HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

April 16, 2021

Lat-Lon, LLC 2300 S. Jason St. Denver, CO 80223

Dear Benjamin Jull,

Enclosed is the EMC Wireless test report for compliance testing of the Lat-Lon, LLC, X15500 as tested to the requirements of the FCC Certification rules under Title 47 of the CFR Part 1 1.1310 RF Exposure.

Thank you for using the services of Eurofins Electrical and Electronic Testing NA, Inc. If you have any questions regarding these results or if Eurofins Electrical and Electronic Testing NA, Inc. can be of further service to you, please contact me.

Sincerely yours,

EUROFINS ELECTRICAL AND ELECTRONIC TESTING NA, INC.

Arsalan Hasan Wireless Laboratory

Reference: (\Lat-Lon, LLC\WIRS111810-FCC-RF Exposure Rev. 1)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins Electrical and Electronic Testing NA, Inc. While use of the A2LA logo in this report reflects Eurofins Electrical and Electronic Testing NA, Inc. accreditation under these programs, the report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the Federal Government. This letter of transmittal is not a part of the attached report.

Eurofins Electrical and Electronic Testing NA, Inc. is part of the Eurofins Electrical & Electronics (E&E) global compliance network.

Electromagnetic Compatibility Criteria Test Report

for the

Lat-Lon, LLC X15500

Tested under FCC Certification Rules Title 47 of the CFR, Part 1 1.1310

Report: WIRS111810-FCC RF Exposure Rev. 1

April 16, 2021

Prepared For:

Lat-Lon, LLC 2300 S. Jason St. Denver, CO 80223

> Prepared By: Eurofins Electrical and Electronic Testing NA, Inc. 3162 Belick Street Santa Clara, CA 95054

X15500

Electromagnetic Compatibility Criteria Test Report

for the

Lat-Lon, LLC X15500

Tested Under

FCC Certification Rules
Title 47 of the CFR, Part 1 1.1310

Felix Huang Engineer, Wireless Laboratory

The Mung

Arsalan Hasan Manager, Wireless Laboratory

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Part 1 of the FCC Rules under normal use and maintenance.

Eleazar Zuniga

Eleazar Zuniga, PhD. Director, Wireless Technologies

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	April 13, 2021	Initial Issue.
1	April 16, 2021	Revised to updated company name to Lat-Lon, LLC. Also amended the addressed and model name.

Table of Contents

I.	Executive Summary	1
	Executive Summary	2
	1.2 Executive Summary	2
II.	Equipment Configuration	3
	2.1 Overview	Δ
	2.2 References	
	2.3 Test Site	
	2.4 Measurement Uncertainty	
	2.5 Description of Test Sample	
	2.6 Equipment Configuration	
	2.7 Ports and Cabling Information	
	2.8 Mode of Operation	
	2.9 Method of Monitoring EUT Operation	
	2.10 Modifications	7
	2.10.1 Modifications to EUT	
	2.10.2 Modifications to Test Standard	
	2.11 Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Intentional Radiators	8
	§ 1.1310 Maximum Permissible Exposure	
IV.	Test Equipment	13

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

eurofins | E&E

Lat-Lon, LLC X15500

I. Executive Summary

X15500

1.1 Purpose of Test

An EMC evaluation was performed to determine compliance of the Lat-Lon, LLC X15500, with the requirements of Part 1. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the X15500. Lat-Lon, LLC should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the X15500, has been **permanently** discontinued.

1.2 Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 1, in accordance with Lat-Lon, LLC, purchase order number PO020667.

Reference	Description	Compliance	
§1.1310	RF Exposure	Compliant	

Table 1. Executive Summary of EMC ComplianceTesting

II. Equipment Configuration

2.1 Overview

Eurofins Electrical and Electronic Testing NA, Inc. was contracted by Lat-Lon, LLC to perform testing on the X15500, under Lat-Lon, LLC's purchase order number PO020667.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Lat-Lon, LLC, X15500

Model(s) Tested:	X15500			
Filing Status:	Original			
	Primary Power: 120/240	VAC		
	FCC ID: W54-X15500			
	Module Original Report N Report: RF Exposure Ana	lysis		
	Type of Modulations:	GFSK, QPSK, 16QAM		
	Equipment Code:	DTS, PCB		
	Technology	TX Frequency Range		
	WCDMA Band V	824 – 849 MHz		
EUT	WCDMA Band II	1850 – 1910 MHz		
Specifications:	LTE Band 2	1850 – 1910 MHz		
	LTE Band 4	1710 – 1755 MHz		
	LTE Band 5	824.7 – 848.3 MHz		
	LTE Band 12	699 – 716 MHz		
	LTE Band 13	777 – 787 MHz		
	BLE	2402 – 2480 MHz		
	WiFi	2412 – 2462 MHz		
Analysis:	The results obtained relate	e only to the item(s) tested.		
	Temperature: 15-35° C			
Environmental Test Conditions:	Relative Humidity: 30-60%			
	Barometric Pressure: 860-1060 mbar			
Evaluated by:	Arsalan Hasan			
Date(s):	April 16, 2021			

Table 2. EUT Summary Table

2.2 References

CED 47 D 422 C 1 4 H	Federal Communication Commission, Code of Federal Regulations, Title 47,			
CFR 47, Part 22, Subpart H	Part 22: Rules and Regulations for Cellular Devices.			
CED 47 Dowt 24 Subnaut E	Federal Communication Commission, Code of Federal Regulations, Title 47,			
CFR 47, Part 24, Subpart E	Part 24: Rules and Regulations for Personal Communications Services			
CED 47 Dowt 27	Federal Communication Commission, Code of Federal Regulations, Title 47,			
CFR 47, Part 27	Part 27: Rules and Regulations for Advanced Wireless Services			
KDB 996369 D04	Modular Transmitter Integration Guide – Guidance For Host Product Manufacturers			
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz			
ANSI C63.26: 2015	Compliance Testing of Transmitters Used in Licensed Radio Services			
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories			
EIA/TIA-603-A-2001	Land Mobile FM or PM Communication Equipment Measurement and Performance Standards			
KDB 971168 v02r02	Measurement Guidance For Certification Of Licensed Digital Transmitters			

Table 3. Standard References

2.3 Test Site

All testing was performed at Eurofins MET Labs, 3162 Belick St., Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Eurofins MET Labs is a ISO/IEC 17025 accredited site by A2LA, California #0591.02.

2.4 Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	±4.52 Hz	2	95%
RF Power Conducted Emissions	±2.32 dB	2	95%
RF Power Conducted Spurious Emissions	±2.25 dB	2	95%
RF Power Radiated Emissions	±3.01 dB	2	95%

Table 4. Measurement Uncertainty

X15500

2.5 Description of Test Sample

Solar/Battery powered asset tracking device. Determines location and monitors sensor and then sends this information, by way of cellular modem, to servers that that the customer can access to see the asset tracking information.

2.6 Equipment Configuration

Ref. ID	Slot#	Name / Description	Model Number	Part Number	Serial Number	Revision
1	N/A	DUST and CELL	X15500	94000	PB1	В
2	N/A	BLE and CELL	X15500	94000	PB2	В
3	N/A	BLE, DUST, and CELL	X15500	94000	PB3	В
4	N/A	Engineering Unit 1	X15500	94000	PB4	В
5	N/A	Engineering Unit 2	X15500	94000	PB5	В

Table 5: Equipment Configuration

2.7 Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
1	Laptop with Test	N/A	N/A	N/A
	Software and Power			
	adapterInstalled			
2	Power Cables	N/A	N/A	N/A
3	Extra MX5000s	Lat-lon	MX5000	N/A
4	Two DUST Sensors	Lat-lon	X200	N/A

Table 6: Support Equipment

2.8 Ports and Cabling Information

Ref. ID	Port name on EUT	Cable Description or reason for no cable	Qty	Length as tested (m)	Max Length (m)	Shielded? (Y/N)	Termination Box ID & Port Name
1	DUST USB	USB for DUST module Interface	2	1.6	1.6	No	N/A
2	BLE USB	USB for BLE module Interface	2	1.6	1.6	No	N/A
3	CELL USB	USB for CELL module Interface	2	1.6	1.6	No	N/A
4	DUST POWER SWITCH	Power SWITCH for DUST Radio Module	2	3.6	3.6	No	N/A
5	BLE POWER SWITCH	Power SWITCH for BLE Radio Module	2	3.6	3.6	No	N/A

Table 7: Ports and Cabling Information

2.9 Mode of Operation During Testing

There are 3 modes of operation: Cellular data being sent and received from the EUT. There are 2 wireless sensor protocols used as sensor inputs to the device which are DUST and Bluetooth. Once these radios are powered on. They will start operating in normal operation.

For our typical application, there are no power or communication cables available nearby. So the EUT has all wireless communication and Solar panels for energy harvesting.

The cellular radio will be paired with a call box (CMW500) to exercise the desired radio channels.

2.10 Method of Monitoring EUT Operation

The radio transmissions from each radio will be measurable. The device is in operation if the batteries are draining from normal operation. When a power supply is attached to the charging cable coming out of the box (lab use only), the power supply will show a current draw.

Signals will be displayed on a spectrum analyzer.

2.11 Modifications

2.11.1 Modifications to EUT

No modifications were made to the EUT.

2.11.2 Modifications to Test Standard

No modifications were made to the test standard.

2.12 Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Lat-Lon, LLC upon completion of testing.

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Maximum Permissible Exposure

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this

section shall be operated in a manner that ensures that the public is not exposed to radio

frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit

shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which

shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
	(i) Limits for	Occupational/Controlled Exp	osure	1-
0.3-3.0	614	1.63	*(100)	≤6
3.0-30	1842/f	4.89/f	*(900/f ²)	<6
30-300	61.4	0.163	1.0	<6
300-1,500			f/300	<6
1,500-100,000			5	<6
	(ii) Limits for Gen	eral Population/Uncontrolled	d Exposure	•
0.3-1.34	614	1.63	*(100)	<30
1.34-30	824/f	2.19/f	*(180/f ²)	<30
30-300	27.5	0.073	0.2	<30
300-1,500			f/1500	<30
1,500-100,000			1.0	<30

Table 8. RF Exposure Limits

 $S = PG / 4\pi R^2$ or $R = \int (PG / 4\pi S)$

where, $S = Power Density (mW/cm^2)$

P = Power Input to antenna (mW)

G = Antenna Gain (numeric value)

R = Distance (cm)

For Antenna Gain \rightarrow dBi = 10log(Numeric)

Technology	TX Frequency Range (MHz)	Peak Gain (dBi)	Туре
WCDMA Band V	824 – 849 MHz	3.50	FPC Self Adhesive 3M 468P
WCDMA Band II	1850 – 1910 MHz	3.80	FPC Self Adhesive 3M 468P
LTE Band 2	1850 – 1910 MHz	3.80	FPC Self Adhesive 3M 468P
LTE Band 4	1710 – 1755 MHz	3.80	FPC Self Adhesive 3M 468P
LTE Band 5	824.7 – 848.3 MHz	3.50	FPC Self Adhesive 3M 468P
LTE Band 12	699 – 716 MHz	3.50	FPC Self Adhesive 3M 468P
LTE Band 13	777 – 787 MHz	3.50	FPC Self Adhesive 3M 468P
BLE	2402 – 2480 MHz	1.86	Embedded Chip
ZigBee	2405 – 2480 MHz	1.70	Embedded Chip

Table 9. EUT Antenna Gain Specification

Technology	TX Frequency Range (MHz)	Maximum Conducted Output Power (dBm)		
WCDMA Band V	824 – 849 MHz	$23.5 (-3 \sim +1 dB) = 24.5$		
WCDMA Band II	1850 – 1910 MHz	$23.5 (-3 \sim +1 dB) = 24.5$		
LTE Band 2	1850 – 1910 MHz	$23 (-3 \sim +1 dB) = 24$		
LTE Band 4	1710 – 1755 MHz	$23 (-3 \sim +1 dB) = 24$		
LTE Band 5	824.7 – 848.3 MHz	$23 (-3 \sim +1 dB) = 24$		
LTE Band 12	699 – 716 MHz	$23 (-3 \sim +1 dB) = 24$		
LTE Band 13	777 – 787 MHz	$23 (-3 \sim +1 dB) = 24$		
BLE	2402 – 2480 MHz	$9(-3 \sim +1 dB) = 10$		
ZigBee	2405 – 2480 MHz	$8(-3 \sim +1 dB) = 9$		

Table 10. Tune up Power

Bands covered under FCC Part 22 / FCC Part 24

Test Results:

Lat-Lon, LLC

X15500

Band	Frequency (MHz)	Maximum Conducted Power (dBm)	Conducted Power (mW)	Antenna Gain (dBi)	Antenna Gain (Numeric)	Power Density (mW/cm2)	Limit (mW/cm2)	Margin	Distance (cm)	Result
WCDMA V	836.6	24.5	281.83	3.5	2.238	0.125	0.557	-0.431	20	Pass
WCDMA II	1852.4	24.5	281.83	3.8	2.398	0.134	1	-0.865	20	Pass
LTE Band 2	1880.0	24	251.18	3.8	2.398	0.119	1	-0.880	20	Pass
LTE Band 5	848.3	24	251.18	3.5	2.238	0.111	0.565	-0.453	20	Pass

Table 11. MPE Calculation for Bands under Part 22 and Part 24

The safe distance where Power Density is less than the MPE limit listed above was found to be 20 cm.

Bands covered under FCC Part 27

Test Results:

Band	Frequency (MHz)	Maximum Conducted Power (dBm)	Conducted Power (mW)	Antenna Gain (dBi)	Antenna Gain (Numeric)	Power Density (mW/cm2)	Limit (mW/cm2)	Margin	Distance (cm)	Result
LTE Band 4	1720.0	24	251.18	3.8	2.398	0.119	1	-0.880	20	Pass
LTE Band 12	715.3	24	251.18	3.5	2.238	0.111	0.476	-0.364	20	Pass
LTE Band 13	782.0	24	251.18	3.5	2.238	0.111	0.521	-0.409	20	Pass

Table 12 MPE Calculation for Bands under Part 27

The safe distance where Power Density is less than the MPE limit listed above was found to be 20 cm.

Bands covered under FCC Part 15.247

Test Results:

Band	Frequency (MHz)	Maximum Conducted Power (dBm)	Conducted Power (mW)	Antenna Gain (dBi)	Antenna Gain (Numeric)	Power Density (mW/cm2)	Limit (mW/cm2)	Margin	Distance (cm)	Result
BLE	2442.0	10	10	1.86	1.534	0.003	1	-0.996	20	Pass
ZigBee	2462.0	9	7.94	1.70	1.479	0.002	1	-0.997	20	Pass

Table 13. MPE Calculation for Bands under Part 15.247

The safe distance where Power Density is less than the MPE limit listed above was found to be 20 cm.

Note: Results are based on KDB 447498 D01 (Section 7.2) Transmitters used in mobile devices exposure conditions for simultaneous transmission operations.

Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneously transmitting antennas incorporated in a host device is ≤ 1.0 , according to calculated/estimated, numerically modeled, or measured field strengths or power density. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to the MPE limit at the test frequency.

Cellular & ZigBee & BLE can transmit simultaneously, the formula for calculating the simultaneous MPE is

CPD1/LPD1 + CPD2/LPD2 + ,,,, CPDn/LPDn < 1

CPD: Calculated Power Density LPD: Limit of Power Density

Result: 0.238 < 1 (Pass)

Maximum Permissible Exposure CFR Title 47 Part 1

IV. Test Equipment

Test Equipment

Lat-Lon, LLC

X15500

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S4075	RADIO COMMUNICATION TESTER	ROHDE & SCHWARZ	CMW500	09/20/2020	09/20/2022
1S2399	TURNTABLE/MAST CONTROLLER	SUNOL SCIENCES	SC99V	SEE N	OTE 1
1S2600	BILOG ANTENNA	TESEQ	CBL6112D	03/19/2019	03/19/2021
1S2733	BILOG ANTENNA TESEQ CBL6112		CBL6112D	06/05/2019	06/05/2021
1S3826	DRG HORN ANTENNA	ETS-LINDGREN	3117	12/03/2020	12/03/2022
1S2198	DRG HORN ANTENNA	ETS-LINDGREN	3117	10/07/2019	10/07/2021
1S2000	SPECTRUM ANALYZER	AGILENT	E4448A	11/06/2020	11/06/2022
1S2587	PRE AMPLIFIER	AML COMMUNICATIONS	AML0126L3801	SEE NOTE 1	
1S2653	AMPLIFIER	SONOMA INSTRUMENT	310 N	SEE N	OTE 1
1S2486	5 METER CHAMBER	PANASHIELD - ETS	5M	SEE NOTE 2	
1S3824	SIGNAL GENERATOR	ROHDE & SCHWARZ	SMA100B	11/06/2019	05/06/2021

Table 14. Test Equipment List

Note 1: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Note 2: Latest NSA and VSWR data available upon request.

Lat-Lon, LLC End of Report X15500 CFR Title 47 Part 1

End of Report