	15.39	32.32	27.42	18.84	35.60	-16.76
5	658.84	9.05	19.64	32.27	28.32	24.74	35.60	-10.86
6 pp	893.86	9.50	22.14	31.44	27.43	27.63	35.60	-7.97



Report No.: SZEM170500533106

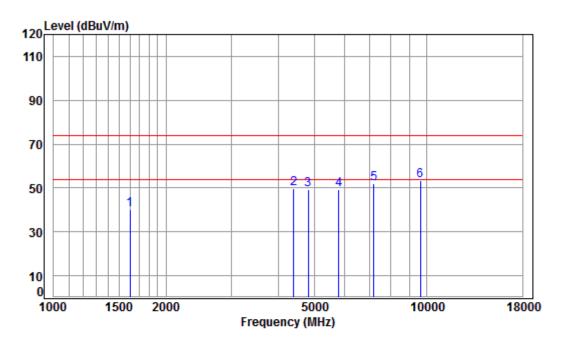
Page: 36 of 48

6.8.2 Transmitter Emission above 1GHz

T	est mode:	GFSK	Test channel:	Lowest	Remark:	Peak	Vertical
---	-----------	------	---------------	--------	---------	------	----------

Condition: 3m VERTICAL Job No : 05331CR Mode : 2402 TX SE

Note : BLE


0.00									
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
									
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
4	1102 264	4 02	22.00	27.70	F2 F0	42.00	74.00	24 20	
1	1103.264	4.02	23.98	37.79	52.59	42.00	74.00	-31.20	peak
2	4392.376	7.44	33.60	37.18	45.04	48.90	74.00	-25.10	peak
3	4804.000	7.89	34.16	37.26	42.98	47.77	74.00	-26.23	peak
4	5763.617	9.78	34.56	37.77	45.08	51.65	74.00	-22.35	peak
5	7206.000	10.08	36.42	37.56	43.57	52.51	74.00	-21.49	peak
6	pp 9608.000	10.75	37.52	35.80	41.25	53.72	74.00	-20.28	peak

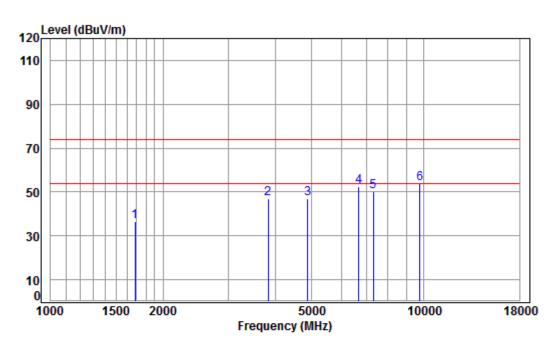
Report No.: SZEM170500533106

Page: 37 of 48

Test mode: GFSK Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 05331CR Mode : 2402 TX SE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	4604 004	F 35	26.26	27.72	46 47	40.25	74.00	22.65	
1	1601.804	5.35	26.26	37.73	46.4/	40.35	74.00	-33.65	peak
2	4392.376	7.44	33.60	37.18	45.80	49.66	74.00	-24.34	peak
3	4804.000	7.89	34.16	37.26	44.53	49.32	74.00	-24.68	peak
4	5797.032	9.89	34.58	37.79	42.76	49.44	74.00	-24.56	peak
5	7206.000	10.08	36.42	37.56	43.05	51.99	74.00	-22.01	peak
6 pp	9608.000	10.75	37.52	35.80	41.04	53.51	74.00	-20.49	peak

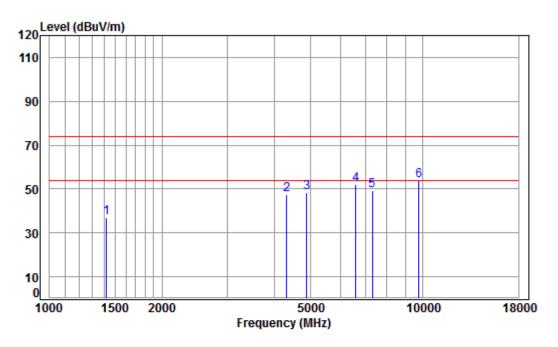
Report No.: SZEM170500533106

Page: 38 of 48

Test mode: GFSK Test channel: Middle Remark: Peak Vertical

Condition: 3m VERTICAL Job No : 05331CR

Mode : 2440 TX SE


		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1682	.477	5.25	26.60	37.72	42.49	36.62	74.00	-37.38	peak	
3823	.371	6.80	33.13	37.18	44.43	47.18	74.00	-26.82	peak	
4880	.000	7.97	34.29	37.28	42.04	47.02	74.00	-26.98	peak	
6679	.040	11.02	35.61	37.69	43.35	52.29	74.00	-21.71	peak	
7320	.000	10.05	36.37	37.53	41.19	50.08	74.00	-23.92	peak	
pp 9760	.000	10.82	37.55	35.68	40.97	53.66	74.00	-20.34	peak	
	1682 3823 4880 6679 7320	MHz 1682.477 3823.371 4880.000 6679.040 7320.000	Freq Loss MHz dB 1682.477 5.25 3823.371 6.80 4880.000 7.97 6679.040 11.02 7320.000 10.05	Freq Loss Factor MHz dB dB/m 1682.477 5.25 26.60 3823.371 6.80 33.13 4880.000 7.97 34.29 6679.040 11.02 35.61 7320.000 10.05 36.37	Freq Loss Factor Factor MHz dB dB/m dB 1682.477 5.25 26.60 37.72 3823.371 6.80 33.13 37.18 4880.000 7.97 34.29 37.28 6679.040 11.02 35.61 37.69 7320.000 10.05 36.37 37.53	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1682.477 5.25 26.60 37.72 42.49 3823.371 6.80 33.13 37.18 44.43 4880.000 7.97 34.29 37.28 42.04 6679.040 11.02 35.61 37.69 43.35 7320.000 10.05 36.37 37.53 41.19	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1682.477 5.25 26.60 37.72 42.49 36.62 3823.371 6.80 33.13 37.18 44.43 47.18 4880.000 7.97 34.29 37.28 42.04 47.02 6679.040 11.02 35.61 37.69 43.35 52.29 7320.000 10.05 36.37 37.53 41.19 50.08	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1682.477 5.25 26.60 37.72 42.49 36.62 74.00 3823.371 6.80 33.13 37.18 44.43 47.18 74.00 4880.000 7.97 34.29 37.28 42.04 47.02 74.00 6679.040 11.02 35.61 37.69 43.35 52.29 74.00 7320.000 10.05 36.37 37.53 41.19 50.08 74.00	Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1682.477 5.25 26.60 37.72 42.49 36.62 74.00 -37.38 3823.371 6.80 33.13 37.18 44.43 47.18 74.00 -26.82 4880.000 7.97 34.29 37.28 42.04 47.02 74.00 -26.98 6679.040 11.02 35.61 37.69 43.35 52.29 74.00 -21.71 7320.000 10.05 36.37 37.53 41.19 50.08 74.00 -23.92	Freq Loss Factor Factor Level Level Line Limit Remark MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

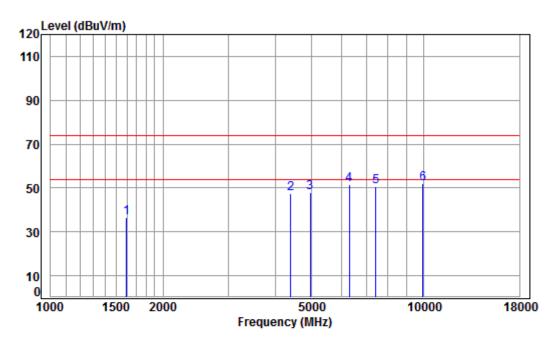
Report No.: SZEM170500533106

Page: 39 of 48

Test mode: GFSK Test channel: Middle Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 05331CR Mode : 2440 TX SE

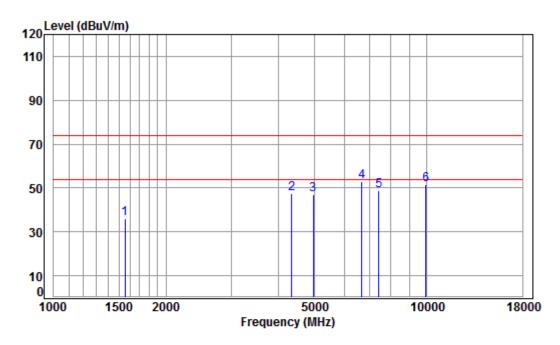

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1422.798	5.23	25.49	37.75	44.17	37.14	74.00	-36.86	peak
2		4316.859	7.36	33.60	37.17	43.58	47.37	74.00	-26.63	peak
3		4880.000	7.97	34.29	37.28	43.43	48.41	74.00	-25.59	peak
4		6602.265	11.24	35.39	37.71	43.28	52.20	74.00	-21.80	peak
5		7320.000	10.05	36.37	37.53	40.59	49.48	74.00	-24.52	peak
6	pp	9760.000	10.82	37.55	35.68	41.26	53.95	74.00	-20.05	peak

Report No.: SZEM170500533106

Page: 40 of 48

Test mode:	GFSK	Test channel:	Highest	Remark:	Peak	Vertical
10011110001	G. C. C	1 001 0114111011	19	· · · · · · · · · · · · · · · · · · ·		V OI LIOUI

Condition: 3m VERTICAL Job No : 05331CR Mode : 2480 TX SE


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1597.181	5.35	26.24	37.73	42.53	36.39	74.00	-37.61	peak
2		4392.376	7.44	33.60	37.18	43.62	47.48	74.00	-26.52	peak
3		4960.000	8.05	34.43	37.29	42.89	48.08	74.00	-25.92	peak
4		6303.890	11.17	34.95	37.80	43.29	51.61	74.00	-22.39	peak
5		7440.000	10.02	36.32	37.51	41.88	50.71	74.00	-23.29	peak
6	pp	9920.000	10.90	37.58	35.56	39.17	52.09	74.00	-21.91	peak

Report No.: SZEM170500533106

Page: 41 of 48

Test mode: GFSK Test channel: Highest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 05331CR Mode : 2480 TX SE

			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1551.677	5.41	26.04	37.74	42.51	36.22	74.00	-37.78	peak
2		4341.886	7.38	33.60	37.17	43.45	47.26	74.00	-26.74	peak
3		4960.000	8.05	34.43	37.29	41.73	46.92	74.00	-27.08	peak
4	pp	6679.040	11.02	35.61	37.69	43.82	52.76	74.00	-21.24	peak
5		7440.000	10.02	36.32	37.51	40.10	48.93	74.00	-25.07	peak
6		9920.000	10.90	37.58	35.56	38.52	51.44	74.00	-22.56	peak

Report No.: SZEM170500533106

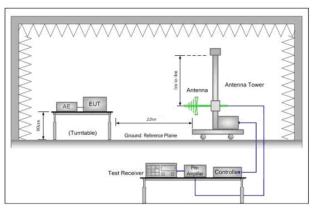
Page: 42 of 48

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM170500533106

Page: 43 of 48

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013 Section	n 11.12									
Test Site:	Measurement Distance: 3n	n or 10m (Semi-Anechoic (Chamber)								
	Frequency	Limit (dBuV/m @3m)	Remark								
	30MHz-88MHz	40.0	Quasi-peak Value								
	88MHz-216MHz	43.5	Quasi-peak Value								
Limit:	216MHz-960MHz	46.0	Quasi-peak Value								
	960MHz-1GHz	54.0	Quasi-peak Value								
	About 4011	54.0	Average Value								
	Above 1GHz	74.0	Peak Value								
Test Setup:		•									

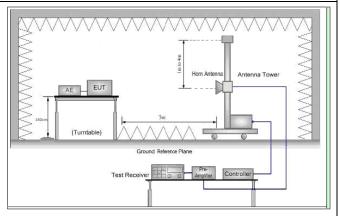


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

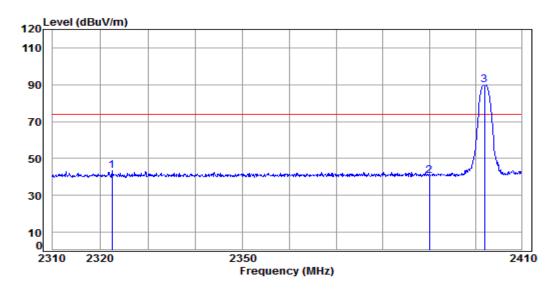
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

Test Procedure:

- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

Repeat above procedures until all frequencies measured was complete.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's indings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.



Report No.: SZEM170500533106

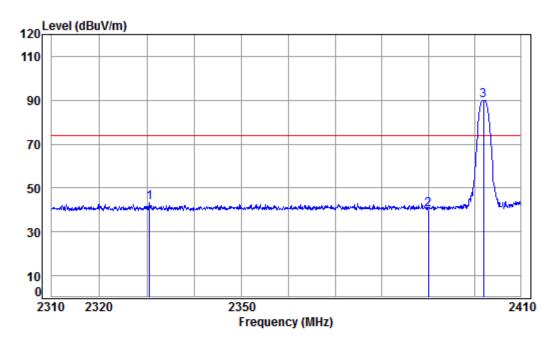
Page: 44 of 48

Exploratory Test Mode:	Transmitting with GFSK modulation.
Exploratory rest Mode.	Charge + Transmitting mode.
	Transmitting with GFSK modulation.
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Test plot as follows:

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2402 Band edge


	_										
		Freq			Preamp Factor					Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1		2322.466	5.38	28.87	38.37	47.25	43.13	74.00	-30.87	peak	
2		2390.000	5.47	29.08	38.30	44.56	40.81	74.00	-33.19	peak	
3	pp	2402.000	5.49	29.11	38.29	93.47	89.78	74.00	15.78	peak	

Report No.: SZEM170500533106

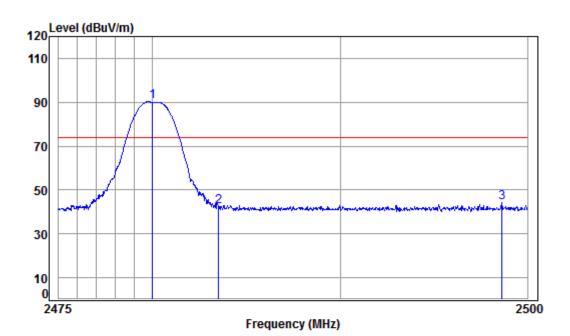
Page: 45 of 48

Worse case mode: GFSK Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2402 Band edge


		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq			Factor					Remark	
										_
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	0220 554	5 30		20.26	47. 22		74.00	20.74		
1	2330.551	5.39	28.90	38.36	4/.33	43.26	/4.00	-30./4	peak	
2	2390.000	5.47	29.08	38.30	44.11	40.36	74.00	-33.64	peak	
3	pp 2402.000	5.49	29.11	38.29	93.51	89.82	74.00	15.82	peak	

Report No.: SZEM170500533106

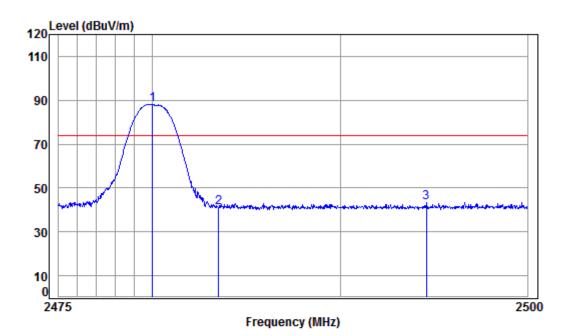
Page: 46 of 48

Worse case mode: GFSK Test channel: Highest Remark: Peak Vertical

Condition: 3m VERTICAL Job No : 05331RG

Mode : 2480 Band edge

Note : BLE


Limit Over Cable Ant Preamp Read Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dB dB/m dB dB 1 pp 2480.000 5.59 29.34 38.22 93.49 90.20 74.00 16.20 peak 2 2483.500 5.60 29.35 38.22 45.54 42.27 74.00 -31.73 peak 38.21 47.58 44.39 74.00 -29.61 peak 3 2498.644 5.62 29.40

Report No.: SZEM170500533106

Page: 47 of 48

Worse case mode: GFSK	Test channel:	Highest	Remark:	Peak	Horizontal
-----------------------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 05331RG

Mode : 2480 Band edge

	_			Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2								
1	op 2480.000	5.59	29.34	38.22	91.32	88.03	74.00	14.03	peak
2	2483.500	5.60	29.35	38.22	44.45	41.18	74.00	-32.82	peak
3	2494.604	5.61	29.38	38.21	46.58	43.36	74.00	-30.64	peak

Report No.: SZEM170500533106

Page: 48 of 48

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1705005331RG.