

Page 31 of 89 Report No.: EED32J00113702 #Avg Type: RMS Avg|Hold: 100/100 8DPSK/LCH 8DPSK/MCH #Avg Type: RMS Avg|Hold: 100/100 8DPSK/HCH

Report No. : EED32J00113702 Page 32 of 89

Appendix F): Band-edge for RF Conducted Emissions

Result Table _____

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
OFOL	100	2402	5.150	Off	-51.728	-14.85	PASS
GFSK	LCH		4.218	On	-52.557	-15.78	PASS
0.5014	GFSK HCH	2480	5.098	Off	-52.674	-14.90	PASS
GFSK			4.191	On	-51.857	-15.81	PASS
(6)	LCH	2402	5.137	Off	-52.303	-14.86	PASS
π/4DQPSK			3.578	On	-56.301	-16.42	PASS
//D 0 D 0 //		0.400	4.810	Off	-53.801	-15.19	PASS
π/4DQPSK	HCH	2480	4.054	On	-53.018	-15.95	PASS
/		/	5.197	Off	-52.823	-14.80	PASS
8DPSK	LCH	2402	3.723	On	-57.731	-16.28	PASS
op poly			5.127	Off	-52.922	-14.87	PASS
8DPSK	HCH	2480	1.250	On	-53.622	-18.75	PASS

Test Graph

Page 37 of 89

Appendix G): RF Conducted Spurious Emissions

Result Table

		7 7 170	1. 2	
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	5.058	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	4.624	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	4.991	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	5.061	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	4.560	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	4.894	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	5.173	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	4.750	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	HCH	5.079	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Report No. : EED32J00113702 Page 40 of 89

Report No. : EED32J00113702 Page 42 of 89

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No.: EED32J00113702 Page 45 of 89

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No. : EED32J00113702 Page 46 of 89

Appendix J): AC Power Line Conducted Emission

Test Procedure:	Test fr	equency rang	ge :150KHz	30MHz		
	1 '			A 10. 10. T	conducted in a shie	
	Sta pov whi for mu	bilization Ne wer cables of ich was bond the unit bein	twork) whic f all other unded to the grand from the grand measured	h provides a $50Ω/5$ nits of the EUT wer ound reference pla d. A multiple socke	nrough a LISN 1 (Lingup 0μ H + 5Ω linear implies connected to a sense in the same way toutlet strip was used the rating of the LISM 10μ H in the rating 10μ H in the rating of the LISM 10μ H in the rating 1	pedance. The econd LISN 2 as the LISN 1 eed to connec
	3)The refe	tabletop EU	. And for flo	or-standing arrange	allic table 0.8m abo ment, the EUT was	-
	EU refe 1 w gro pla All	T shall be 0.4 erence plane vas placed 0 und reference. This distant	4 m from the was bonde .8 m from to be plane for ance was be	e vertical ground ref d to the horizontal on he boundary of the r LISNs mounted etween the closest p	reference plane. The vertical reference plane. The vertical reference plane unit under test and on top of the group points of the LISN 1 pment was at least (vertical ground ane. The LISN d bonded to a und reference and the EUT
	5) In o	rder to find th	cables must		ive positions of equi ding to ANSI C63.10	•
Limit:		(43)		(31)	(24)	
		_ (3)		Limit	(dBµV)	
	Fre	quency range	e (MHz) ⊢	Quasi-peak	Average	
		0.15-0.5		66 to 56*	56 to 46*	
		0.5-5	1	56	46	(3)
	(1)	5-30	(6)	60	50	(0,1)
	MH	limit decreas Iz to 0.50 MH	łz.		of the frequency in t	he range 0.15
Measurement Data An initial pre-scan was Quasi-Peak and Avera						emission were
detected.						

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)	nent	Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	48.06	44.32	30.60	9.77	57.83	54.09	40.37	65.99	55.99	-11.90	-15.62	Р	
2	0.4660	40.06	35.12	23.66	9.72	49.78	44.84	33.38	56.58	46.58	-11.74	-13.20	Р	
3	1.1980	38.76	34.14	15.63	9.64	48.40	43.78	25.27	56.00	46.00	-12.22	-20.73	Р	
4	1.7500	39.08	32.71	29.37	9.69	48.77	42.40	39.06	56.00	46.00	-13.60	-6.94	Р	
5	12.1140	44.00	40.25	26.77	9.94	53.94	50.19	36.71	60.00	50.00	-9.81	-13.29	Р	
6	22.1780	40.91	36.14	21.84	10.17	51.08	46.31	32.01	60.00	50.00	-13.69	-17.99	Р	

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	45.99	41.32	28.30	9.77	55.76	51.09	38.07	65.99	55.99	-14.90	-17.92	Р	
2	0.3460	38.87	35.61	22.84	9.77	48.64	45.38	32.61	59.06	49.06	-13.68	-16.45	Р	
3	0.4860	43.24	41.62	27.29	9.72	52.96	51.34	37.01	56.24	46.24	-4.90	-9.23	Р	
4	0.5220	43.57	42.40	30.50	9.72	53.29	52.12	40.22	56.00	46.00	-3.88	-5.78	Р	
5	0.6465	42.61	34.24	17.17	9.75	52.36	43.99	26.92	56.00	46.00	-12.01	-19.08	Р	
6	11.8460	41.81	36.52	25.24	9.93	51.74	46.45	35.17	60.00	50.00	-13.55	-14.83	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. AC120V and 240V are tested and found the worst case is 120V, So only the 120V data were shown in the above.

Report No.: EED32J00113702 Page 49 of 89

Appendix K): Restricted bands around fundamental frequency (Radiated)

Danaina Catura		1 200			/	200	
Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	(
		Above 1GHz	Peak	1MHz	3MHz	Peak	
	/	Above TOTIZ	Peak	1MHz	10Hz	Average	100
Test Procedure:	Be	low 1GHz test proced	ure as helow:	(€	(8)		(3
	a. b. c. d. e.	The EUT was placed at a 3 meter semi-ane determine the position. The EUT was set 3 m was mounted on the to the antenna height is determine the maximum polarizations of the arrivations	on the top of a rochoic camber. To of the highest raters away from op of a variable-lyaried from one um value of the fintenna are set to mission, the EUT d to heights from 0 degrees to 36 mum Hold Mode. end of the restriction of the restriction.	he table was adiation. the interfer neight ante meter to for eld strength make the range of the meter to 0 degrees the eak Detect cated band one asure any	ence-receinna tower. Our meters h. Both holineasurement of 4 meters to find the Function a	iving antennal above the graph rizontal and vent. worst case and the rotate maximum real and Specified the transmit in the restricts in the restricts.	to a, whice ound to vertica nd the able ading.
Limit	Ab g. h. i. j.	for lowest and highest ove 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced	t channel lure as below: ove is the test site mber and change the distance is 1 lowest channel ements are perfo nd found the X as ures until all freq	e, change form table meter and the Highe med in X, xis position uencies me	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i	Anechoic Charto 1.5 meter). consitioning for the second consister of the seco	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about to fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced	t channel lure as below: ove is the test site mber and change the distance is 1 e lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV)	e, change form table meter and the Highe med in X, xis position uencies med/m @3m)	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa	Anechoic Charto 1.5 is meter). Dositioning for it is worse cases complete.	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced Frequency 30MHz-88MHz	t channel lure as below: ove is the test site mber and change the distance is 1 e lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV 40.6	e, change form table meter and the Highe formed in X, kis position uencies med/m @3m)	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch r to 1.5 5 meter). cositioning for it is worse car as complete. mark eak Value	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about to fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	t channel lure as below: ove is the test site mber and change the distance is 1 lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV 40.6	e, change form table meter and the Higher the Higher the transfer to the transfer transfer the transfer transfer the transfer transfer the transfer transfer transfer the transfer t	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Charto 1.5 is meter). cositioning for the seast complete. mark eak Value eak Value	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced Frequency 30MHz-88MHz	t channel lure as below: ove is the test site mber and change the distance is 1 e lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV 40.6	e, change form table meter and the Higher the Higher the transfer to the transfer transfer the transfer transfer the transfer transfer the transfer transfer transfer the transfer t	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe	Anechoic Ch r to 1.5 5 meter). cositioning for it is worse car as complete. mark eak Value	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about to fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, at Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	t channel lure as below: ove is the test site mber and change the distance is 1 lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV 40.6	e, change form table meter and the Highe formed in X, ixis position uencies med/m @3m)	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Charto 1.5 is meter). cositioning for the seast complete. mark eak Value eak Value	nambe r
Limit:	g.	for lowest and highest ove 1GHz test proced Different between about of fully Anechoic Character (Above 18GHz b. Test the EUT in the The radiation measure Transmitting mode, an Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz	t channel lure as below: ove is the test site mber and change the distance is 1 e lowest channel ements are perfo nd found the X as ures until all freq Limit (dBµV 40.0 43.6	e, change form table meter and the Highe formed in X, axis position uencies med/m @3m)	rom Semi- e 0.8 meter table is 1.5 st channel Y, Z axis p ing which i easured wa Rei Quasi-pe Quasi-pe Quasi-pe	Anechoic Charto 1.5 is meter). cositioning for the second complete. mark eak Value eak Value eak Value	nambe r

Page 50 of 89

Test plot as follows:

Worse case mode:	GFSK(1-DH5)		215
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse sees mode:	CESK(1 DHE)	(6)	(6,)	
Worse case mode:	GFSK(T-DHS)			
Frequency: 2390 0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Report No.: EED32J00113702 Page 51 of 89

Worse case mode:	GFSK(1-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	GFSK(1-DH5)	(242)	(2/2)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Pa	ae	52	of	89
гα	ue	IJΖ	UΓ	03

Worse case mode:	π/4DQPSK(2-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	π/4DQPSK(2-DH5)	(6)	6	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Report No.: EED32J00113702 Page 53 of 89

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	π/4DQPSK(2-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Report No.: EED32J00113702 Page 54 of 89

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	8DPSK(3-DH5)	(27)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak	

Report No.: EED32J00113702 Page 55 of 89

Worse case mode:	8DPSK(3-DH5)			
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	8DPSK(3-DH5)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSKmodulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No.: EED32J00113702 Page 57 of 89

Appendix L): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
Above IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	- ,	- C	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Page 58 of 89

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz

30MHz~1GHz (QP)

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
_									
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	43.202	14.51	0.07	5.67	20.25	40.00	-19.75	Horizontal	
2	106.385	12.67	0.59	4.63	17.89	43.50	-25.61	Horizontal	
3	252.063	12.45	1.33	16.23	30.01	46.00	-15.99	Horizontal	
4	372.005	15.48	1.32	9.47	26.27	46.00	-19.73	Horizontal	
5	541.373	18.57	1.54	9.31	29.42	46.00	-16.58	Horizontal	
6 pp	878.322	22.19	2.47	11.84	36.50	46.00	-9.50	Horizontal	

Transmitter Emission above 1GHz

Page 60 of 89

Worse case	mode:	GFSK(1-DH5)	Test o	channel:	Lowest			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2861.381	33.38	5.34	44.56	42.72	36.88	74.00	-37.12	Pass	Horizontal
3359.099	33.29	5.55	44.66	43.27	37.45	74.00	-36.55	Pass	Horizontal
3766.785	32.97	5.48	44.62	44.94	38.77	74.00	-35.23	Pass	Horizontal
4804.000	34.69	5.11	44.60	40.48	35.68	74.00	-38.32	Pass	Horizontal
7206.000	36.42	6.66	44.77	41.46	39.77	74.00	-34.23	Pass	Horizontal
9608.000	37.88	7.73	45.58	40.10	40.13	74.00	-33.87	Pass	Horizontal
2691.804	33.09	4.98	44.38	43.54	37.23	74.00	-36.77	Pass	Vertical
3291.385	33.34	5.56	44.67	43.17	37.40	74.00	-36.60	Pass	Vertical
3719.146	33.00	5.49	44.63	43.55	37.41	74.00	-36.59	Pass	Vertical
4804.000	34.69	5.11	44.60	43.37	38.57	74.00	-35.43	Pass	Vertical
7206.000	36.42	6.66	44.77	42.29	40.60	74.00	-33.40	Pass	Vertical
9608.000	37.88	7.73	45.58	41.03	41.06	74.00	-32.94	Pass	Vertical

Worse case	mode:	GFSK(1-DH5)	Test	channel:	Middle			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
3072.770	33.53	5.61	44.69	42.90	37.35	74.00	-36.65	Pass	Horizontal
3747.656	32.98	5.48	44.62	43.52	37.36	74.00	-36.64	Pass	Horizontal
4202.500	33.31	5.35	44.60	42.82	36.88	74.00	-37.12	Pass	Horizontal
4882.000	34.85	5.08	44.60	42.69	38.02	74.00	-35.98	Pass	Horizontal
7323.000	36.43	6.77	44.87	41.13	39.46	74.00	-34.54	Pass	Horizontal
9764.000	38.05	7.60	45.55	41.68	41.78	74.00	-32.22	Pass	Horizontal
2861.381	33.38	5.34	44.56	44.62	38.78	74.00	-35.22	Pass	Vertical
3342.042	33.30	5.55	44.66	43.16	37.35	74.00	-36.65	Pass	Vertical
3776.385	32.96	5.48	44.62	44.24	38.06	74.00	-35.94	Pass	Vertical
4882.000	34.85	5.08	44.60	42.04	37.37	74.00	-36.63	Pass	Vertical
7323.000	36.43	6.77	44.87	40.36	38.69	74.00	-35.31	Pass	Vertical
9764.000	38.05	7.60	45.55	42.30	42.40	74.00	-31.60	Pass	Vertical

