

JQA APPLICATION NO.: 400-30123 Issue Date : June 23, 2003 Page 1 of 63

EMI TEST REPORT

JQA APPLICATION NO.	: 400-30123
Model No.	: MB400-B2
Type of Equipment	: Barcode Printer
Regulations Applied	: CFR 47 FCC Rules and Regulations Part 15
FCC ID	: MMFMB400-B2
Applicant	: Sato Corporation
Address	: 1-207, Qnari-cho, Omiya-ku, Saitama 330-0852, Japan
Manufacturer	: Sato Corporation
Address	1-207, Onari-cho, Omiya-ku, Saitama 330-0852, Japan
Received date of EUT	: June 2, 2003
Final Judgment	: Passed

Test results in this report are obtained in use of equipment that is traceable to National Institute of Advanced Industrial Science and Technology (AIST) of Japan and Communication Research Laboratory (CRL) of Japan.

The test results only respond to the tested sample. This report should not be reproduced except in full, without the written approval of JQA EMC Engineering Dept. Testing Div.

TABLE OF CONTENTS

1	Documentation	Page
	1.1 Test Regulation	4
	1.2 General Information	4
	1.3 Test Condition	5 - 11
	1.4 EUT Modifications / Deviation from Standard	12
	1.5 Test results	13 - 14
	1.6 Summary	15
	1.7 Test Configuration / Operation of EUT	16
	1.8 EUT Arrangement (Drawing)	17
	1.9 Preliminary Test and Test setup (Drawings)	_18 - 26
	1.10 EUT Arrangement (Photographs)	27 - 29

2 Test Data

2.1 Channel Separation	30
2.2 Minimum Hopping Channel	31 - 32
2.3 Occupied Bandwidth	33 - 37
2.4 Dwell Time	38 - 42
2.5 Peak Output Power (Conduction)	43
2.6 Peak Output Power (Radiation)	44
2.7 Peak Power Density (Conduction)	45 - 46
2.8 Peak Power Density (Radiation)	N/A
2.9 Spurious Emissions (Conduction)	47 - 49
2.10 Spurious Emissions (Radiation)	50 - 53
2.11 AC Power Line Conducted Emissions	54 - 55
2.12 RF Exposure Compliance	55
2.13 Spurious Emissions for Receiver (Radiation)	56 - 57
2.14 AC Power Line Conducted Emissions for Receiver	58 - 59

3 Appendix

Test instruments List

60 - 63

1 DOCUMENTATION

1.1 TEST REGULATION

FCC Rules and Regulations Part 15 Subpart B and Subpart C

Test procedure :

The tests were performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. The test set-up was made in accordance to the general provisions of ANSIC63.4-1992.

1.2 GENERAL INFORMATION

1.2.1 Test facility :

- Test Facility located at EMC Engineering Dept. Testing Div. :
 No.2 and 3 Anechoic Chambers(3 meters Site).
 Shielded Enclosure.
 Expiration date of FCC test facility filing : May 27, 2005
- 2) EMC Engineering Dept. Testing Div. is recognized under the National Voluntary Laboratory accreditation Program for satisfactory compliance established in title 15, Part 285 Code of Federal Regulations NVLAP Lab Code : 200189-0 (Effective through : June 30, 2003)

1.2.2 Description of the Equipment Under Test (EUT) :

		\sim	
1)	Type of Equipment	:	Barcode Printer
2)	Product Type	:	Production
3)	Category	:	Spread Spectrum Transmitter
4)	EUT Authorization	:	Certification
5)	FCC ID ((7	:	MMFMB400-B2
6)	Trade Name	:	Barcode Printer
7)	Model No.	:	MB400-B2
8)	Operating Frequency Range	:	2402 MHz - 2480 MHz
9)	Highest Frequency Used in the EUT	:	2480 MHz
10)	RF Output Power	:	1 mW(Rated)
11)	Serial No.	:	-
12)	Date of Manufacture	:	-
13)	Power Rating	:	DC 14.8-17.0V from the AC Adapton
14)	EUT Grounding	:	None

1.2.3 Definitions for symbols used in this test report :

- <u>x</u> indicates that the listed condition, standard or equipment is applicable for this report.
- ____ indicates that the listed condition, standard or equipment is not applicable for this report.

1.3 TEST CONDITION

1.3.1 The measurement of Channel Separation x - was performed. ____ - was not applicable. Used test instruments : Type Number of test instruments (Refer to Appendix) Test Receiver TR07 Spectrum Analyzer N/A Cable CA11 AU18 Attenuator Antenna N/A 1.3.2 The measurement of Minimum Hopping Channel \underline{x} - was performed. - was not applicable. Used test instruments : Number of test instruments Туре (Refer to Appendix) 7R07 Test Receiver Spectrum Analyzer N/A Cable CA11 Attenuator AU18 Antenna N/A

1.3.3 The measurement of Occupied Bandwidth

- x was performed.
- was not applicable.

Used test instruments :

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Antenna	N/A

1.3.4 The measurement of Dwell Time

- \underline{x} was performed.
- ____ was not applicable.

Used test instruments :

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Antenna	N/A

1.3.5 The measurement of Peak Output Power and Density (Conduction)

\sim $ $
Number of test instruments
(Refer to Appendix)
TR07
Ŋ/A
CA11
AU18
N/A
AU03
AU04
SG03

1.3.6 The measurement of Peak Output Power and Density (Radiation)

 \underline{x} - was performed in the following test site. ____ - was not applicable.

Test location :

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - No. 2 site (3 meters) ____ - No. 3 site (3 meters)

Validation of Site Attenuation :

1)	Last	Confirmed	Date	:	N/A
2)	Inte	rval		:	N/A

Used test instruments :

Туре	Number of test instruments (Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	$($ N λ A \checkmark
Cable	CA12, CA13
Attenuator	AU18
Antenna	(AN10, AN11
Power Meter	AU03
Power Sensor	AU04
Signal Generator	SG03

1.3.7 The measurement of Spurious Emissions (Conduction)

- \underline{x} was performed.
- ____ was not applicable.

Used test instruments :

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Spectrum Analyzer	N/A
Cable	CA11
Attenuator	AU18
Cable	CA11

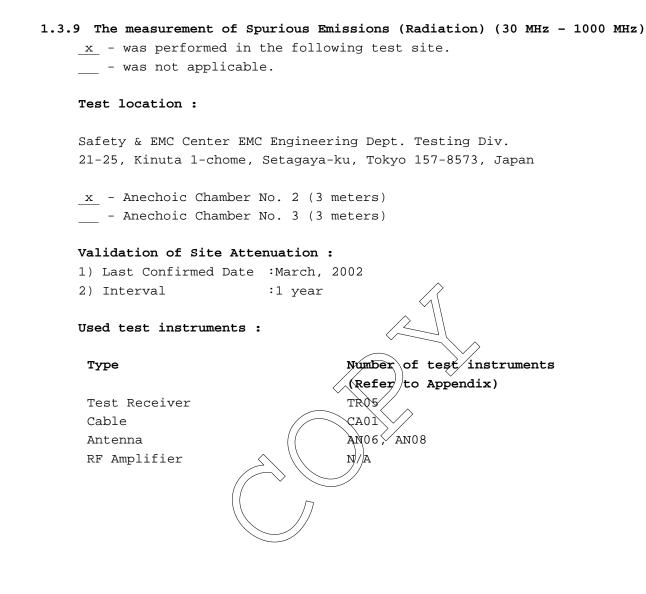
1.3.8 The measurement of Spurious Emissions (Radiation)(9 kHz - 30 MHz)

- x was performed in the following test size.
- ____ was not applicable.

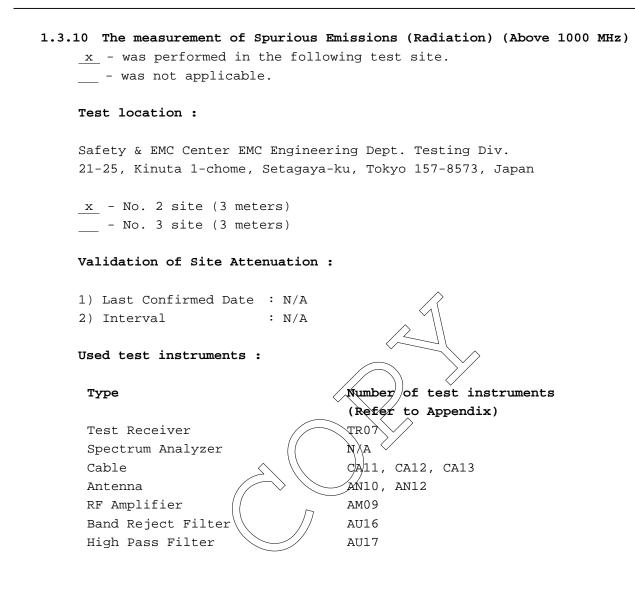
Test location :

Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

<u>x</u> - Anechoic Chamber No. 2 (3 meters) - Anechoic Chamber No. 3 (3 meters)


Validation of Site Attenuation :

1) Last Confirmed Date : N/A 2) Interval : N/A


Used test instruments :

Туре	Number of test instruments
	(Refer to Appendix)
Test Receiver	TR07
Cable	CA06
Antenna	AN01

1.3.11 The measurement of AC Power Line Conducted Emissions

<u>x</u> - was performed in the following test site.

____ - was not applicable.

Test location :

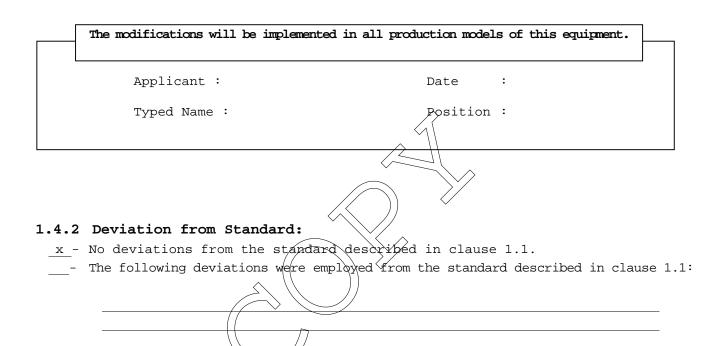
Safety & EMC Center EMC Engineering Dept. Testing Div. 21-25, Kinuta 1-chome, Setagaya-ku, Tokyo 157-8573, Japan

x - Shielded Enclosure
 - Anechoic Chamber No. 2 (portable Type)

Used test instruments :

Туре

Test Receiver Spectrum Analyzer Cable AMN(for EUT) AMN(for Peripheral) Termination


Number of test instruments (Refer to Appendix) TR01 er N/A CA04 NE02 oral) N/A N/A

1.4 EUT MODIFICATION / Deviation from Standard

1.4.1 EUT MODIFICATION

x - No modifications were conducted by JQA to achieve compliance to Class B levels.
 To achieve compliance to Class B levels, the following changes were made by JQA during the compliance test.

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003

1.5 TEST RESULTS

Channel Separation [§15.247(a)(1)]	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks :	<u>x</u> - PASSED	NOT PASSED
Minimum Hopping Channel [§15.247(a)(1)(iii)]	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks:	<u>x</u> - PASSED	NOT PASSED
Occupied Bandwidth	Applicable	\underline{x} - NOT Applicable
The requirements are Remarks:	- PASSED	NOT PASSED
Dwell Time [§15.247(a)(1)(iii)/(g)]	x Applicable	NOT Applicable
The requirements are Remarks:	\times _x - PASSED	NOT PASSED
Peak Output Power (Conduction) [§15.247(b)(1)]	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks:	<u>x</u> - PASSED	- NOT PASSED
Peak Output Power (Radiation) [§15.247(b)(1)]	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks:	<u>x</u> - PASSED	NOT PASSED
<pre>Peak Power Density (Conduction) [\$15.247(d)]</pre>	<u>x</u> - Applicable	NOT Applicable
The requirements are Remarks:	<u>x</u> - PASSED	- NOT PASSED
<pre>Peak Power Density (Radiation) [\$15.247(d)]</pre>	Applicable	<u>x</u> - NOT Applicable
The requirements are Remarks:	- PASSED	NOT PASSED

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003

Spurious Emissions (Conduction)	<u>x</u> - Applicable	- NOT Applicable
[\$15.247(c)]		
The requirements are	<u>x</u> - PASSED	- NOT PASSED
Remarks:		
Spurious Emissions (Radiation)	x - Applicable	- NOT Applicable
[§15.247(c), §15.35(b), §15.209(a)]		
The requirements are	x - PASSED	- NOT PASSED
Remarks:		
AC Power Line Conducted Emissions	x - Applicable	- NOT Applicable
[§15.207(a)]		
The requirements are	x - PASSED	- NOT PASSED
Remarks:	^	
RF Exposure Compliance	Applicable	- NOT Applicable
[§15.247(b)(5)]		
The requirements are	x PASSED	- NOT PASSED
Remarks:		
Spurious Emissions for Receiver	<u>x</u> - Applicable	- NOT Applicable
(Radiation)[§15.109(a)]	\checkmark	
The requirements are (()	<u>x</u> - PASSED	NOT PASSED
Remarks:		
AC Power Line Conducted Emissions	x - Applicable	- NOT Applicable
for Receiver [§15.107(a)]		
The requirements are	x - PASSED	- NOT PASSED
Remarks:		

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 15 of 63

1.6 SUMMARY

General Remarks :

The EUT was tested according to the requirements of FCC Rules and Regulations Part 15 Subpart B and Subpart C under the test configuration, as shown in clause 1.7 to 1.10.

The conclusion for the test items which are required by the applied regulation is indicated under the final judgment.

Final Judgment :

The "as received" sample;

- \underline{x} fulfill the test requirements of the regulation mentioned on clause 1.1.
- ____ fulfill the test requirements of the regulation mentioned on clause 1.1, but with certain qualifications.
- doesn't fulfill the test regulation mentioned on clause 1.1.

2003

2003

: June 14,

Begin of testing : June 2,

End of testing

- JAPAN QUALITY ASSURANCE ORGANIZATION -Approved by:

m. Jachahashi

Masaaki Takahashi Senior Manager JQA EMC Engineering Dept.

Issued by:

Shigeru Osawa Assistant Manager JQA EMC Engineering Dept.

1.7 TEST CONFIGURATION / OPERATION OF EUT

1.7.1 Test Configuration

The equipment under test (EUT) consists of :

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
A	Barcode Printer	Sato Corporation	MB400-B2	MMFMB400-B2	-

Note: This Barcode Printer was operated with the AC adaptor (below symbol "B" Input:120VAC 60Hz, Output:15.0VDC by Sato Corporation).

The measurement was carried out with the following support equipment connected :

Symbol	Item	Manufacturer	Model No.	FCC ID	Serial No.
В	AC Adaptor	Sato Corporation	APR400	N/A	None
C(*1)	Interface Board for Test Mode Operation	-	None	N/A	None

(*1) This support equipment is a temporary board that is achieved the test mode.

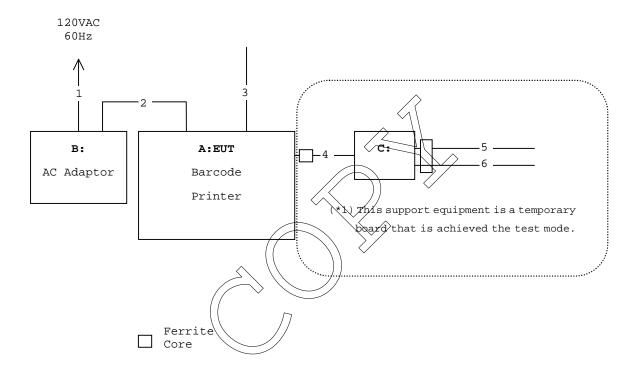
Type of Cable :

Symbol	Description	Identification	Connector	Cable	Ferrite	Length
	_	(Manufacturer etc.)	Shielded	Shielded	Core	(m)
			YES / NO	YES / NO		
1	AC adapter Cable(for Input)	\sim \times \wedge	NO	NO	NO	2.0
2	AC adapter Cable(for Output)		NO	NO	NO	2.0
3	RS-232C Cable	\\- <<	YES	YES	NO	1.1
4(*2)	Signal Cable 🔨 🛝	())_	NO	NO	YES	0.1
5(*2)	DC Cable	// -	NO	NO	YES	0.3
6(*2)	RS-232C Cable	<u> </u>	NO	NO	YES	0.3

(*2) This cable is a temporary cable that is achieved the test Mode.

1.7.2 Operating condition

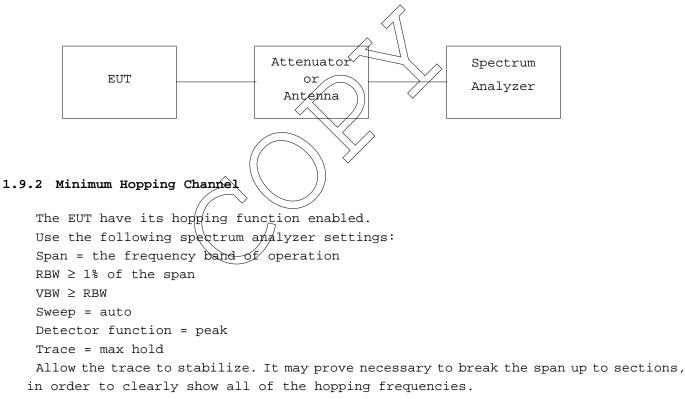
Power supply Voltage : 120 VAC, 60Hz for AC Adaptor The tests have been carried out the following mode.


- 1) TX mode (2402 MHz)
- 2) TX mode (2441 MHz)
- 3) TX mode (2480 MHz)
- 4) Inquiry mode
- 5) Paging mode
- 6) Hopping ON mode
- 7) Hopping OFF mode
- 8) RX mode

1.7.3 Generating and Operating frequency of EUT

16 MHz and 2402 MHz to 2480 MHz

1.8 EUT ARRANGEMENT (DRAWINGS)



1.9 PRELIMINARY TEST AND TEST-SETUP (DRAWINGS)

1.9.1 Channel Separation

```
The EUT have its hopping function enabled.
Use the following spectrum analyzer settings:
Span = wide enough to capture the peaks of two adjacent channels
Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
Video (or Average) Bandwidth (VBW) ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
```

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Measurement setup is same as sub-clause 1.9.1.

1.9.3 Occupied Bandwidth

```
Use the following spectrum analyzer settings:
Span = approximately 2 to 3 times the 6 dB or 20 dB bandwidth, centered on a channel
RBW ≥ 1% of the 6 dB or 20 dB bandwidth
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
```

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB or 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB or 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

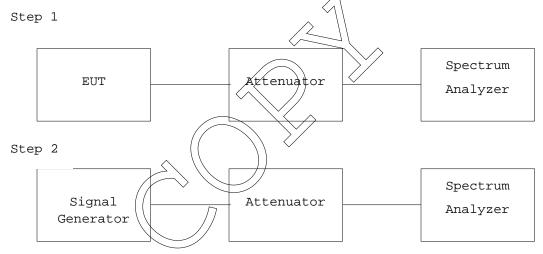
Measurement setup is same as sub-clause 1.9.1.

1.9.4 Dwell Time

```
The EUT must have its hopping function enabled.
Use the following spectrum analyzer settings:
Span = zero span, centered on a hopping channel
RBW \leq Channel Separation
VBW \geq RBW
Sweep = as necessary to capture the entire dwell time per hopping channel
Detector function = peak
Trace = max hold
```

If possible, use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.

Measurement setup is same as sub-clause 1.9.1.


1.9.5 Peak Output Power (Conduction)

```
(Step 1) Use the following spectrum analyzer settings:
Span = approximately 5 times the 20 dB bandwidth, centered on a channel
RBW > the 20 dB bandwidth of the emission being measured
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize. Use the marker-to-peak function to set the peak
```

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Record the reading P1.

(Step 2) Replace the EUT with the signal generator. Adjust the level of the signal generator output until the reading P1.

(Step 3) Replace the spectrum analyzer with the power meter. Record the reading of power meter P2. The peak output power of the EOT is P2.

Step 3

1.9.6 Peak Power Density (Conduction)

```
Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a channel

RBW = Specified Value

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to

the peak of the emission.

Measurement setup is same as sub-clause 1.9.1.
```

1.9.7 Peak Output Power and Peak Power Density (Radiation)

The radiated power output and the field strength of the transmitter radiation were measured at the distance at 3 meters away from the transmitter under test which was placed on a turntable 0.8 meter in height. The receiving antenna was oriented for vertical polarization and raised or lowered through 1 to 4 meters until the maximum signal level was detected on the measuring instrument. The transmitter under test was rotated through 360° until the maximum signal was received. The measurement was repeated with the receiving antenna in the horizontal polarization

The transmitter was removed and replaced with the antenna. The center of the antenna was placed approximately at the same location as the center of the transmitter. The antenna was fed with a signal generator, and the output level of the signal generator was adjusted to obtain the previously recorded maximum reading at the particular frequency and recorded. This procedure was repeated with the receiving antenna and the antenna in the orthogonal polarization,

The input power into the antenna was measured using the power meter. The level of the emissions in dBm(EIRP) were calculated from the following formula:

Transmitter Power[dBm](EIRP)= (Meter Reading of Power Meter) + (Antenna Gain[dBi])

```
Use the following spectrum analyzer settings:
Span = approximately 5 times the 20 dB bandwidth, centered on a channel
RBW : Greater then the 20 dB bandwidth of the emission being measured
or Specified Value
VBW ≥ RBW
Sweep = auto
Detector function = peak
Trace = max hold
Allow the trace to stabilize. Use the marker-to-peak function to set the marker to
the peak of the emission.
```


1.9.8 Spurious Emission (Conduction)

Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

RBW ≥ 1% of the span VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Spurious RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

```
RBW = 100 \ kHz
```

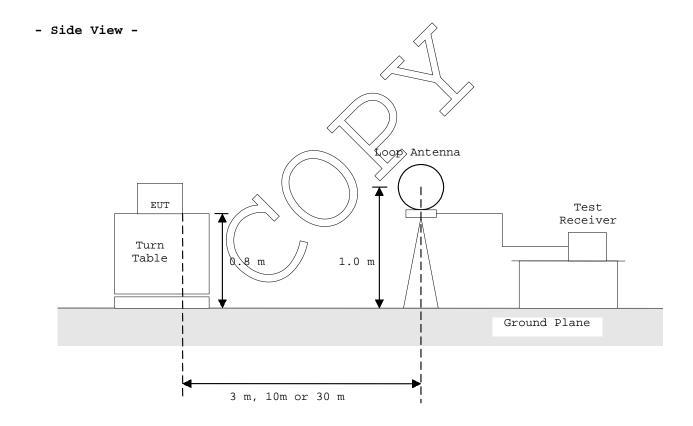
 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

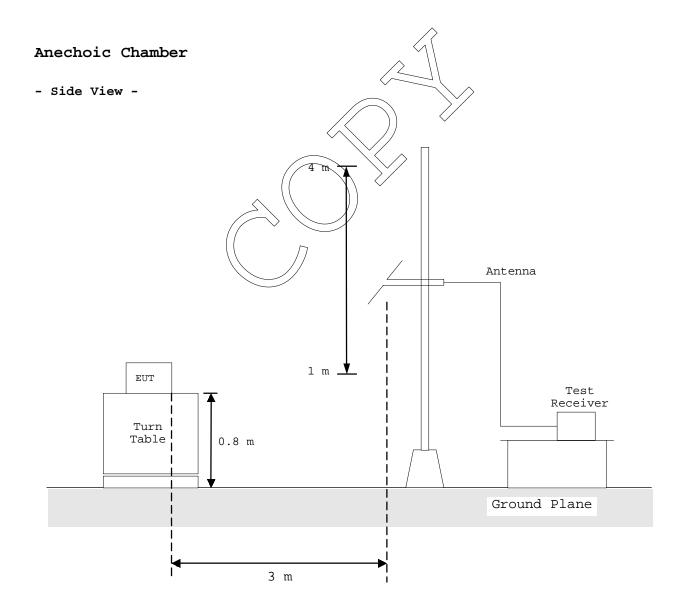
Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.


Measurement setup is same as sub-clause 1.9.1.

1.9.9 Radiated Emission (9 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

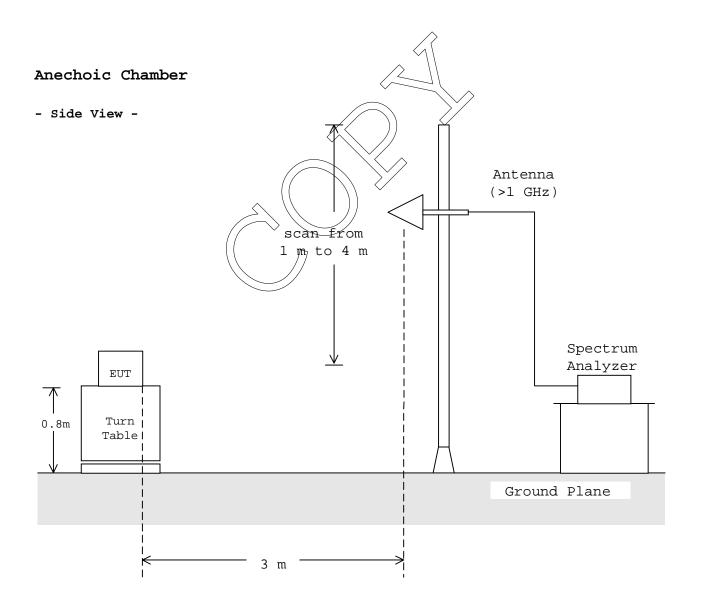


FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 24 of 63

1.9.10 Radiated Emission (30 MHz - 1000 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurement were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.



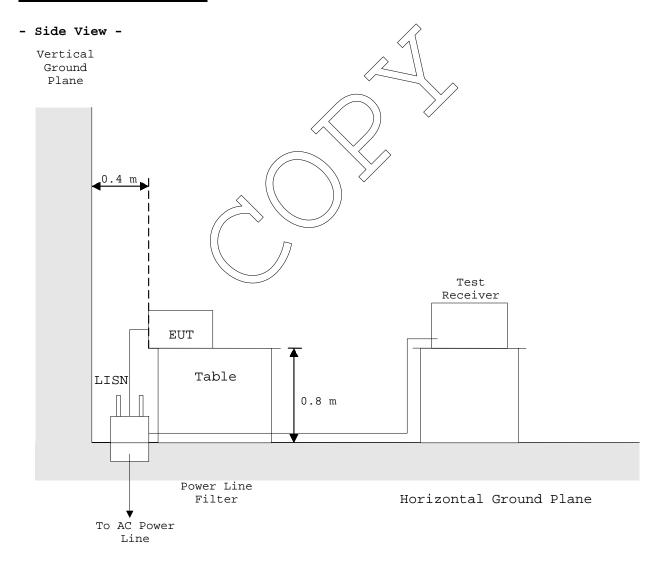
FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 25 of 63

1.9.11 Radiated Emission (Above 1 GHz) :

According to description of ANSI C63.4-1992 sec.13.1.4.1, the preliminary radiated emissions measurements were carried out. The preliminary radiated measurements were performed at the measurement distance that specified for compliance to determine the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for the final radiated emissions measurements.

JAPAN QUALITY ASSURANCE ORGANIZATION


1.9.12 AC Power Line Conducted Emission (450 kHz - 30 MHz) :

According to description of ANSI C63.4-1992 sec.13.1.3.1, the AC power line preliminary conducted emissions measurements were carried out.

The preliminary conducted measurements were performed using the spectrum analyzer to observe the emission characteristics of the EUT.

The EUT configuration, cable configuration and mode of operation were determined for producing the maximum level of emissions. These configurations were used for final AC power line conducted emissions measurements.

Shielded Enclosure

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 27 of 63

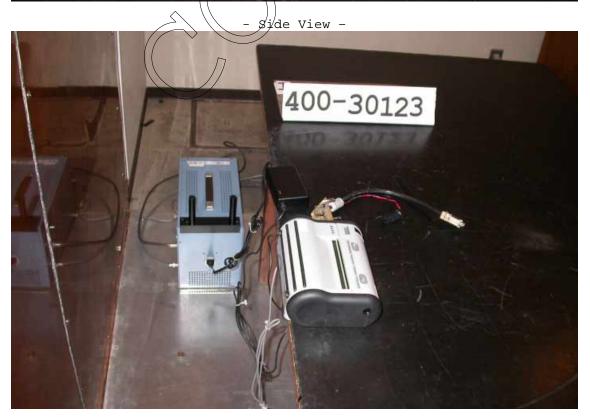
1.10 TEST ARRANGEMENT (PHOTOGRAPHS)

PHOTOGRAPHS OF EUT CONFIGURATION FOR RADIATED EMISSIONS MEASUREMENT

Photograph present configuration with maximum emission

JAPAN QUALITY ASSURANCE ORGANIZATION

FCC ID:MMFMB400-B2Issue Date:June 23, 2003Page 28 of63

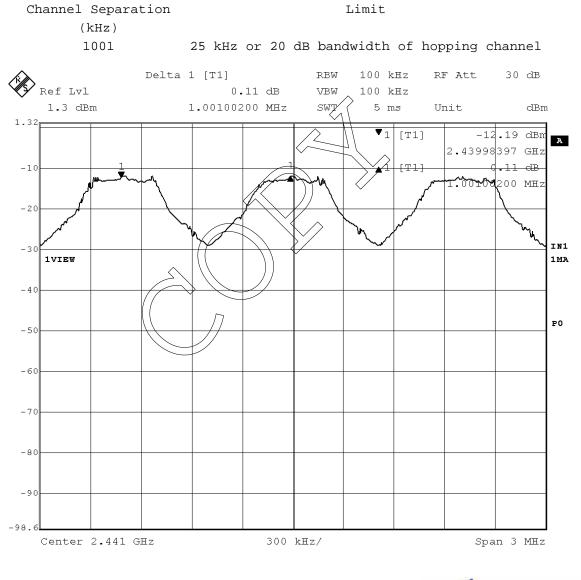


FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 29 of 63

PHOTOGRAPHS OF EUT CONFIGURATION FOR AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT Photograph present configuration with maximum emission

- Front View -

JAPAN QUALITY ASSURANCE ORGANIZATION

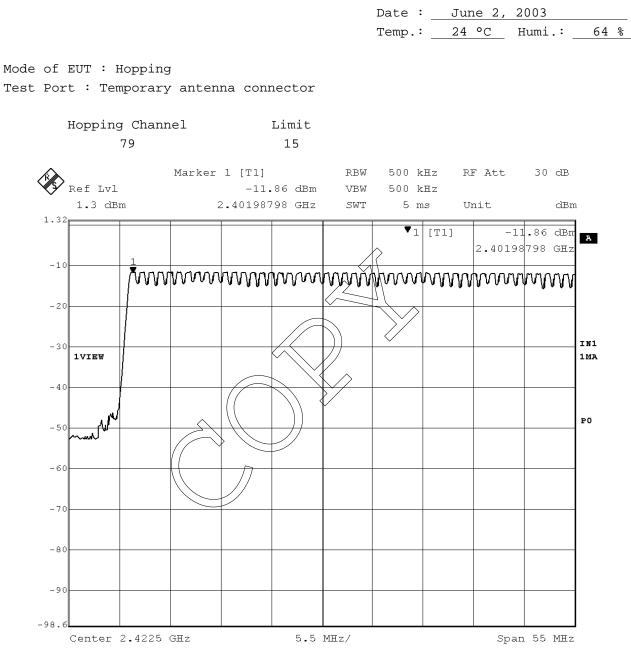

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 30 of 63

2. TEST DATA

2.1 Channel Separation

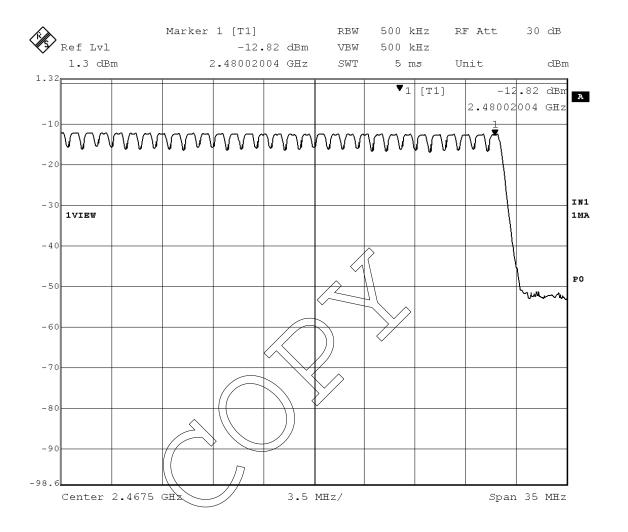
Date : June 2, 2003 Temp.: 24 °C Humi.: 64 %

Mode of EUT : Hopping Test Port : Temporary antenna connector


Tested by :

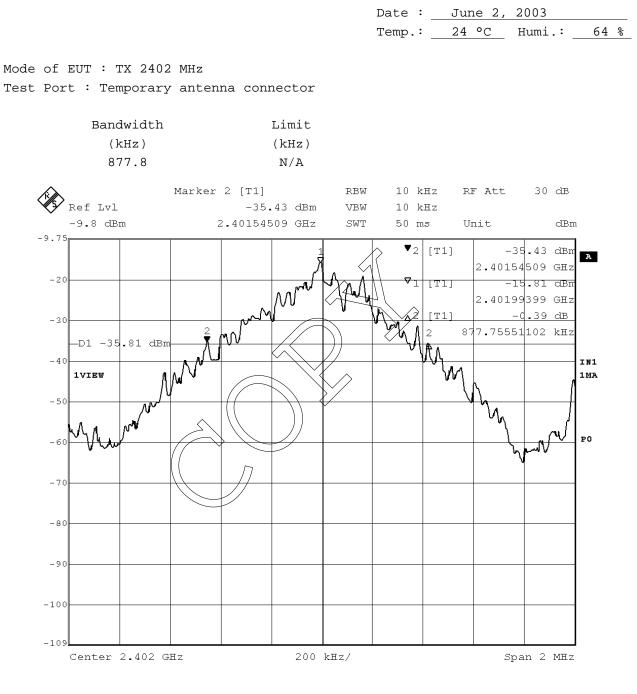
Shiger Osawa

Shigeru Osawa Testing Engineer



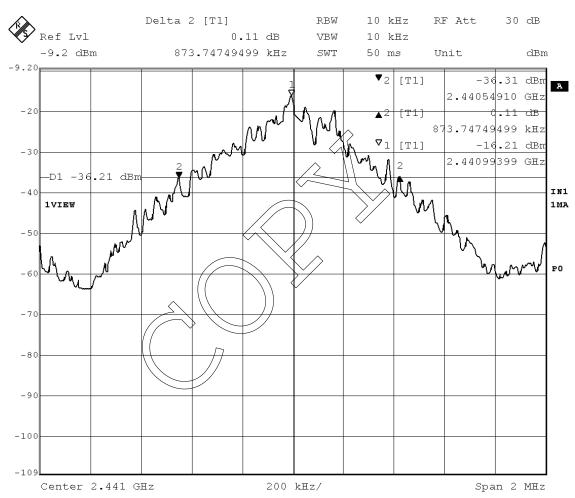
2.2 Minimum Hopping Channel

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 32 of 63

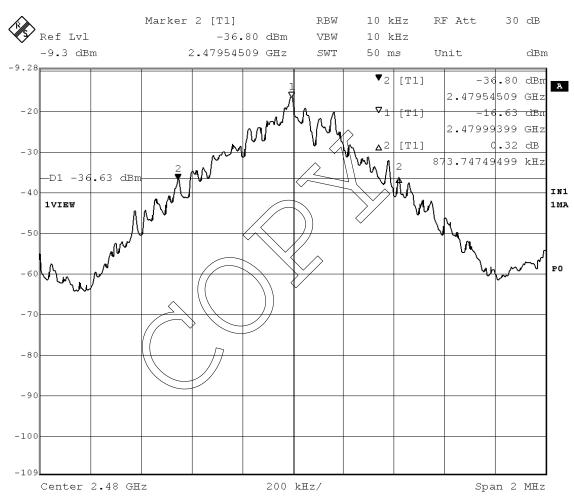

Tested by :

Shigeru asawa

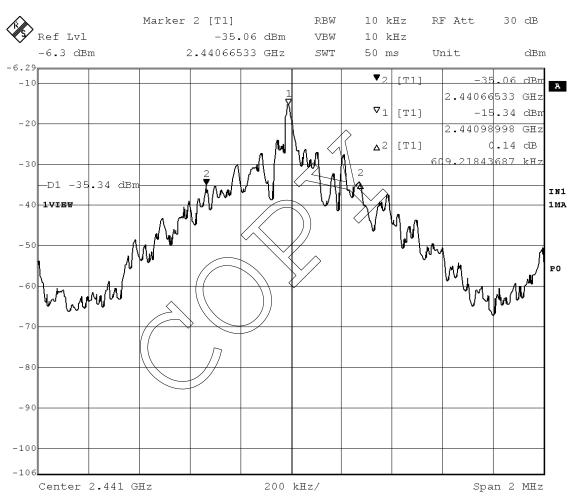
Shigeru Osawa Testing Engineer


2.3 Occupied Bandwidth

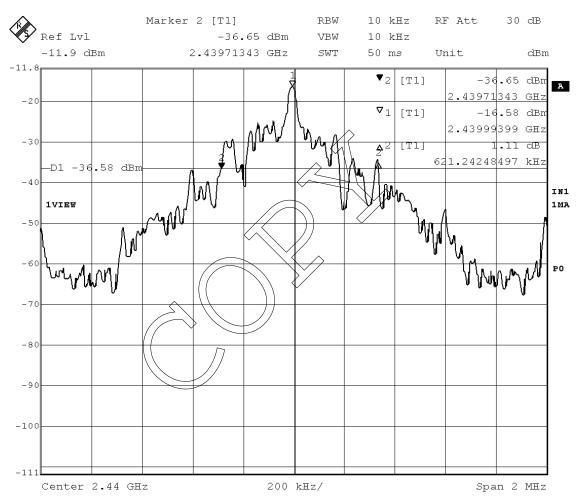
Mode of EUT : TX 2441 MHz Test Port : Temporary antenna connector


Bandwidth	Limit
(kHz)	(kHz)
873.7	N/A

Mode of EUT : TX 2480 MHz Test Port : Temporary antenna connector


Bandwidth	Limit
(kHz)	(kHz)
873.7	N/A

Mode of EUT : Inquiry Test Port : Temporary antenna connector


Bandwidth	Limit
(kHz)	(kHz)
609.2	N/A

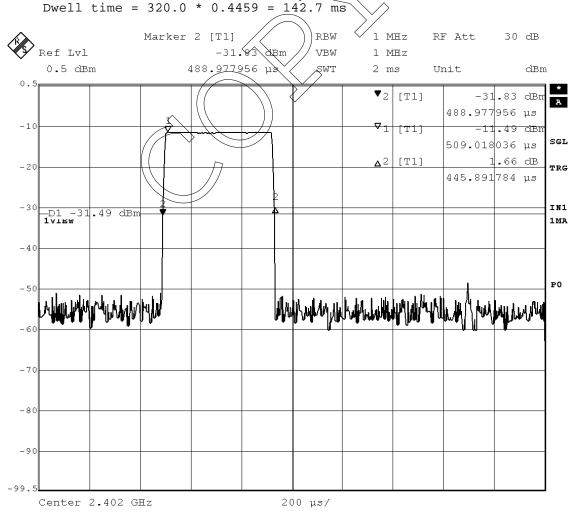
Mode of EUT : Paging Test Port : Temporary antenna connector

Bandwidth	Limit
(kHz)	(kHz)
621.2	N/A

Shiger Osawa Tested by :

Shigeru Osawa Testing Engineer

2.4 Dwell Time


Date	:	June 2,	2003	
Temp.	:	24 °C	Humi.:	64 %

Mode of EUT : Hopping(DH1 packet)
Test Port : Temporary antenna connector

Dwell Time Limit (ms) 142.7 400 ms per 31.6 s

Note : The system makes worst case 1600 hops per second or 1 time slot has a length of 625 µs with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 800 hops per second with 79 channels. So the system has each channel 10.1266 times per second and so for 31.6 seconds the system have 320.0 times of appearance.

Each tx-time per appearance is 0.4459 ms.

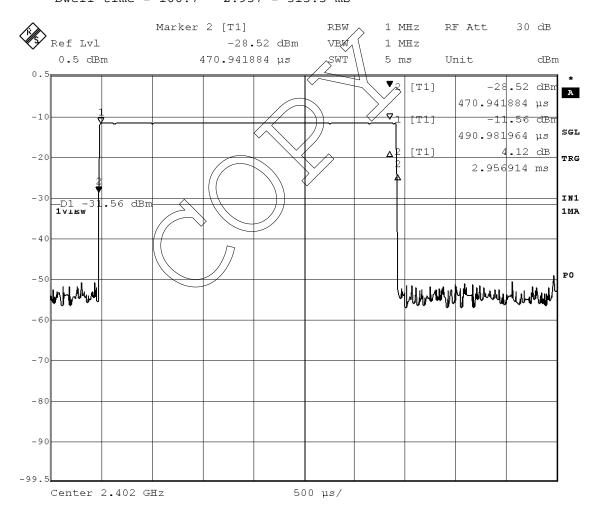
JAPAN QUALITY ASSURANCE ORGANIZATION

Mode of EUT : Hopping(DH3 packet)
Test Port : Temporary antenna connector

Dwell Time Limit (ms) 272.6 400 ms per 31.6 s

Note : A DH3 Packet need 3 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 400 hops per second with 79 channels. So the system have each channel 5.063 times per second and so for 31.6 seconds the system have 160.0 times of appearance. Each tx-time per appearance is 1.704 ms.

Dwell time = $160.0 \times 1.704 = 272.6 \text{ ms}$



Mode of EUT : Hopping(DH5 packet)
Test Port : Temporary antenna connector

Dwell Time Limit (ms) 315.5 400 ms per 31.6 s

Note : A DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 266.667 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.7 times of appearance. Each tx-time per appearance is 2.957 ms. Dwell time = 106.7 * 2.957 = 315.5 ms

Mode of EUT : Inquiry Test Port : Temporary antenna connector Dwell Time Limit (ms) 109.6 400 ms per 12.8 s Note : The system have 32 hopping channel in Inquiry mode. The time period = $32 \times 0.4 = 12.8$ seconds In maximum case the bluetooth system have three blocks of 2560 ms in 12.8 s period. One block has 256 burst at each hopping channel. Each tx-time per appearance is 0.1427 ms. Dwell time = 0.1427 * 256 * 3 = 109.6 ms Marker 2 [T1] 500 kHz RF Att 30 dB RBW Ref Lvl -33.28 dBm VBX 500 kHz -5 dBm 200 µs 21.242485 µs SWT Unit dBm T [T1] -33.28 dBm A -1021.242485 µs $\overline{\mathbf{v}}_1|_{[T1]}$ -12.66 dBn SGL 56.913<mark>828 μ</mark>ε -20 ▲2 [T1] 0.60 dB TRG _42.725451 μs -30 -D1 -32**7**66 dBm IN1 -40 **1VIEW** 1 M A -50 РO -60 -80 -90 -100-105Center 2.441 GHz 20 µs/

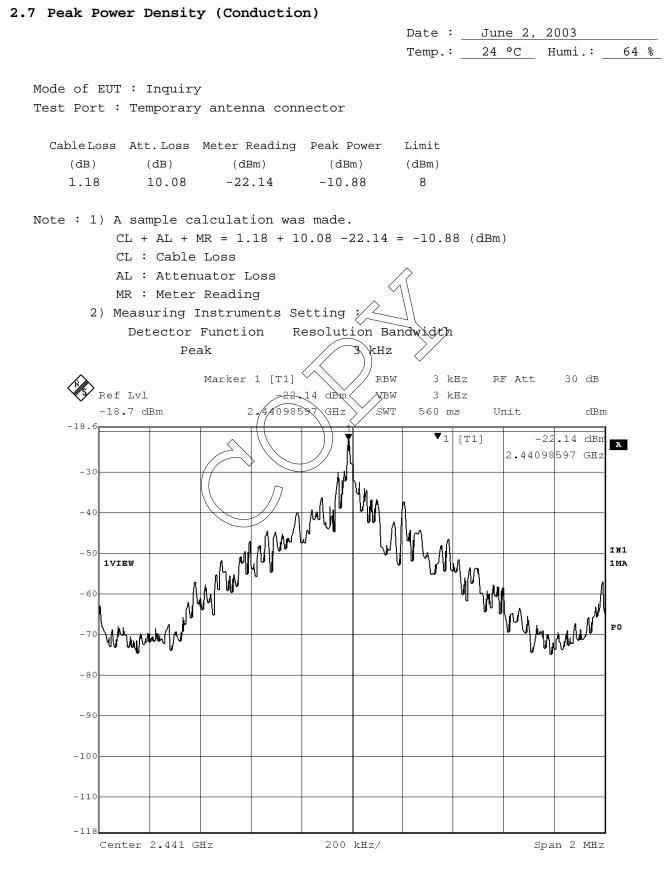
Mode of EUT : Paging Test Port : Temporary antenna connector Dwell Time Limit (ms) 109.9 400 ms per 12.8 s Note : The system have 32 hopping channel in Paging mode. The time period = $32 \times 0.4 = 12.8$ seconds In maximum case the bluetooth system have three blocks of 2560 ms in 12.8 s period. One block has 256 burst at each hopping channel. Each tx-time per appearance is 0.1431 ms. Dwell time = 0.1431 * 256 * 3 = 109.9 ms 500 kHz Marker 2 [T1] RF Att 30 dB RBW Ref Lvl -33.87 dBm VBX 500 kHz -5 dBm 20.841683 µs SWT 200 µs Unit dBm T -33.87 dBm [T1] A -1020.841683 µs **⊽**1 [T1] -12.59 dBr SGL 65.731463 μs -20 ▲2 [T1] 0.99 dB TRG 43.126253 μs -30 —D1 -32**4**59 dBm IN1 -40 **1VIEW** 1 M A -50 РO -80 -90 -100-105Center 2.44 GHz 20 µs/ asawa Shigeru Tested by :

Shigeru Osawa Testing Engineer

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 43 of 63

2.5 Peak Output	Power (Co	onduction)			
			1	Date : J	Tune 2, 2003	
				Temp.:2	24 °C Humi	.: 64 %
Mode of EUT : 7	יצ (240.2 או	H 7)				
Test Port : Ten			ector			
iest poit · ien	uporary an		ector			
Percentage of	CableLoss	Att.Loss	Meter Reading	Peak Power	Limit	
Rated Supply	(dB)	(dB)	(dBm)	(dBm)	(dBm)	
85 %	1.18	10.08	-11.52	-0.26	30	
100 %	1.18	10.08	-11.52	-0.26	30	
115 %	1.18	10.08	-11.52	-0.26	30	
Mode of EUT : 1	CX (2441 M	Hz)				
Test Port : Tem			ector	\rangle		
			~ 1			
Percentage of	Cable Loss	Att.Loss	Meter Reading	Peak Power	Limit	
Rated Supply	(dB)	(dB)	(dBm)	(ðBm)	(dBm)	
85 %	1.18	10.08	-11,89	/-0.63	30	
100 %	1.18	10.08 <	-11,89	-0.63	30	
115 %	1.18	10.08	-11.89	-0.63	30	
Mode of EUT : 1	יע (2480 мו	H7)	\searrow			
Test Port : Ten			ector			
Percentage of	Cable Loss	Att.Loss	Meter Reading	Peak Power	Limit	
Rated Supply	(dB)	(dø)	(dBm)	(dBm)	(dBm)	
85 %	1.18	10.08	-12.55	-1.29	30	
100 %	1.18	10.08	-12.55	-1.29	30	
115 %	1.18	10.08	-12.55	-1.29	30	
		7		6		
Note : 1) Rated					iptor)	
			made at 2402			
			0.08 -11.52 =	-0.26 (dBr	n)	
	Cable Los					
	Attenuato					
MR :	Meter Rea	ding				
		ruments Se				
Det	ector Fund	ction Re	esolution Band	dwidth		
	Peak		1 MHz			
					R	12
			Teste	ed by :	Shigeru	. asawa
					Shigeru Osa	wa

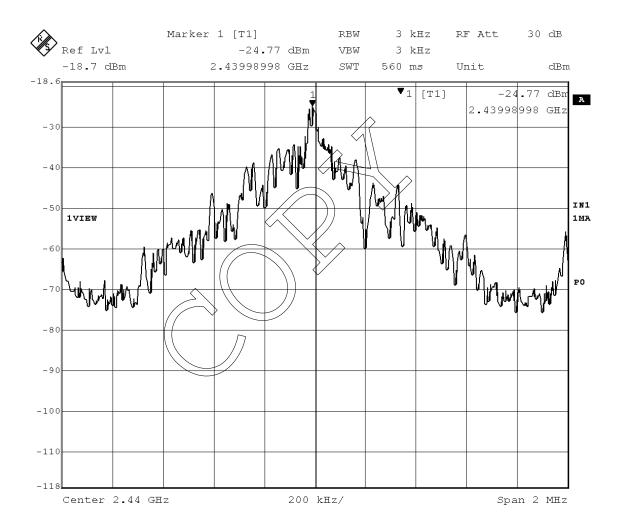
Shigeru Osawa Testing Engineer


2.6 Peak Output	Power (Radia	tion)				
			Da	ite : June	e 14, 2003	
			Te	emp.: 22 9	<u>C</u> Humi.	: 66 %
Mode of EUT : T	X (2402 MHz)					
Test Port : Enc						
Percentage of	Antenna Gain	Meter Read	ding (dBm)	Peak Pow	er (dBm)	Limit
Rated Supply	(dBi)	Horiz.	Vert.	Horiz.	Vert.	(dBm)
85 %	9.30	-10.15	-11.38	-0.85	-2.08	30
100 %	9.30	-10.15	-11.38	-0.85	-2.08	30
115 %	9.30	-10.15	-11.38	-0.85	-2.08	30
Mode of EUT : T	X (2441 MHz)					
Test Port : Enc	losure		\wedge			
			≤ 1			
Percentage of	Antenna Gain	Meter Read	ding (dBm)	Peak Pow	er (dBm)	Limit
Rated Supply	(dBi)	Horiz.	Vert.	∖∕> Horiz.	Vert.	(dBm)
85 %	9.46	-10.43	12.45	-0.97	-2.99	30
100 %	9.46	-10.43	÷12.45	-0.97	-2.99	30
115 %	9.46	-10.43	-12.45	-0.97	-2.99	30
		Ň	\bigvee			
Mode of EUT : T	X (2480 MHz)		\checkmark			
Test Port : Enc	losure 🔨					
	\land					
Percentage of	Antenna Gain	Meter Read	ding (dBm)	Peak Pow	er (dBm)	Limit
Rated Supply	(dBi)	// Horiz.	Vert.	Horiz.	Vert.	(dBm)
85 %	9.53	-10.75	-13.50	-1.22	-3.97	30
100 %	9.53	-10.75	-13.50	-1.22	-3.97	30
115 %	9.53	-10.75	-13.50	-1.22	-3.97	30
		. 100 177				
Note : 1) Rated),	
	ple calculati			MHZ.		
	MR = 9.30 - 10	0.15 = -0.8	5 (d Bm)			
	Antenna Gain					
	Meter Reading	-				
	ring Instrume					
Det	ector Functio	n Kesolu	tion Bandw	lath		
	Peak		1 MHz			

Shigeru asawa Tested by :

Shigeru Osawa Testing Engineer

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 45 of 63



JAPAN QUALITY ASSURANCE ORGANIZATION

Mode of EUT : Paging Test Port : Temporary antenna connector

CableLoss	Att.Loss	Meter Reading	Peak Power	Limit
(dB)	(dB)	(dBm)	(dBm)	(dBm)
1.18	10.08	-24.77	-13.51	8

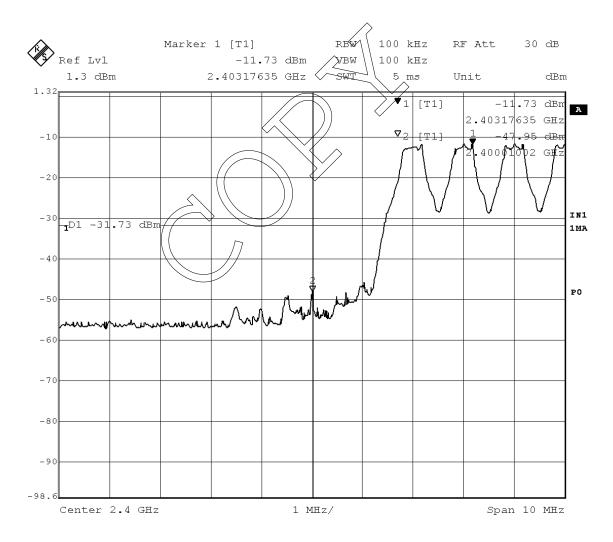
Tested by :

Shiger Osawa

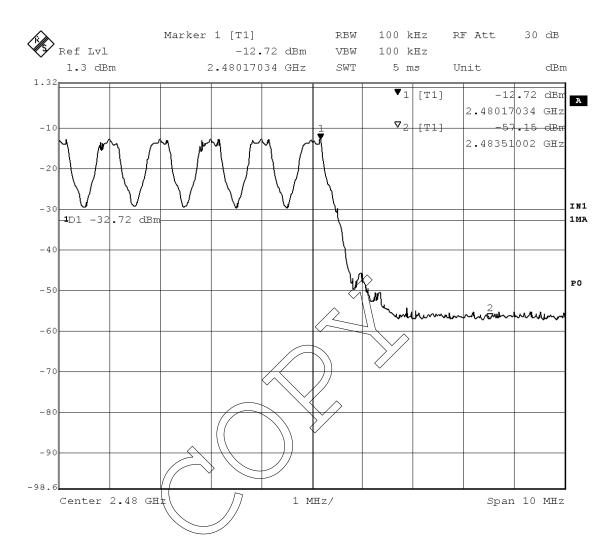
Shigeru Osawa Testing Engineer

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 47 of 63

2.8 Peak Power Density (Radiation)


Note : This test was not applicable.

2.9 Spurious Emissions (Conduction)


Date :	June 2,	2003	
Temp.:	24 °C	Humi.:	64 %

2.9.1 Band Edge Compliance

Mode of EUT : Hopping Test Port : Temporary antenna connector

2.9.2 Other Spurious Emissions

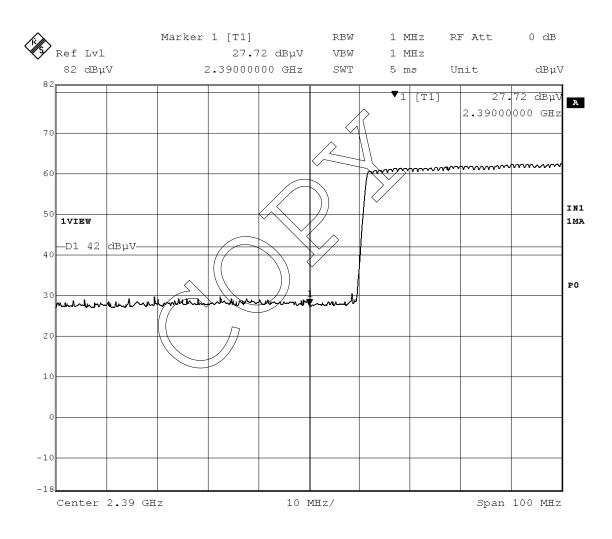
Mode of EUT : TX (2402 MHz) Test Port : Temporary antenna connector

Frequency	CableLoss	Att.Loss	Meter Reading	Emission	Reference	Limit
(MHz)	(dB)	(dB)	(dBm)	Levels	Level(*1)	(dBm)
				(dBm)	(dBm)	
					-1.29	-21.29

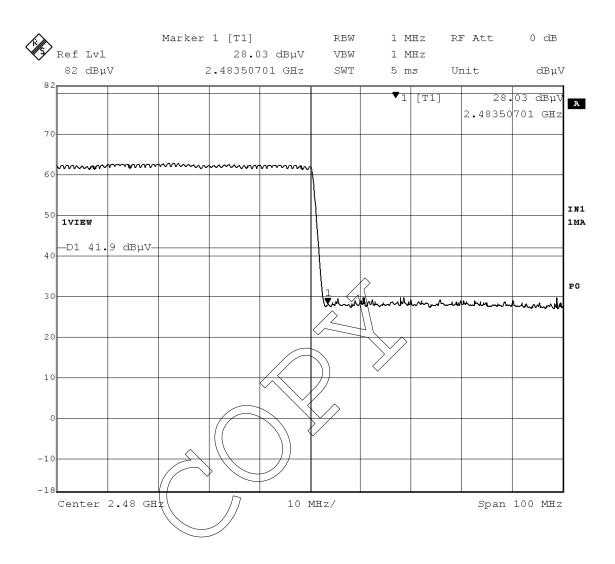
No spurious emissions in the range 20 dB below the limit.

Mode of EUT : TX (2441 MHz) Test Port : Temporary antenna connector CableLoss Att.Loss Meter Reading Limit Frequency Emission Reference (MHz) (dB) (dB) (dBm) Level(*1) (dBm) Levels (dBm) (dBm) -1.29 -21.29 No spurious emissions in the range 20 dB below the limit. Mode of EUT : TX (2480 MHz) Test Port : Temporary antenna connector CableLoss Att.Loss Meter Reading Emission Reference Limit Frequency (MHz) (dB) (dB) (dBm) Levels Level(*1) (dBm) (dBm) (dBm) -1.29 -21.29 No spurious emissions in the range 20 dB below the limit. Note : 1) Reference level is minimum value of all channels. 2) Measuring Instruments Setting 🗸 Detector Function Resolution Bandwidth Peak 100 kHz Shigeru Usawa Tested by :

Shigeru Osawa Testing Engineer



2.10 Spurious Emissions (Radiation)


Date :	June 14, 2003	
Temp.:	22 °C Humi.:	66 %

2.10.1 Band Edge Compliance

Mode of EUT : Hopping Test Port : Enclosure

2.10.2 Other Spurious Emissions

Test Port : Enclosure

Spurious Emissions in the frequency range from 9 kHz to 30 MHz Mode of EUT : TX Hopping OFF(2402 MHz/ 2441 MHz/ 2480 MHz Setting)

No spurious emissions in the range 20 dB below the limit.

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz Mode of EUT : TX Hopping OFF(2402 MHz/ 2441 MHz/ 2480 MHz Setting)

Frequency	Antenna Factor	Meter Re (dł	eading BuV)	Limits	\sim	n Levels W/m)	Marg (d	gins B)
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.	Horiz.	Vert.
110.6	12.5	18.2	22.0	43.5)	30.7	34.5	12.8	9.0
258.0	19.8	19.4	6.1	46.0	39.2	25.9	6.8	20.1
331.8	18.1	20.9	9.0	46.0	39.0	27.1	7.0	18.9
Notes :	2) The c 3) The s 4) The s	The loss symbol of symbol of uple calcu Af + Mi Af = Ar	s is incl "<"means >"means lation w	vas made at 2 + 22 = 34.5 actor	antenna er". 110.6 (1	factor. MHz).		

Spurious Emissions in the frequency above 1000 $\ensuremath{\text{MHz}}$

Mode of	EUT	:	ТΧ	Hopping	OFF(2402	MHz	Setting)	
---------	-----	---	----	---------	----------	-----	----------	--

Frequency	P-A	Correction Polari-		Meter Reading		Lit	mits	Emission Levels		Margins	
	Factor	Factor	zation	(dE	BuV)	(dE	BuV∕m)	(dBu	ıV/m)	(c	lB)
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.2015	0.0	-4.8	Н	39.4	44.3	54.0	74.0	34.6	39.5	19.4	34.5

Mode of EUT : TX Hopping OFF(2441 MHz Setting)

Frequency	P-A	Correction	Polari-	Meter H	Reading	Lir	nits		n Levels		gins
(GHz)	Factor (dB)	Factor (dB)	zation	(dB AV	uV) Peak	(dB AV	uV/m) Peak	(dBu AV	ıV/m) Peak	(c AV	lB) Peak
1.2200	0.0	-4.7	Н	39.9	45.2	54.0	74.0	35.2	40.5	18.8	33.5
		IX Hopping			1~			T aná a sá a	n Levels	Marca	
Frequency	P-A Factor	Correction Factor	zation			$\langle \rangle$	nits uV/m)		I Levels IV/m)		gins lB)
(GHz)	(dB)	(dB)	2001011	AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.2395	0.0	-4.5	Н	38.8	44.3	54.0	74.0	34.3	39.8	19.7	34.2
J	Notes :	 The caling the calin	the loss, correction bol of " bol of " ce calcul PA + Cf PA = Pe Cf = Cc Mr = Me ng Instr tor func	amp. ga on facto <"means ation(AV + Mr = eak to Av prrection eter Read cument Se tion	in, fil r. "or le "or gr) was m 0 + -4. erage F Factor ing tting :	ter and ess". eater" ade at 8 + 39 Gactor(1	d anten 1.2015 .4 = 3 ?-A Fac	(GHz). (GHz). 4.6 (dBuy tor)	r are inc		
		Av	rerage(AV Peak	()		1 MHz 1 MHz			-		
			геак			I MHZ			-		

ma Tested by :

Yoichi Nakajima Testing Engineer

2.11 AC Power Line Conducted Emissions

Date :	June 14, 2003	
Temp.:	26 °C Humi.:	66 %

Mode of EUT : TX Test Port : AC power line

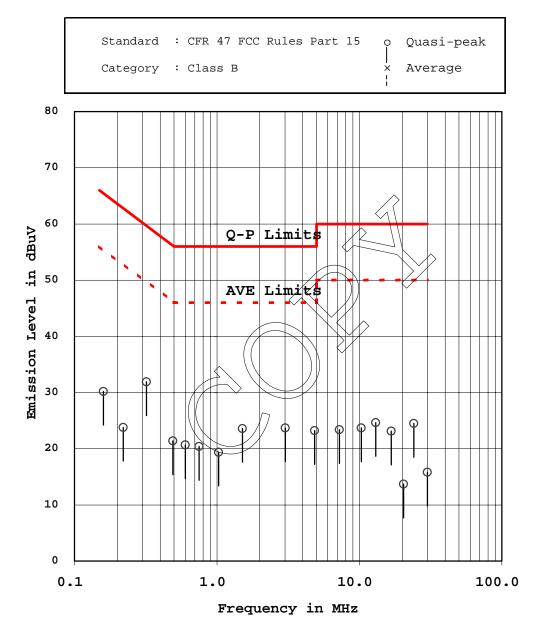
Frequency	LISN	Μ	leter Read	ling (dB	uV)	Limi	ts	Emissi	on Level	Mar	gins
	Factor	V	7-A	V	-В	(dE	uV)	(dE	BuV)	(d	lB)
(MHz)	(dB)	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.16	0.2	30.0	_	28.0	_	65.5	55.5	30.2	_	35.3	-
0.22	0.2	22.5	-	23.6	-	62.8	52.8	23.8	-	39.0	-
0.32	0.2	31.7	-	18.0	-	59.7	49.7	31.9	-	27.8	-
0.49	0.2	21.2		< 10.0	-	56.2	46.2	21.4	-	34.8	-
0.60	0.2	20.5	-	11.0	-	56.0	46.0	20.7	-	35.3	-
0.75	0.2	20.2	_	16.5	_	56.0	46.0	20.4	-	35.6	-
1.03	0.2	19.2		< 10.0	-	56.0	<4 6 .0	19.4	-	36.6	-
1.51	0.2	23.4	-	20.5	-	56.0	46.0	23.6	-	32.4	-
3.02	0.2	17.5	-	23.5	-	56.0	46.0	23.7	-	32.3	-
4.86	0.2	17.0	-	23.0	- /	56.0	46.0	23.2	-	32.8	-
7.24	0.2	16.0	-	23.2		60.0	50.0	23.4	-	36.6	-
10.32	0.2	17.0	-	23.5	√ \-/	60.0	50.0	23.7	-	36.3	-
13.02	0.3	17.5	-	24.4	/	× \$0.0	50.0	24.7	-	35.3	-
16.74	0.3	16.0	-	22.8	<u> </u>	60.0	50.0	23.1	-	36.9	-
20.42	0.4 <	10.0	-	23.3	//	60.0	50.0	13.7	-	46.3	-
24.13	0.5	24.0	-	23.3))	60.0	50.0	24.5	-	35.5	-
29.98	0.6	15.2		> 14.4	\mathcal{A}	60.0	50.0	15.8	-	44.2	-
			11								

Notes : 1) The spectrum was checked from 0.15 MHz to 30 MHz.

- 2) The cable loss is included in the LISN factor.
- 3) The symbol of "<"means "or less".
- 4) The symbol of ">"means "or greater".
- 5) The symbol of "-"means "Not applicable".
- 6) V-A : One end & Ground \$V-B\$: The other end & Ground
- 7) Q.P : Quasi-peak AVE : Average

8) Asample calculation was made at 0.16 $\,$ (MHz).

- Lf + Mr = 0.2 + 30 = 30.2(dBuV)
- Lf = LISN Factor
- Mr = Meter Reading


7. hak ima Tested by :

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : MB400-B2

2.12 RF Exposure Compliance

See attached information.

2.13 Spurious Emissions for Receiver (Radiation)

Date :	June 14, 2003	
Temp.:	22 °C Humi.:	66 %

Mode of EUT : RX Test Port : Enclosure

Spurious Emissions in the frequency range from 30 MHz to 1000 MHz

Frequency	Antenna Factor	a Meter Reading (dBuV)		Limits		n Levels N/m)	Margins (dB)		
(MHz)	(dB)	Horiz.	Vert.	(dBuV/m)	Horiz.	Vert.	Horiz.	Vert.	
41.1	14.3	8.0	20.4	40.0	22.3	34.7	17.7	5.3	
58.3	8.6	8.7	23.7	40.0	17.3	32.3	22.8	7.8	
80.6	7.8	10.8	26.4	40.0	18.6	34.2	21.4	5.8	
110.6	12.5	18.2	22.0	43.5	30.7	34.5	12.8	9.0	
160.0	16.3	18.2	21.5	43.5	34.5	37.8	9.0	5.7	
180.0	17.1	8.6	17.5	43.5	25.7	34.6	17.8	8.9	
221.2	18.7	16.1	3.9	46.0	34.8	22.6	11.3	23.5	
258.0	19.8	19.4	6.1	46,0) 39.2 <	25.9	6.8	20.1	
294.9	21.4	18.3	11.6	46.0	// 39.7	33.0	6.3	13.0	
331.8	18.1	20.9	9.0	46.0	39.0	27.1	7.0	18.9	
368.6	18.4	23.2	10.A	46,0	41.6	28.8	4.4	17.2	
516.0	21.7	13.1	\$ (6	46,0	34.8	27.3	11.2	18.7	
639.5	23.8	12.1	J 3/6	46).ø	35.9	27.4	10.1	18.6	
774.2	25.3	12.8	~\4.\	46.0	38.1	29.4	7.9	16.6	
847.8	26.1	14.8	3.7	46.0 7	40.9	29.8	5.1	16.2	

Notes : 1) The spectrum was checked from 30 MHz to 1000 MHz. 2) The cable loss is included in the antenna factor. 3) The symbol of "<"means "or less". 4) The symbol of ">"means "or greater". 5) A sample calculation was made at 41.1 (MHz). Af + Mr =14.3 + 20.4 = 34.7 (dBuV/m) Af = Antenna Factor Mr = Meter Reading

Spurious Emissions in the frequency above 1000 $\ensuremath{\text{MHz}}$

No spurious emissions in the range 20 dB below the limit.

Spurious Emissions in the frequency above 1000 $\ensuremath{\text{MHz}}$

Mode of EUT : RX Hopping OFF(2402 MH	z Setting)
--------------------------------------	------------

Frequency	P-A	Correction	Polari-	Meter	Reading	Li	mits	Emissio	n Levels	Mar	gins
	Factor	Factor	zation	(dE	BuV)	(dE	BuV∕m)	(dBu	ıV/m)	(c	lB)
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.2003	0.0	-4.8	Н	38.6	44.9	54.0	74.0	33.8	40.1	20.2	33.9

Mode of EUT : RX Hopping OFF(2441 MHz Setting)

Frequency (GHz)		Correction Factor (dB)		Meter 1		Lin	mits BuV/m) Peak		n Levels 1V/m) Peak		gins lB) Peak
1.2198	0.0	-4.6	Н	37.4	43.3	54.0	74.0	32.8	38.7	21.2	35.3
Mode of Frequency		RX Hopping Correction Factor		Meter 1	1~	-Jiji	nits uy/m)		n Levels 1V/m)		gins B)
(GHz)	(dB)	(dB)		AV	Peak	AV	Peak	AV	Peak	AV	Peak
1.2393	0.0	-4.5	Н	36.5	42.8	54.0	74.0	32.0	38.3	22.0	35.7
1	Notes :	2) The cak in the 3) The sym 4) The sym 5) A sampl	te loss, correcti ubol of " ubol of " e calcul PA + Cf PA = Pe Cf = Co Mr = Me	amp. ga on facto <"means ation(Pe + Mr = ak to Av rrection ter Read	in and "or le "or gr (ak) was 0 + -4. rerage F (a Factor ling	antenna ess". eater" made a 8 + 44 Factor(:	a facto at 1.20 .9 = 4	r are ind 025 (GH: 0.1 (dBu	z).		
		6) Measuri	-		-			1			
			<u>tor func</u> verage(AV Peak		<u>Kesolu</u>	<u>ition B</u> 1 MHz 1 MHz	andwidt	<u>n Video F</u>	<u>Bandwidth</u> - -		

ma Tested by : _

Yoichi Nakajima Testing Engineer

2.14 AC Power Line Conducted Emissions for Receiver

Date :	June 14, 2003	
Temp.:	26 °C Humi.: 66	00

Mode of EUT : RX Test Port : AC power line

Frequency	LISN	Me	ter Rea	di	ng (dB	uV)	Limi	ts	Emissi	on Level	Mar	gins
	Factor	V-	A		V	-B	(dE	BuV)	(dB	BuV)	(d	в)
(MHz)	(dB)	Q.P	AVE		Q.P	AVE	Q.P	AVE	Q.P	AVE	Q.P	AVE
0.16	0.2	30.0	_		28.0	_	65.5	55.5	30.2	-	35.3	_
0.22	0.2	22.5	-		23.6	-	62.8	52.8	23.8	-	39.0	-
0.32	0.2	31.7	-		18.0	-	59.7	49.7	31.9	-	27.8	-
0.49	0.2	21.2	_	<	10.0	_	56.2	46.2	21.4	-	34.8	-
0.60	0.2	20.5	-		11.0	-	56.0	46.0	20.7	-	35.3	-
0.75	0.2	20.2	-		16.5	_	56.0	A6.0	20.4	-	35.6	_
1.03	0.2	19.2	-	<	10.0	-	56.0	~46.0	19.4	-	36.6	-
1.51	0.2	23.4	-		20.5	-	56.0	46.0	23.6	-	32.4	-
3.02	0.2	17.5	-		23.5	-	56.0	46.0	23.7	-	32.3	-
4.86	0.2	17.0	-		23.0	- /	56.0	46.0	23.2	-	32.8	-
							\sum	/	/			
7.24	0.2	16.0	-		23.2	/ <i>t</i>	69.)0	50.0	23.4	-	36.6	-
10.32	0.2	17.0	-		23.5	$\langle \rangle$	60.0	50.0	23.7	-	36.3	-
13.02	0.3	17.5	-		24.4	-//	ÿ0.0	50.0	24.7	-	35.3	-
16.74	0.3	16.0	-		22.8	<u> </u>	60.0	50.0	23.1	-	36.9	-
20.42	0.4 <	10.0	-		(13.3	//	60.0	50.0	13.7	-	46.3	-
24.13	0.5	24.0	- ^		23.3))	60.0	50.0	24.5	_	35.5	_
29.98	0.6	15.2	2	\backslash	144		60.0	50.0	15.8	_	44.2	_
	1) The c		ring ab	\searrow	LA.A	0 15	MUR to		10.0		11.2	

Notes : 1) The spectrum was checked from 0.15 MHz to 30 MHz.

2) The cable loss is included in the LISN factor.

3) The symbol of "-"means "or less".4) The symbol of "-"means "or greater".

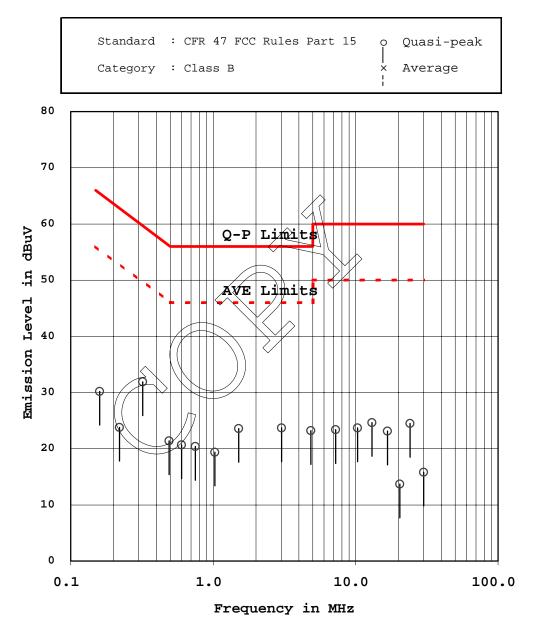
5) The symbol of "-"means "Not applicable".

6) V-A : One end & Ground V-B : The other end & Ground

7) Q.P : Quasi-peak AVE : Average

8) Asample calculation was made at 0.16 $\,$ (MHz).

- Lf + Mr = 0.2 + 30 = 30.2(dBuV)
 - Lf = LISN Factor
 - Mr = Meter Reading


ima Tested by :

Yoichi Nakajima Testing Engineer

AC POWER LINE CONDUCTED EMISSION MEASUREMENT

Model No. : MB400-B2

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 60 of 63

Appendix

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 61 of 63

Test Receivers

No.	Туре	Model	Manufacturer	Serial	ID	Last	Cal.	Interval
TR01	Test Receiver	ESH2	Rohde & Schwarz	880370/016	119-01-503E0	May	2003	1 Year
TR02	Test Receiver	ESH3	Rohde & Schwarz	881460/030	119-01-023E0	May	2003	1 Year
TR03	Test Receiver	ESHS10	Rohde & Schwarz	835871/004	119-01-505E0	May	2003	1 Year
TR04	Test Receiver	ESV	Rohde & Schwarz	872148/039	119-03-008E0	May	2003	1 Year
TR05	Test Receiver	ESVS10	Rohde & Schwarz	826148/002	119-03-504E0	May	2003	1 Year
TR06	Test Receiver	ESVS10	Rohde & Schwarz	832699/001	119-03-506E0	May	2003	1 Year
TR07	Test Receiver	ESI26	Rohde & Schwarz	100043	119-04-511E0	Aug.	2002	1 Year

Spectrum Analyzers

Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
Spectrum Analyzer	8560E	Hewlett Packard \land	3240A00189	122-02-504E0	Oct. 2002	1 Year
Spectrum Analyzer	8566B	Hewlett Packard	2140201091	122-02-501E0	Oct. 2002	1 Year
RF Pre-selector	85685A	Hewlett Packard	2648A00522	122-02-503E0	Oct. 2002	1 Year
Spectrum Analyzer	8566B	Hewlett Packard)	2747A05855	122-02-517E0	Apr. 2003	1 Year
RF Pre-selector	85685A	Hewlett Packard	2901A00933	122-02-519E0	Apr. 2003	1 Year
Spectrum Analyzer	R3132	ADVANTEST	120500072	122-02-520E0	Sep. 2002	1 Year
Spectrum Analyzer	R3182		120600581	122-02-521E0	Feb. 2003	1 Year
ennas						
	Spectrum Analyzer Spectrum Analyzer RF Pre-selector Spectrum Analyzer RF Pre-selector Spectrum Analyzer	Spectrum Analyzer 8560E Spectrum Analyzer 8566B RF Pre-selector 85685A Spectrum Analyzer 8566B RF Pre-selector 85685A Spectrum Analyzer R3132 Spectrum Analyzer R3182	Spectrum Analyzer 8560EHewlett PackardSpectrum Analyzer 8566BHewlett PackardRF Pre-selector 85685AHewlett PackardSpectrum Analyzer 8566BHewlett PackardRF Pre-selector 85685AHewlett PackardSpectrum Analyzer R3132ADVANTESTSpectrum Analyzer R3182ADVANTEST	Spectrum Analyzer 8560EHewlett Packard3240A00189Spectrum Analyzer 8566BHewlett Packard2140A01091RF Pre-selector85685AHewlett Packard2648A00522Spectrum Analyzer 8566BHewlett Packard2747A05855RF Pre-selector85685AHewlett Packard2901A00933Spectrum Analyzer R3132ADVANTEST120500072Spectrum Analyzer R3182ADVANTEST120600581	Spectrum Analyzer 8560EHewlett Packard3240A00189122-02-504E0Spectrum Analyzer 8566BHewlett Packard2140A01091122-02-501E0RF Pre-selector85685AHewlett Packard2648A00522122-02-503E0Spectrum Analyzer 8566BHewlett Packard2747A05855122-02-517E0RF Pre-selector85685AHewlett Packard2901A00933122-02-519E0Spectrum Analyzer R3132ADVANTEST120500072122-02-520E0Spectrum Analyzer R3182ADVANTEST120600581122-02-521E0	Spectrum Analyzer 8560EHewlett Packard3240A00189122-02-504E0 Oct. 2002Spectrum Analyzer 8566BHewlett Packard2140A01091122-02-501E0 Oct. 2002RF Pre-selector85685AHewlett Packard2648A00522122-02-503E0 Oct. 2002Spectrum Analyzer 8566BHewlett Packard2747A05855122-02-517E0 Apr. 2003RF Pre-selector85685AHewlett Packard2901A00933122-02-519E0 Apr. 2003Spectrum Analyzer R3132ADVANTEST120500072122-02-520E0 Sep. 2002Spectrum Analyzer R3182ADVANTEST120600581122-02-521E0 Feb. 2003

Antennas

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AN01	Loop Antenna	HFH2-Z2	Rohde & Schwarz	881058/61	119-05-036E0	Jun. 2002	1 Year
AN02	Dipole Antenna	KBA-511	Kyoritsu	0-170-1	119-05-506E0	Nov. 2002	1 Year
AN03	Dipole Antenna	KBA-511A	Kyoritsu	0-201-13	119-05-504E0	Nov. 2002	1 Year
AN04	Dipole Antenna	KBA-611	Kyoritsu	0-147-14	119-05-507E0	Nov. 2002	1 Year
AN05	Dipole Antenna	KBA-611	Kyoritsu	0-201-5	119-05-505E0	Nov. 2002	1 Year
AN06	Biconical Antenna	BBA9106	Schwarzbeck	VHA91031150	119-05-111E0	Nov. 2002	1 Year
AN07	Biconical Antenna	BBA9106	Schwarzbeck	-	119-05-078E0	Nov. 2002	1 Year
AN08	Log-peri. Antenna	UHALP9107	Schwarzbeck	-	119-05-079E0	Nov. 2002	1 Year
AN09	Log-peri. Antenna	UHALP9107	Schwarzbeck	-	119-05-110E0	Nov. 2002	1 Year
AN10	Log-peri. Antenna	HL025	Rohde & Schwarz	340182/015	119-05-100E0	Jan. 2003	1 Year
AN11	Horn Antenna	3115	EMC Test Systems	6442	119-05-514E0	Jan. 2003	1 Year
AN12	Horn Antenna	3116	EMC Test Systems	2547	119-05-515E0	May 2003	1 Year

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003 Page 62 of 63

Networks

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
NE01	LISN	KNW-407	Kyoritsu	8-833-6	149-04-052E0	Apr. 2003	1 Year
NE02	LISN	KNW-407	Kyoritsu	8-855-2	149-04-055E0	Apr. 2003	1 Year
NE03	LISN	KNW-407	Kyoritsu	8-1130-6	149-04-062E0	Apr. 2003	1 Year
NE04	LISN	KNW-242C	Kyoritsu	8-837-13	149-04-054E0	Apr. 2003	1 Year

Cables

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
CA01	RF Cable	5D-2W	Fujikura	-	155-21-001E0	Feb. 2003	1 Year
CA02	RF Cable	5D-2W	Fujikura	-	155-21-002E0	Feb. 2003	1 Year
CA03	RF Cable	3D-2W	Fujikura		155-21-005E0	Apr. 2003	1 Year
CA04	RF Cable	3D-2W	Fujikura	$\langle 1 \rangle$	155-21-006E0	Apr. 2003	1 Year
CA05	RF Cable	3D-2W	Fujikura		155-21-007E0	Apr. 2003	1 Year
CA06	RF Cable	RG-213/U	Rohde & Schwarz	- >>>	155-21-010E0	Apr. 2003	1 Year
CA07	RF Cable(10m)	S 04272B	Suhner	_ </td <td>155-21-011E0</td> <td>May 2003</td> <td>1 Year</td>	155-21-011E0	May 2003	1 Year
CA08	RF Cable(2m 18GHz)SUCOFLEX 104	Suhner	-	155-21-012E0	May 2003	1 Year
CA09	RF Cable(1m 18GHz)SUCOFLEX 104	Sunner	_	155-21-013E0	May 2003	1 Year
CA10	RF Cable(1m N)	S 04272B	(Suhner	-	155-21-015E0	May 2003	1 Year
CA11	RF Cable(1m 26GHz)SUCOFLEX 104	Sukner	182811/4	155-21-016E0	Dec. 2002	1 Year
CA12	RF Cable(4m 26GHz) SUCOFLEX 104	Suhner	190630	155-21-017E0	Dec. 2002	1 Year
CA13	RF Cable(10m)	F130-\$151-394	MEGA PHASE	10510	155-21-018E0	Dec. 2002	1 Year

Amplifiers

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AM01	AF Amplifier	P-500L	Accuphase	BOY806	127-01-501E0	Feb. 2003	1 Year
AM02	RF Amplifier	8447D	Hewlett Packard	1937A02168	127-01-065E0	May 2003	1 Year
AM03	RF Amplifier	8447D	Hewlett Packard	2944A07289	127-01-509E0	May 2003	1 Year
AM05	RF Amplifier	DBP-0102N553	DBS Microwave	012	127-02-504E0	Jun. 2003	1 Year
AM06	RF Amplifier	WJ-6882-814	Watkins-Johnson	0414	127-04-017E0	Jun. 2003	1 Year
AM07	RF Amplifier	WJ-5315-556	Watkins-Johnson	106	127-04-006E0	Jun. 2003	1 Year
AM08	RF Amplifier	WJ-5320-307	Watkins-Johnson	645	127-04-005E0	Jun. 2003	1 Year
AM09	RF Amplifier	JS4-00102600 -28-5A	MITEQ	669167	127-04-502E0	Apr. 2003	1 Year

FCC ID :MMFMB400-B2 Issue Date :June 23, 2003

Signal Generators

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
SG01	Function Generator	3325B	Hewlett Packard	2847A03284	118-08-124E0	Jul. 2002	1 Year
SG02	Function Generator	VP-7422A	Matsushita Communication	050351E122	118-08-503E0	Jul. 2002	1 Year
SG03	Signal Generator	8664A	Hewlett Packard	3035A00140	118-03-014E0	Jul. 2002	1 Year
SG04	Signal Generator	8664A	Hewlett Packard	3438A00756	118-04-502E0	Jul. 2002	1 Year
SG05	Signal Generator	6061A	Gigatronics	5130593	118-04-024E0	Mar. 2003	1 Year

Auxiliary Equipment

No.	Туре	Model	Manufacturer	Serial	ID	Last Cal.	Interval
AU01	Termination(50)	-	Suhner	-	154-06-501E0	Jan. 2003	1 Year
AU02	Termination(50)	-	Suhner	4	154-06-502E0	Jan. 2003	1 Year
AU03	Power Meter	436A	Hewlett Packard	1725A01930	100-02-501E0	Apr. 2003	1 Year
AU04	Power Sensor	8482A	Hewlett Packard	1551A01013	100-02-501E0	Apr. 2003	1 Year
AU05	Power Sensor	8485A	Hewlett Packard	2942408969	100-04-021E0	Apr. 2003	1 Year
AU06	FM Linear Detector	MS61A	Anritsu	M77486	123-02-008E0	Oct. 2002	1 Year
AU07	Level Meter	ML422C	Anritsu	M87571	114-02-501E0	Jun. 2002	1 Year
AU08	Measuring Amplifier	2636	(B & K	1614851	082-01-502E0	Jun. 2002	1 Year
AU09	Microphone	4134	B&K	1269477	147-01-503E0	May 2003	1 Year
AU10	Preamplifier	2639	B&K	1268763	127-01-504E0	May 2003	1 Year
AU11	Pistonphone	4220	B/& K	1165008	147-02-501E0	Mar. 2003	1 Year
AU12	Artificial Mouth	4227	B & K	1274869	-	N/A	N/A
AU13	Frequency Counter	53131A	Hewlett Packard	3546A11807	102-02-075E0	May 2003	1 Year
AU14	Oven	-	Ohnishi	-	023-02-018E0	May 2003	1 Year
AU15	DC Power Supply	6628A	Hewlett Packard	3224A00284	072-05-503E0	Jun. 2002	1 Year
AU16	Band Reject Filter	BRM12294	Micro-tronics	003	149-01-501E0	Jan. 2003	1 Year
AU17	High Pass Filter	F-100-4000 -5-R	RLC Electronics	0149	149-01-502E0	Feb. 2003	1 Year
AU18	Attenuator	43KC-10	Anritsu	-	148-03-506E0	Feb. 2003	1 Year
AU19	Attenuator	43KC-20	Anritsu	-	148-03-507E0	Feb. 2003	1 Year
AU20	Attenuator	355D	Hewlett Packard	219-10782	148-03-065E0	Apr. 2003	1 Year
AU21	FFT Analyzer	R9211C	Advantest	02020253	122-02-506E0	June 2002	1 Year
AU22	Noise Meter	MN-446	Meguro	53030478	082-01-144E0	Apr. 2003	1 Year