

TEST REPORT

FCC ID: ZLE-RG935	X			
Test Report No: TCT211201E053				
Date of issue: Jan. 12, 2022				
Testing laboratory: SHENZHEN TONGCE TESTING LAB				
Testing location/ address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone Street, Bao'an District Shenzhen, Guangdong, 518103 Republic of China				
Applicant's name: Power Idea Technology (Shenzhen) Co., Ltd.				
Address : 4th Floor, A Section, Languang Science&technology, Hi-Tech Industrial Park North, Nanshan, ShenZhen, 5 China				
Manufacturer's name: Power Idea Technology (Shenzhen) Co., Ltd.				
	4th Floor, A Section, Languang Science&technology, Xinxi RD, Hi-Tech Industrial Park North, Nanshan, ShenZhen, 518057 China			
Standard(s) FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New v02r01	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules			
Test item description: Smart Tablet	Smart Tablet			
Trade Mark: RugGear				
Model/Type reference: PTM01G, RG935	(c)			
Rating(s): Refer to EUT description of page 3				
Date of receipt of test item Dec. 01, 2021	5()			
Date (s) of performance of test: Dec. 01, 2021 ~ Jan. 12, 2022				
Tested by (+signature): Rleo LIU	CE ,			
Check by (+signature): Beryl ZHAO	T)NG			
Approved by (+signature): Tomsin	847			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information		3
	1.1. EUT description		
	1.2. Model(s) list		3
	1.3. Test Frequency		4
2.	Test Result Summary		5
3.	General Information		6
	3.1. Test environment and mode		6
	3.2. Description of Support Units		7
4.	Facilities and Accreditations	(6)	8
	4.1. Facilities		8
	4.2. Location		8
	4.3. Measurement Uncertainty		
5.	Test Results and Measurement Data		9
	5.1. Antenna requirement		9
	5.2. Conducted Emission		
	5.3. Maximum Conducted Output Power		14
	5.4. 6dB Emission Bandwidth		16
	5.5. 26dB Bandwidth and 99% Occupied Bandwidth		17
	5.6. Power Spectral Density	<u>(0)</u>	18
	5.7. Band edge		19
	5.8. Unwanted Emissions		
	5.9. Frequency Stability Measurement	<u>(C</u>	47
	Appendix A: Test Result of Conducted Test		
X 1	Appendix B: Photographs of Test Setup		
	Appendix C: Photographs of EUT		

1. General Product Information

1.1. EUT description

Test item description:	Smart Tablet
Model/Type reference:	PTM01G
Sample Number:	TCT21201E015-0101
Operation Frequency::	Band 1: 5180 MHz -5240 MHz Band 2A: 5260 MHz -5320 MHz Band 2C: 5500 MHz -5700 MHz
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK
Antenna Type:	Internal Antenna
Antenna Gain:	0.4dBi
Rating(s)::	Adapter Information1: MODEL: Q183 INPUT: AC 100-240V, 50/60Hz, 0.5A OUTPUT: DC 3.6V-6V, 3A/ DC 6V-9V, 2A/ DC 9V-12V, 1.5A Adapter Information2: MODEL: QN184U INPUT: AC 100-240V, 50/60Hz, 0.5A OUTPUT: DC 5.0V, 3.0A/ DC 9.0V, 2.0A/ DC 12.0V, 1.5A Adapter Information3: MODEL: DBS15Q INPUT: AC 100-240V, 50/60Hz, 0.5A OUTPUT: DC 5V, 3A/ DC 9V, 2A/ DC 12V, 1.5A, MAX: 18 W Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1 (PTM01G	\boxtimes
Other models	RG935	

Note: PTM01G is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names, yellow and black border. So the test data of PTM01G can represent the remaining models.

1.3. Test Frequency

Band 1

20M	1Hz		40MHz	80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 2A

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
52	5260	54	5270	58	5290
56	5280	- 62	5310		
64	5320	C ')	(C)		(,0)

Band 2C

20N	20MHz		40MHz		MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
100	5500	102	5510	106	5530
120	5600	118	5590	122	5610
140	5700	134	5670		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: TCT211201E053

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS

§15.407(g)

Note:

1. PASS: Test item meets the requirement.

Frequency Stability

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 195

Report No.: TCT211201E053

PASS

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

was worst case.	
Mode	Data rate
802.11a(SISO)	6 Mbps
802.11n(HT20) (MIMO)	6.5 Mbps
802.11n(HT40) (MIMO)	13.5 Mbps
802.11ac(VHT20) (MIMO)	6.5 Mbps
802.11ac(VHT40) (MIMO)	13.5 Mbps
802.11ac(VHT80) (MIMO)	29.3 Mbps
Final Test Mode:	
Operation mode:	Keep the EUT in continuous transmitting with modulation

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	/	/	1	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 195

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an

District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

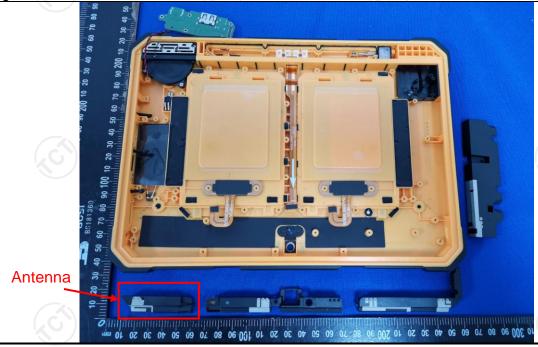
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement:


FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is internal antenna which permanently attached, and the best case gain of the antenna is 0.4dBi.

Page 9 of 195

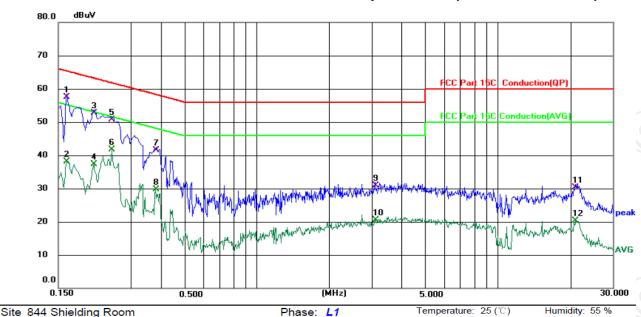
5.2. Conducted Emission

5.2.1. Test Specification

	_					
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50			
Test Setup:	Reference Plane 40cm 80cm Filter AC power E.U.T AC power EMI Receiver Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Tx Mode					
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Result:	PASS					

5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)							
	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022			
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022			
)	Line-5	TCT	CE-05	N/A	Jul. 07, 2022			
	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A			



5.2.3. Test data

Report No.: TCT211201E053

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP) Power: AC 120 V/60 Hz

N	0.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	*	0.1620	47.99	9.59	57.58	65.36	-7.78	QP	
	2		0.1620	28.60	9.59	38.19	55.36	-17.17	AVG	
	3		0.2100	43.38	9.37	52.75	63.21	-10.46	QP	
	4		0.2100	27.94	9.37	37.31	53.21	-15.90	AVG	
	5		0.2500	41.34	9.35	50.69	61.76	-11.07	QP	
	6		0.2500	32.33	9.35	41.68	51.76	-10.08	AVG	
	7		0.3820	32.30	9.25	41.55	58.24	-16.69	QP	
	8		0.3820	20.50	9.25	29.75	48.24	-18.49	AVG	
	9		3.0980	21.46	9.52	30.98	56.00	-25.02	QP	
1	0		3.0980	11.04	9.52	20.56	46.00	-25.44	AVG	
1	1		20.9700	20.48	9.79	30.27	60.00	-29.73	QP	
1	2		20.9700	10.50	9.79	20.29	50.00	-29.71	AVG	

Note:

Freq. = Emission frequency in MHz

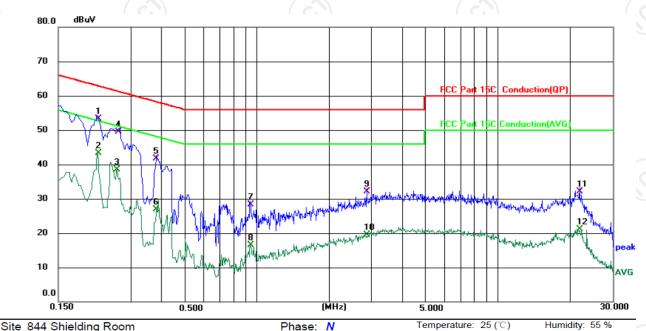
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.2180	43.98	9.31	53.29	62.89	-9.60	QP		
2		0.2180	33.97	9.31	43.28	52.89	-9.61	AVG		
3		0.2620	29.07	9.34	38.41	51.37	-12.96	AVG		
4		0.2660	40.24	9.34	49.58	61.24	-11.66	QP		
5		0.3820	32.46	9.27	41.73	58.24	-16.51	QP		p
6		0.3820	17.57	9.27	26.84	48.24	-21.40	AVG		
7		0.9420	18.93	9.29	28.22	56.00	-27.78	QP		
8		0.9420	7.26	9.29	16.55	46.00	-29.45	AVG		
9		2.8620	22.75	9.42	32.17	56.00	-23.83	QP		
10		2.8620	10.04	9.42	19.46	46.00	-26.54	AVG		
11		21.8779	22.41	9.79	32.20	60.00	-27.80	QP		
12		21.8779	11.40	9.79	21.19	50.00	-28.81	AVG		

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

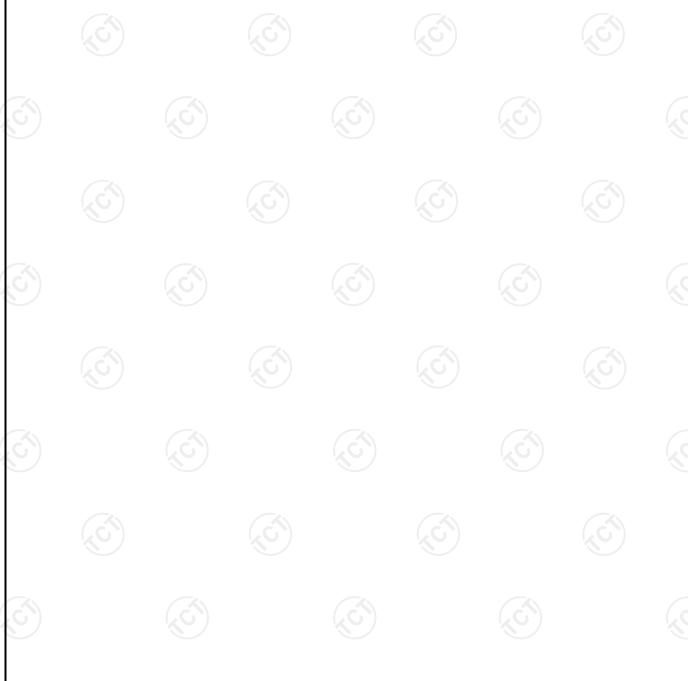
Q.P. =Quasi-Peak

AVG =average

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Middle channel and 802.11a) was submitted only.

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E			
	Frequency Band (MHz)	Limit		
	5180 - 5240	24dBm(250mW) for client device		
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5745 - 5825	30dBm(1W)		
Test Setup:	Power meter	EUT		
Test Mode:	Transmitting mode w	vith modulation		
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power		

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Power Meter	Agilent	E4418B	GB43312526	Jul. 07, 2022
Power Sensor	Agilent	E9301A	MY41497725	Jul. 07, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049					
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	N/A					

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 16 of 195

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D				
Limit:	No restriction limits				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 				
Test Result:	PASS				

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 17 of 195

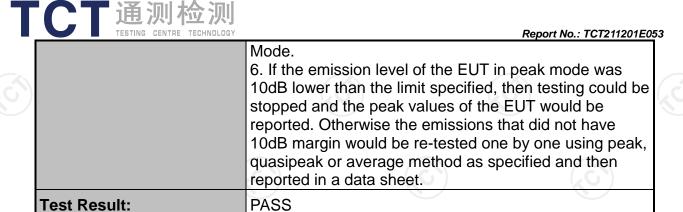
5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022


Page 18 of 195

5.7. Band edge

5.7.1. Test Specification

5.7.1. Test opecinication								
Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407					
Test Method:	ANSI C63.10 20	013						
	For Band 1&2A&2	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:						
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
Lilling.	5700~5720	10~15.6	5875~5925	10~-27				
	5720~5725	15.6~27	> 5925	-27				
	E[dBµV/m] = EIR In restricted band:	((()		(0)				
	Detect		Limit@					
	Peak		74dBµ					
	AVG	i	54dBµ	IV/M				
Test Setup:	AE FLI	alora Ardenne Jese						
Test Mode:	Transmitting mo	de with modu	ulation					
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a varia 3. The antennameters above the value of the field polarizations of measurement. 4. For each sust to its worst case heights from 1 meturned from 0 demaximum reading 5. The test-received from and Spread to the sustainable of the susta	ne ground at a degrees to degree to degrees to degree to	a 3 meter cambeletermine the place away from the lar, which was intenna tower. The large are set to make antenna was ters and the roll degrees to find was set to Peak was set to Peak large set to Peak large set to Peak was set to Peak large set to Peak	per. The table position of the mounted on eter to four maximum and vertical ethe was arranged tuned to tatable was ad the content of the cont				

5.7.2. Test Instruments

	Radiated Er	mission Test Sit	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022	
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022	
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Mar. 11, 2022	
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Apr. 08, 2022	
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023	
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022	
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

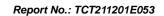
5.7.3. Test Data

Report No.:	TCT211201E053
-------------	---------------

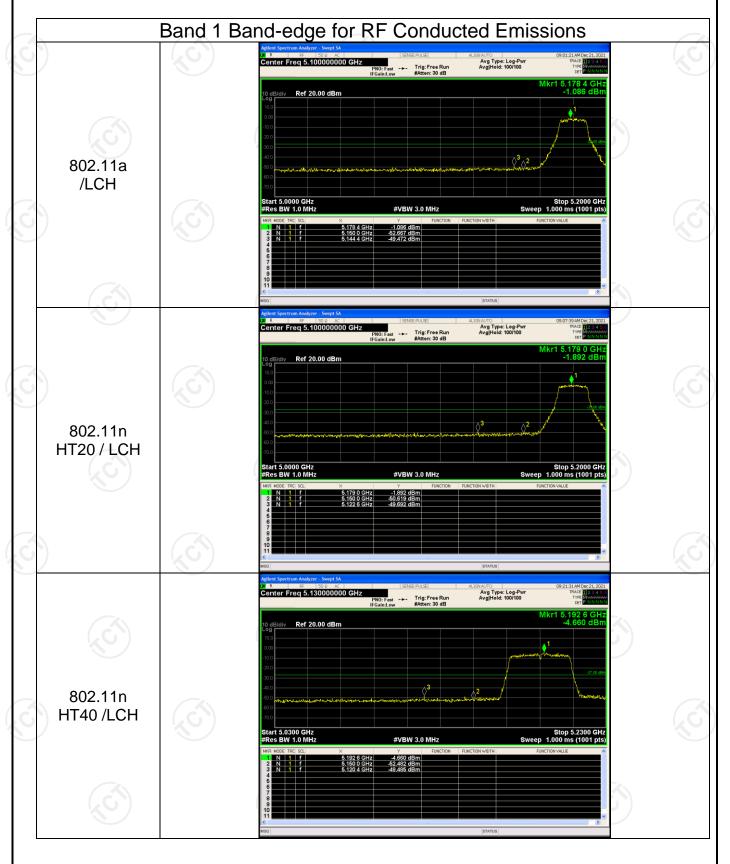
		-							
802.11 a	CH I		CH Freq. Read_level Factor Peak (dBu\/m) (dBu\/m) (dBu\/m)		Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V	
	Lowest	5150	40.50	5.82	46.32	74	54	-7.68	Н
Band 1	Lowest	5150	36.63	5.82	42.45	74	54	-11.55	V
& Band 2A	Highest	5350	40.01	6.52	46.53	74	54	-7.47	Н
	nignest	5350	38.29	6.52	44.81	74	54	-9.19	V
	Lowest	5470	52.32	5.82	58.14	68.2	1	-10.06	Н
Band	Lowest	5470	46.16	5.82	51.98	68.2	1	-16.22	٧
2C	∐ighoot	5725	64.04	6.52	70.56	68.2) I	2.36	Н
	Highest	5725	60.79	6.52	67.31	68.2	/	-0.89	V
Remark:	Factor(dB)	=Ant. Fac	ctor+Cable Los	s-Amp. F	actor	7.			•

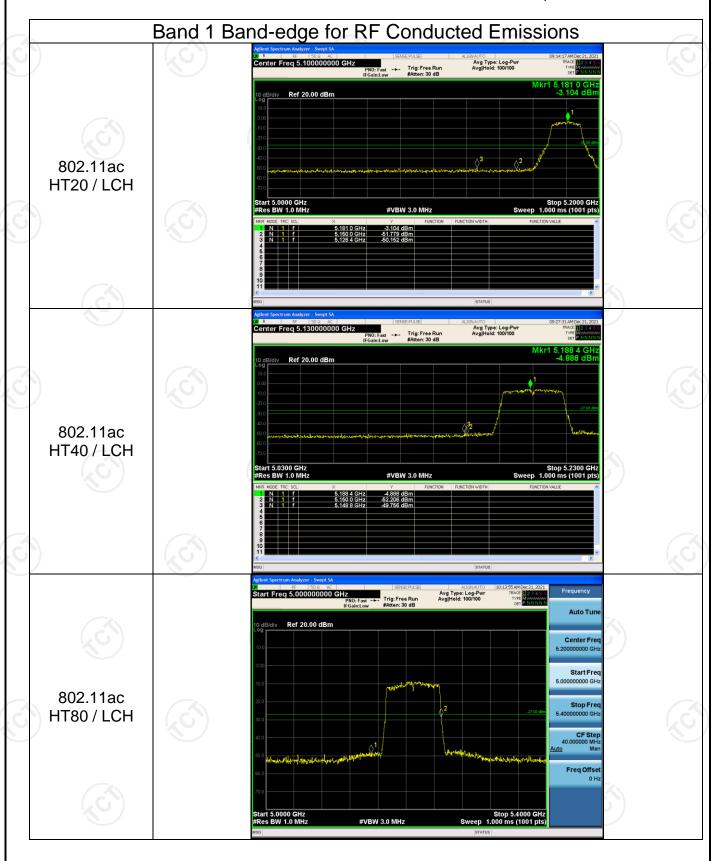
802.11 n HT20	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V
	Lowest	5150	40.36	6.96	47.32	74	54	-6.68	Н
Band 1	Lowest	5150	39.90	6.96	46.86	74	54	-7.14	٧
&Band 2A	Highoot	5350	35.01	8.21	43.22	74	54	-10.78	Н
	Highest	5350	36.85	8.21	45.06	74	54	-8.94	V
	(C))		(,0,)		(20			<u>(,)</u>	
	Lowest	5470	50.88	8.21	59.09	68.2	1	-9.11	Н
Band	Lowest	5470	47.43	8.21	55.64	68.2	/	-12.56	V
2C	2C		51.07	8.87	59.94	68.2	X /	-8.26	Н
	Highest	5725	48.72	8.87	57.59	68.2	5) /	-10.61	V

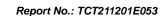
Remark: Factor(dB)=Ant. Factor+Cable Loss-Amp. Factor

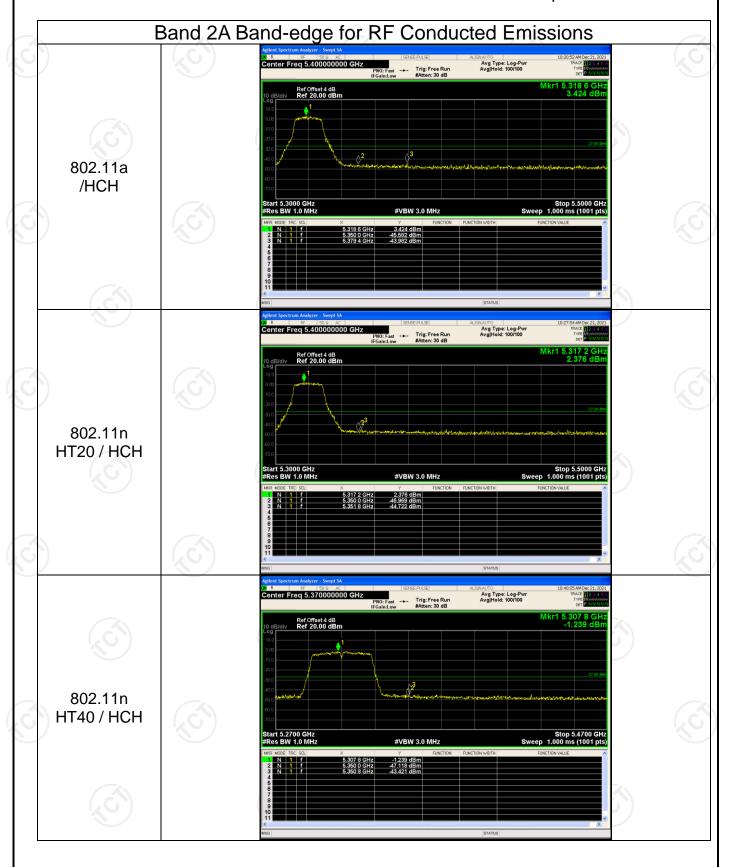


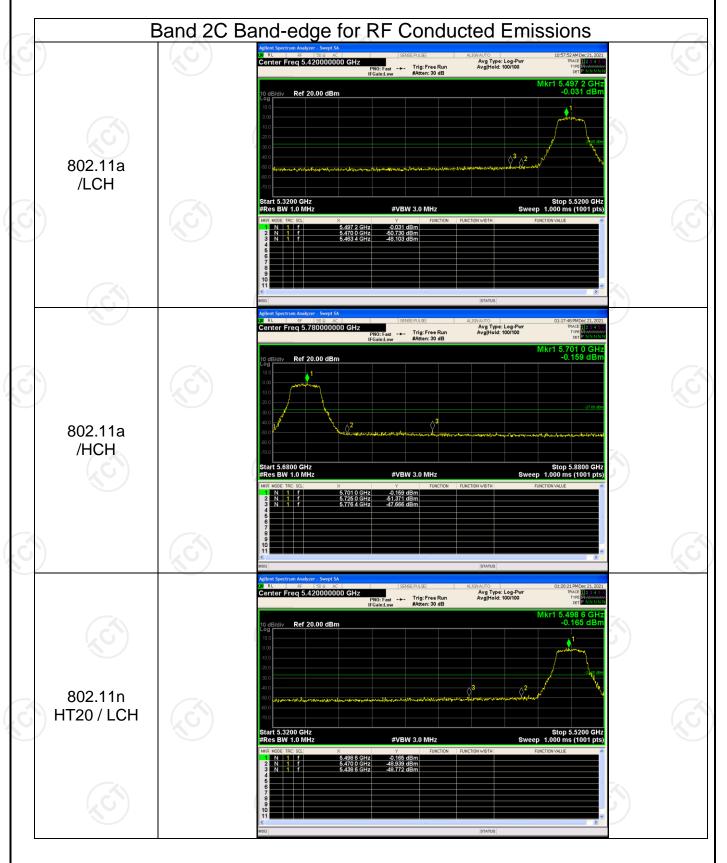
802.11 n HT40	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V
	Lowest	5150	41.62	5.82	47.44	74	54	-6.56	Н
Band 1 &Band	Lowest	5150	36.96	5.82	42.78	74	54	-11.22	V
2A	Highoot	5350	40.44	6.52	46.96	74	54	-7.04	Н
	Highest	5350	37.51	6.52	44.03	74	54	-9.97	V
		5470	52.30	5.82	58.12	68.2	/	-10.08	Н
Band	Lowest	5470	46.27	5.82	52.09	68.2		-16.11	V
2C	11111	5725	53.45	6.52	59.97	68.2) 1	-8.23	Н
	Highest	5725	51.19	6.52	57.71	68.2	/	-10.49	V
Remark:	Factor(dB)	=Ant. Fac	ctor+Cable Los	s-Amp. F	actor				
Remark: 802.11 ac HT20	Factor(dB) CH	=Ant. Fac Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Pol.
802.11 ac HT20	СН	Freq.	Read_level	Factor	Peak	(dBuV/m)	(dBuV/m)	Over -5.94	Pol.
802.11 ac HT20	.6	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	(dBuV/m) (Peak)	(dBuV/m) (Avg)		Pol. H/V
802.11 ac HT20 Band 1 &Band	CH	Freq. (MHz) 5150	Read_level (dBuV/m) 41.10	Factor (dB)	Peak (dBuV/m) 48.06	(dBuV/m) (Peak) 74	(dBuV/m) (Avg) 54	-5.94	Pol. H/V H
802.11 ac HT20	СН	Freq. (MHz) 5150 5150	Read_level (dBuV/m) 41.10 39.09	Factor (dB) 6.96 6.96	Peak (dBuV/m) 48.06 46.05	(dBuV/m) (Peak) 74 74	(dBuV/m) (Avg) 54 54	-5.94 -7.95	V
802.11 ac HT20 Band 1 &Band	CH Lowest Highest	Freq. (MHz) 5150 5150 5350	Read_level (dBuV/m) 41.10 39.09 34.83	Factor (dB) 6.96 6.96 8.21	Peak (dBuV/m) 48.06 46.05 43.04	(dBuV/m) (Peak) 74 74 74	(dBuV/m) (Avg) 54 54 54	-5.94 -7.95 -10.96	Pol. H/V H V
802.11 ac HT20 Band 1 &Band	CH	Freq. (MHz) 5150 5150 5350 5350	Read_level (dBuV/m) 41.10 39.09 34.83 37.28	Factor (dB) 6.96 6.96 8.21 8.21	Peak (dBuV/m) 48.06 46.05 43.04 45.49	(dBuV/m) (Peak) 74 74 74 74	(dBuV/m) (Avg) 54 54 54 54	-5.94 -7.95 -10.96 -8.51	Pol. H/V H V H
802.11 ac HT20 Band 1 &Band 2A	CH Lowest Highest	Freq. (MHz) 5150 5150 5350 5350	Read_level (dBuV/m) 41.10 39.09 34.83 37.28	Factor (dB) 6.96 6.96 8.21 8.21	Peak (dBuV/m) 48.06 46.05 43.04 45.49	(dBuV/m) (Peak) 74 74 74 74 68.2	(dBuV/m) (Avg) 54 54 54 54	-5.94 -7.95 -10.96 -8.51	Pol. H/V H V H

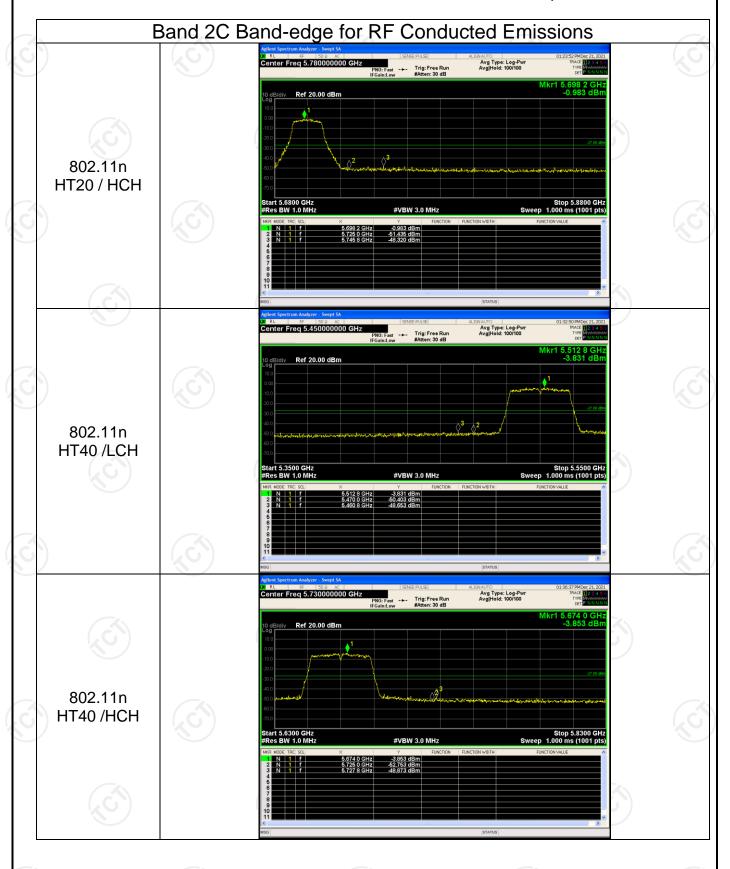

802.11 ac HT40	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant. Pol. H/V	
	Lawast	5150	41.42	5.82	47.24	74	54	-6.76	Н	
Band 1 &Band	Lowest	5150	36.93	5.82	42.75	74	54	-11.25	V	
2A	Lighoot	5350	41.43	6.52	47.95	74	54	-6.05	Н	
	Highest	5350	38.89	6.52	45.41	74	54	-8.59	V	
	Lowest	5470	51.45	5.82	57.27	68.2	/	-10.93	Н	
Band	Lowest	5470	45.86	5.82	51.68	68.2	1	-16.52	V	
2C	Highoot	5725	54.26	6.52	60.78	68.2	1	-7.42	Н	
×.	Highest	5725	50.35	6.52	56.87	68.2	1	-11.33	V	
Remark:	Factor(dB)	=Ant. Fac	tor+Cable Los	ss-Amp. F	actor			•	•	


802.11 ac HT80	СН	Freq. (MHz)	Read_level (dBuV/m)	Factor (dB)	Peak (dBuV/m)	Limit (dBuV/m) (Peak)	Limit (dBuV/m) (Avg)	Over	Ant Pol H/V
	Lowest	5150	42.11	6.96	49.07	74	54	-4.93	Н
Band 1 &Band	Lowest	5150	40.64	6.96	47.60	74	54	-6.40	V
2A	Highest	5350	39.33	8.21	47.54	74	54	-6.46	Н
	riigiiest	5350	37.99	8.21	46.20	74	54	-7.80	V
	1	F 470	40.00	0.04	F4 00	60.0		1747	
	Lowest	5470	42.82	8.21	51.03	68.2	1	-17.17	H
Band 2C		5470 5725	42.02 41.26	8.21 8.87	50.23 50.13	68.2 68.2) /	-17.97 -18.07	V
	Highest	5725	39.38	8.87	48.25	68.2	/	-19.95	V
Remark:	Factor(dB)		ctor+Cable Los					10.00	
	<u> </u>				(20			C^{\prime}	

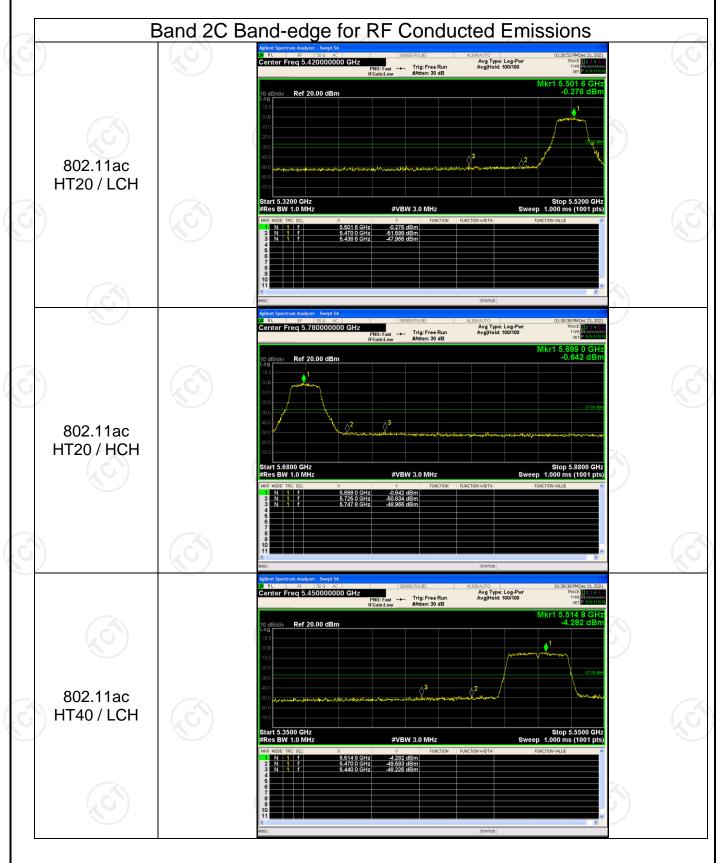


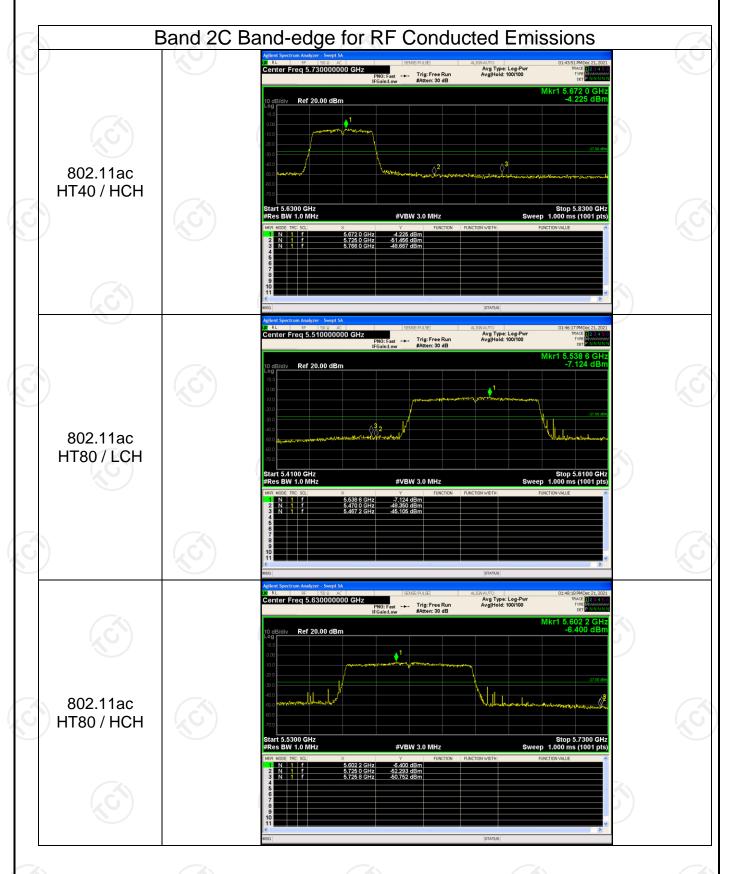


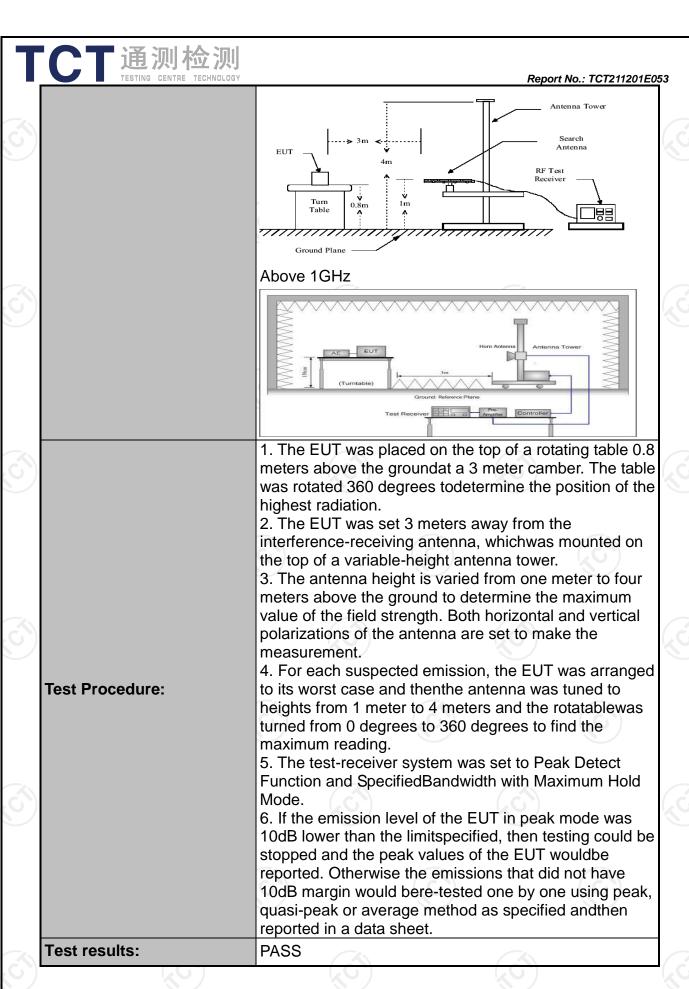








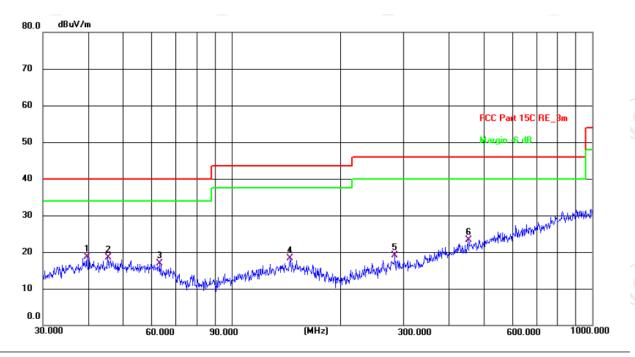




5.8. Unwanted Emissions

5.8.1. Test Specification

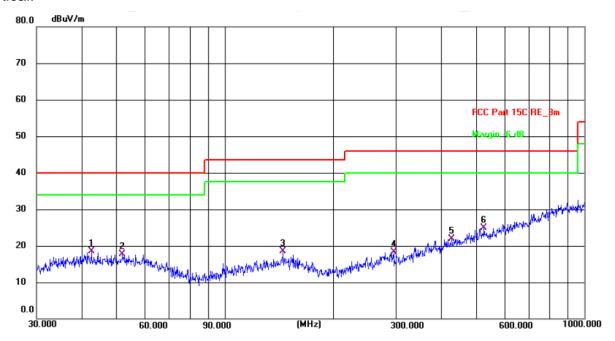
Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 15.20						
Test Method:	KDB 789033						
Frequency Range:	9kHz to 40G	Hz	(C)		(.G)		
Measurement Distance:	3 m	**					
Antenna Polarization:	Horizontal &	Vortical					
		*					
Operation mode:	Transmitting	mode wit	h modulat	ion			
	Frequency	Detector	RBW	VBW	Remark		
	9kHz- 150kHz	Quasi-peal	k 200Hz	1kHz	Quasi-peak Value		
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quasi-peak Value		
	30MHz-1GHz Quasi-		k 120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	7,5000 10112	Peak	1MHz	10Hz	Average Value		
	per FCC Par general field below table, In restricted Frequer	bands:		t forth i	Limit@3m 74dBµV/m 54dBµV/m Measurement		
Limit:	Frequency		(microvolts/m		Distance (meters)		
	0.009-0.490		2400/F(KHz) 24000/F(KHz	1	300		
	1.705-30	/	30		30		
	30-88		100		3		
	88-216		150		3		
	216-960		200		3		
	Above 960		500		3		
	In un-restrict	ed bands	: 68.2dBu\	//m			
Test setup:	For radiated	Distance = 3m Turn table	s below 30)MHz	Computer Pre -Amplifier Receiver		



5.8.2. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:

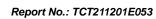

Site #2 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.7(C) Humidity: 48 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	39.7146	4.84	13.96	18.80	40.00	-21.20	QP	Р	
2	45.3754	4.68	13.88	18.56	40.00	-21.44	QP	Р	
3	63.3132	4.40	12.46	16.86	40.00	-23.14	QP	Р	
4	145.3505	5.00	13.29	18.29	43.50	-25.21	QP	Р	
5	283.9791	5.00	14.10	19.10	46.00	-26.90	QP	Р	
6	452.7197	4.98	18.38	23.36	46.00	-22.64	QP	Р	

Vertical:


Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 23.7(C) Humidity: 48 %


Limit: FCC Part 15C RE_3m Power: DC 3.7 V

			_							
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
Г	1	42.6000	4.55	13.95	18.50	40.00	-21.50	QP	Р	
Г	2	52.0251	4.03	13.64	17.67	40.00	-22.33	QP	Р	
Г	3	145.3505	5.24	13.29	18.53	43.50	-24.97	QP	Р	
Γ	4	295.1468	4.36	13.85	18.21	46.00	-27.79	QP	Р	
Г	5	428.0192	3.97	17.85	21.82	46.00	-24.18	QP	Р	
	6 *	526.3967	4.95	19.88	24.83	46.00	-21.17	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Middle channel and 802.11a) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			M		ype: Band	1			
					5180MHz				
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.36		8.02	46.38		74	54	-7.62
15540	Н	38.48		9.87	48.35		74	54	-5.65
	Н		fc.		(<u> </u>		fc	
7									
10360	V	37.19		8.02	45.21		74	54	-8.79
15540	V	38.77		9.87	48.64		74	54	-5.36
	V								
				11a CH40:	5200MHz				
	A . (D .)	Peak	A) /	Correction		on Level	Deal Park	A	N 4 - · · · · ·
Frequency	Ant. Pol. H/V	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.35		7.97	47.32		74	54	-6.68
15600	KΗ	37.89	-/- (1)	9.83	47.72	X	74	54	-6.28
(OH		(-0)		((C)		4.C)	
					-				
10400	V	40.42		7.97	48.39		74	54	-5.61
15600	V	37.39		9.83	47.22		74	54	-6.78
	V				~				
	•			11a CH48	: 5240MHz				
		Peak	1	Correction		on Level			
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	$(d\bar{B})$
10480	Н	38.35		7.97	46.32		74	54	-7.68
15720	Н	37.92	<i>/ (</i>)	9.83	47.75	- -\	74	54	-6.25
	CO H		(20)			(O.1)		120	
							I		
10480	V	38.43		7.97	46.40		74	54	-7.60
15720	V	36.69		9.83	46.52		74	54	-7.48
10720				5.00	40.02				7.40
			11r	(HT20) CE	136: 5180M				
		Peak		Correction		n Level			
Frequency	Ant. Pol.	reading	Av reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)		(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	,Н	41.89		8.02	49.91		74	54	-4.09
15540	Ĥ	37.66		9.87	47.53		74	54	-6.47
	H		<u>k</u> O			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
10360	V	41.63		8.02	49.65		74	54	-4.35
15540	V	37.82		9.87	49.65		74	54	-6.31
	V			3.01	Á				
	V		11,	 (UT20) CL	 140: 5200M	 ∐	7-7		(
		Dools	177		140: 5200M				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Peak	n Level AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	40.25		7.97	48.22	(ubµ v/III)	74	54	-5.78
15600	.CH	38.38	46	9.83	48.21		74	54	-5.79
10000	H			ჟ.0ა	40.∠1				
	П								
		40.94	, 	7.07	40.04	<u> </u>	7.4	F 4	F 00
40400		/// U/I		7.97	48.91		74	54	-5.09
10400	V		+				7.	- 4	001
10400 15600	V V	37.33		9.83	47.16		74	54	-6.84

「通测检测

Report No.: TCT211201E053 Peak Correction **Emission Level** AV reading Peak limit Frequency Ant. Pol. **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dBµV) (dB/m) (dBµV/m) (dBµV/m) 7.97 10480 41.32 49.29 74 54 -4.71 Н 15720 Н 39.08 9.83 48.91 74 54 -5.09 Η 10480 ٧ 7.97 74 40.12 ---48.09 ---54 -5.9115720 V 38.83 *ֈ*--, 48.66 4-74 9.83 54 -5.34V 11n(HT40) CH38: 5190MHz Peak Correction **Emission Level** Ant. Pol. **AV** reading Frequency Peak limit **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) dBµV/m) (dBµV/m) 10380 Η 39.91 7.75 47.66 74 54 -6.3415570 Н 37.77 9.87 47.64 74 54 -6.36 Η ------------------------٧ 10380 40.53 *[*---, 7.75 48.28 4 74 54 -5.72٧ 9.87 38.46 74 54 15570 48.33 -5.67 ٧ 11n(HT40) CH46: 5230MHz **Emission Level** Peak Correction Ant. Pol. Frequency AV reading Peak limit **AV** limit Margin reading Factor Peak (dBµV/m) (MHz) H/V $(dB\mu V)$ (dBµV/m) (dB) (dBµV) (dB/m) (dBµV/m) (dBuV/m) 10460 7.97 49.13 74 -4.87 Н 41.16 54 Η 37.70 9.83 47.53 ---74 54 -6.47 15690 Н 10460 ٧ 41.38 7.97 49.35 74 54 -4.6538<u>.5</u>1 48<u>.34</u> 74 <u>-5.6</u>6 15690 ۷ 54 9.83 ٧

			11a	c(VHT20) C	H36: 5180I	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBμV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10360	Н	40.96		8.02	48.98		74	54	-5.02
15540	Н	37.32		9.87	47.19		74	54	-6.81
	Н								
	.(1)					. ()			
10360	V	38.79		8.02	46.81	- /-	74	54	-7.19
15540	V	38.85		9.87	48.72		74	54	-5.28
	V								
			11a	c(VHT20) C	H40: 5200I	MHz			

(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Η	40.26		7.97	48.23		74	54	-5.77
15600	H	38.71		9.83	48.54		74	54	-5.46
/	H					-1-			
			KO)		ļ.	(0)		IZO .	
10400	>	39.30		7.97	47.27		74	54	-6.73
15600	V	37.65		9.83	47.48		74	54	-6.52
	V								

Emission Level

Peak

AV

Peak limit

AV limit

Margin

Correction

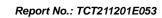
Factor

AV reading

Peak

reading

Ant. Pol.


Frequency

			11a	c(VHT20) C					
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	36.95		7.97	44.92		74	54	-9.08
15720	Н	37.24		9.83	47.07		74	54	-6.93
/	H				/			<i></i>	
			120			(0)		(20)	
10480	V	39.19		7.97	47.16	<u> </u>	74	54	-6.84
15720	V	38.65		9.83	48.48		74	54	-5.52
	V								
			11a	c(VHT40) C	H38: 5190	MHz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	40.59		7.75	48.34		74	54	-5.66
15570	ДН	38.47		9.87	48.34		74	54	-5.66
(Н		(C)		(. C. -1 -		(C)	
				7					
10380	V	38.20		7.75	45.95		74	54	-8.05
15570	V	38.89		9.87	48.76		74	54	-5.24
	V								
			11a	c(VHT40) C	H46: 5230I	MHz			
Fraguanay	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
Frequency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	38.98		7.97	46.95		74	54	-7.05
15690	Н	38.70	<i></i>	9.83	48.53		74	54	-5.47
/	H		70			<u> </u>		KO	
10460	V	39.15		7.97	47.12		74	54	-6.88
15690	V	37.94		9.83	47.77		74	54	-6.23
	V	-							/
			1	1ac(VHT80) CH42:521	0			
Eroguenev	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
requency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
10420	ζH.	40.78		7.96	48.74	X	74	54	-5.26
15630	G H	39.55	[- 0]	9.84	49.39	.C 	74	54	-4.61
	Н								
<u> </u>		-	•	•	•	•			
10420	V	42.10		7.96	50.06		74	54	-3.94
15630	V	38.83		9.84	48.67		74	54	-5.33
	V	(6-1		(c			(6-)		(

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			Me		ype: Band 2	2A			
				11a CH52	: 5260MHz				
	Ant Dal	Peak	\\\	Correction	Emissio	on Level	Dools limit	۸۱/ انمه:نا	Marain
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10520	Н	37.85		7.97	45.82		74	54	-8.18
15780	Н	36.22		9.83	46.05		74	54	-7.95
	Н				((C) +		f-c)	
				/					
10520	V	41.11		7.97	49.08		74	54	-4.92
15780	V	38.48		9.83	48.31		74	54	-5.69
·	V								
					: 5280MHz		_		
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emission Peak	on Level AV	Peak limit	AV limit	Margin
(MHz)		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10560	Н	38.75		7.98	46.73		74	54	-7.27
15840	KH	38.84	(1)	9.85	48.69		74	54	-5.31
(C H		(C)		((C) 		[_ C]	
					1		1		
10560	V	39.50		7.98	47.48		74	54	-6.52
15840	V	38.27		9.85	48.12		74	54	-5.88
	V	(- X)					 X\		
					: 5320MHz				
Frequency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	39.93		7.98	47.91		74	54	-6.09
15960	Н	37.15		9.85	47.00		74	54	-7.00
	KO H		140			(O-1		TKO.	
10640	V	39.38		7.98	47.36		74	54	-6.64
15960	V	35.41		9.85	45.26		74	54	-8.74
	V				<u> </u>				/
			11		52: 5260MI				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10520	H	41.17	/	7.97	49.14		74	54	-4.86
15780	Н	38.20	(c)	9.83	48.03	()-1	74	54	-5.97
'	Н		-4-			-7-			
40500	17	07.00		7.07	45.05		7.4	I	0.05
10520	V	37.98		7.97	45.95		74	54	-8.05
15780	V	35.75		9.83	45.58		74	54	-8.42
	V		111	 (HT20) CL	 H58: 5280M	 H ₇	7		/
		Peak		Correction		on Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10560	χH	38.57		7.98	46.55	(ubµ v/III)	74	54	-7.45
15840	GH	38.21	7	9.85	48.06		74	54	-5.94
10070	H	30.21		9.05	40.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-5.94
		1			<u>I</u>		<u>I</u>		
-									
	V	40.10		7.98	48.08		74	54	-5.92
	V	40.10 39.34		7.98 9.85	48.08 49.19		74 74	54 54	-5.92 -4.81

『通测检测

Frequency Ant. Pol.

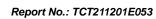
Report No.: TCT211201E053 Peak Correction **Emission Level** AV reading Peak limit Frequency Ant. Pol. **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB)(dBµV) (dB/m) (dBµV/m) (dBµV/m) 10640 Η 37.39 7.98 45.37 74 54 -8.63 15960 Н 35.76 9.85 45.61 74 54 -8.39 Η ٧ 38.72 7.98 74 -7.30 10640 ---46.70 ---54 15960 V 39.16 *ֈ*--, 49.01 4-74 -4.99 9.85 54 V 11n(HT40) CH54: 5270MHz Peak Correction **Emission Level** Ant. Pol. **AV** reading Peak limit Frequency **AV** limit Margin reading Factor Peak AV (MHz) H/V (dBµV) (dBµV/m) (dBµV/m) (dB) (dBµV) (dB/m) dBµV/m) (dBµV/m) 10540 Η 41.39 7.97 49.36 74 54 -4.64 15810 Н 37.48 9.83 47.31 74 54 -6.69Н ------------------------10540 V 37.85 7.97 45.82 7 74 54 -8.18 V 15810 36.29 <u>___</u> 9.83 46.12 74 54 -7.88 ٧ ------11n(HT40) CH62: 5310MHz **Emission Level** Peak Correction Ant. Pol. AV reading Peak limit **AV** limit Frequency Margin reading Factor Peak (MHz) H/V (dBµV) $(dB\mu V/m)$ (dBµV/m) (dB) $(dB\mu V)$ (dB/m) (dBµV/m) (dBµV/m) 10620 Η 40.73 ---7.98 48.71 74 54 -5.29 15930 Н 38.41 48.26 74 -5.74 9.85 54 Η ------10620 38.15 7.98 46.13 74 54 -7.8715930 36.26 9.85 46.11 74 54 -7.89

	٧								
			11a	ac(VHT20)	C52: 5260N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10520	Η	39.99		7.97	47.96		74	54	-6.04
15780	Η	39.05		9.83	48.88		74	54	-5.12
	H								
10520	>	39.65		7.97	47.62	-/-	74	54	-6.38
15780	>	36.40		9.83	46.23		74	54	-7.77
	V								
			11a	c(VHT20) C	H56: 5280I	MHz			
Frequency	Ant Pol	Peak	AV reading	Correction	Emissio	n Level	Peak limit	Δ\/ limit	Margin

					•	•			
	V								
15840	V	35.61		9.85	45.46		74	54	-8.54
10560	V	37.84		7.98	45.82	<u></u>	74	54	-8.18
	(0)		120			(0)		KO.	
/	Н		\(\)		/	-1-		\(\)	
15840	Н	36.86		9.85	46.71		74	54	-7.29
10560	Н	38.20		7.98	46.18		74	54	-7.82
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)

AV reading

Margin


Peak limit | AV limit

			11a	<u>c(VHT20) C</u>	H64: 5320	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	40.75		7.98	48.73		74	54	-5.27
15960	Н	39.10		9.85	48.95		74	54	-5.05
/	Н		<i></i>		/	~~ \ -		(<u>,</u> ()	
			KO,						
10640	V	40.31		7.98	48.29	<u> </u>	74	54	-5.71
15960	V	35.84		9.85	45.69		74	54	-8.31
	V								
			11a	c(VHT40) C	H54: 5270	MHz			
Fraguenav	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading	(dBµV)	racioi	Peak	AV	(dBµV/m)	(dBµV/m)	Margin (dB)
(1411 12)		(dBµV)	(αΒμν)	(dB/m)	(dBµV/m)	(dBµV/m)	(αΒμ ۷/111)	(аБр үлп)	(ub)
10540	Н	39.99		7.97	47.96		74	54	-6.04
15810	X-H	37.65	75 1	9.83	47.48		74	54	-6.52
(,	C H		(, ,C)		(· G `-}-		(C)	
				7					
10540	V	39.26		7.97	47.23		74	54	-6.77
15810	V	37.04		9.83	46.87		74	54	-7.13
	V				Z				
			11a	c(VHT40) C	H60: 5310	MHz			
	Ant Dal	Peak	0) /li	Correction	Emissio	n Level	Da ala lissait	A	N / : -
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10620	Н	38.79		7.98	46.77		74	54	-7.23
15930	Н	36.52		9.85	46.37	-1-	74	54	-7.63
1	Н		120			-		ZO J	
1									
10620	V	38.86		7.98	46.84		74	54	-7.16
15930	V	36.55		9.85	46.40		74	54	-7.60
	V								(
V.)			11:	ac(VHT80)	C58:5290N	lHz			
_		Peak		Correction		n Level			
Frequency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10580	AH.	41.04		7.98	49.02	(GDp 77111)	74	54	-4.98
15870	СH	38.78	(9.85	48.63	.011	74	54	-5.37
	H					<u></u>			
	.,	<u> </u>	1	<u> </u>	<u> </u>				
10580	V	40.09		7.98	48.07		74	54	-5.93
15870	V	37.33		9.85	47.18		74	54	-6.82
. 557 5	V	51.00		5.55		1	/	<u> </u>	3.02

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

					ype: Band 2				
): 5500MHz				
Fraguenav	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	Margin (dB)
11000	Η	39.11		8.03	47.14		74	54	-6.86
16500	Н	39.43		9.76	49.19		74	54	-4.81
/	Н		<i>(c</i>)		(/c	
							I.		
11000	V	39.73		8.03	47.76		74	54	-6.24
16500	V	39.96		9.76	49.72		74	54	-4.28
	V								
	V): 5600MHz				
		Peak		Correction		n Level			
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	39.91		8.04	47.95		74	54	-6.05
16800	XH .	40.24		9.74	49.98		74	54	-4.02
	C H	40.24		9.74	49.90				-4.02
11200	V	38.08		8.04	46.12		74	54	-7.88
16800	V	39.93		9.74	49.67		74	54	-4.33
				9.74	49.67				
	V			44 - 0114 46					
		Deal): 5700MHz		ı		
Frequency	Ant. Pol.	Peak	AV reading	Correction		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	37.96		8.05	46.01		74	54	-7.99
17100	Н	39.35		9.72	49.07		74	54	-4.93
	O H		70,			(0.7		140	
							ı		
11400	V	37.88		8.05	45.93		74	54	-8.07
17100	V	40.50		9.72	50.22		74	54	-3.78
Κ \	V	4\			X\		(/
			11n	(HT20) CH	1100: 5500N	ИНг			
	A . (D .)	Peak		Carraction		n Level	Deal Park	A	N4 ' -
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)		(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	—,Н	40.22		8.03	48.25		74	54	-5.75
16500	Н	38.69		9.76	48.45	277	74	54	-5.55
(Н					-7-		-44	
11000	V	38.15		8.03	46.18		74	54	-7.82
16500	V	36.04		9.76	45.80		74	54	-8.20
	V								/
		1 (1 1 1	11n	(HT20) CH	1120: 5600N	ИНг			
_		Peak		Correction		n Level	D	43.64	
Frequency	Ant. Pol.	reading	AV reading	Factor	Peak	AV	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	ZH.	39.07		8.04	47.11	(74	54	-6.89
16800	.CH	39.63		9.74	49.37	. ()	74	54	-4.63
	Н					<u></u>			
					1		ı		
11200	V	37.51		8.04	45.55		74	54	-8.45
16800	V	38.77		9.74	48.51		74	54	-5.49
	V			(- N				

通测检测

Report No.: TCT211201E053 Peak Correction **Emission Level** Frequency Ant. Pol. (MHz) H/V AV reading Peak limit **AV** limit Margin reading Factor AV (dBµV/m) Peak (dBµV) (dBµV/m) $(dB\mu V/m)$ (dB) (dBµV) (dB/m) (dBµV/m) -7.29 11400 Н 38.66 8.05 46.71 74 54 74 17100 Н 40.10 9.72 49.82 54 -4.18 Н ٧ 11400 37.88 74 8.05 45.93 54 -8.07 ------17100 V 39.75 *ֈ*--, 9.72 49.47 4 74 54 -4.53 ٧ 11n(HT40)CH102: 5510MHz Peak Correction **Emission Level**

Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	Н	38.76		8.03	46.79		74	54	-7.21
16530	Н	39.01		9.76	48.77		74	54	-5.23
	Н								
11020	V	38.53	fc	8.03	46.56		74	54	-7.44
16530	V	38.12		9.76	47.88	<i>-</i> /	74	54	-6.12
	V								
			11r	(HT40) CH	118: 5590N	1Hz			
roguenov	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Margin
requency (MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11180	Н	39.35		8.04	47.39		74	54	-6.61
16770	H	38.18		9.74	47.92		74	54	-6.08
	H								
11180	V	37.77		8.04	45.81		74	54	-8.19
16770	V	36.91	-22	9.74	46.65	<u></u>	74	54	-7.35
	V								
			11r	(HT40) CH	134· 5670M	ИН			
		Peak		Correction		n Level			
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11340	Н	40.01		8.05	48.06		74	54	-5.94
17010	Н	38.64		9.72	48.36		74	54	-5.64
	,H							/	
	. (1)		(,c))	(
11340	V	38.36		8.05	46.41		74	54	-7.59
17010					70.71			• • • •	
17010	V	37.42		9.72	47.14		74	54	-6.86
	V	37.42							-6.86
		_		9.72	47.14 		74	54	
	V	_	 11ac	9.72 c(VHT20) CI	47.14 H100: 5500		74	54	
				9.72 c(VHT20) CI	47.14 H100: 5500	 MHz	74	54	
 Frequency	V Ant. Pol.	Peak reading	11ac AV reading	9.72 c(VHT20) C Correction Factor	47.14 H100: 5500 Emissic Peak	 MHz on Level AV	74 Peak limit	54 	Margin
 Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.72 c(VHT20) Cl Correction Factor (dB/m)	47.14 H100: 5500 Emissic Peak (dBµV/m)	 MHz on Level AV (dBµV/m)	74 Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
requency (MHz)	V Ant. Pol. H/V	Peak reading (dBµV) 37.82	 11ac AV reading (dBμV)	9.72 c(VHT20) C Correction Factor (dB/m) 8.03	47.14 H100: 5500 Emissic Peak (dBµV/m) 45.85	MHz on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74	54 AV limit (dBμV/m) 54	Margin (dB)
 Frequency (MHz) 11000 16500	V Ant. Pol. H/V H	Peak reading (dBµV) 37.82 39.05	AV reading (dBµV)	9.72 c(VHT20) C Correction Factor (dB/m) 8.03 9.76	47.14 H100: 5500 Emissic Peak (dBµV/m) 45.85 48.81	HZ on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74 74	54 AV limit (dBµV/m) 54 54	Margin (dB) -8.15 -5.19
 Frequency (MHz) 11000 16500	V Ant. Pol. H/V H	Peak reading (dBµV) 37.82 39.05	AV reading (dBµV)	9.72 c(VHT20) C Correction Factor (dB/m) 8.03 9.76	47.14 H100: 5500 Emissic Peak (dBµV/m) 45.85 48.81	HZ on Level AV (dBµV/m)	74 Peak limit (dBµV/m) 74 74	54 AV limit (dBµV/m) 54 54	Margin (dB) -8.15 -5.19
 Frequency (MHz) 11000 16500	Ant. Pol. H/V H H	Peak reading (dBµV) 37.82 39.05	AV reading (dBµV)	9.72 c(VHT20) CI Correction Factor (dB/m) 8.03 9.76	47.14 H100: 5500 Emissic Peak (dBμV/m) 45.85 48.81	HZ AV (dBµV/m)	74 Peak limit (dBµV/m) 74 	54 AV limit (dBµV/m) 54 54 	Margin (dB) -8.15 -5.19

			11ac	(VHT20) C	H120: 5600	MHz			
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11200	Н	39.82		8.04	47.86		74	54	-6.14
16800	Н	39.14		9.74	48.88		74	54	-5.12
/	Н		<i>(,</i> (1)		/			/	
			, KO	/				(V	
11200	V	38.21		8.04	46.25		74	54	-7.75
16800	V	39.45		9.74	49.19		74	54	-4.81
	V								
			11ac	(VHT20) C	H140: 5700	MHz			
requency	Ant. Pol.	Peak	AV reading	Correction	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	38.58		8.05	46.63		74	54	-7.37
17100	(H	38.39	7	9.72	48.11	Z	74	54	-5.89
(, G H		 -C		(.C) - }-		(C)	
				7	×				
11400	V	40.17		8.05	48.22		74	54	-5.78
17100	V	38.82		9.72	48.54		74	54	-5.46
	V				Z				
			11ac	(VHT40) C	H102: 5510	MHz			
_	Ant Dal	Peak		Correction	Emionio	n Lovel			
			1/	Correction		n Level	Dook limit	A\/ limit	Morain
requency (MHz)	Ant. Pol. H/V	reading (dBµV)	AV reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		reading	AV reading (dBµV)	Factor	Peak	AV			
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
(MHz) 11020	H/V H	reading (dBµV) 37.98	(dBµV)	Factor (dB/m) 8.03	Peak (dBµV/m) 46.01	AV (dBµV/m)	(dBµV/m) 74	(dBµV/m) 54	(dB) -7.99
(MHz) 11020 16530	H/V H H	reading (dBµV) 37.98 39.26	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 46.01 49.02	ΑV (dBμV/m) 	(dBµV/m) 74 74	(dBµV/m) 54 54	-7.99 -4.98
(MHz) 11020 16530	H/V H H H	reading (dBµV) 37.98 39.26	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 46.01 49.02	ΑV (dBμV/m) 	(dBµV/m) 74 74	(dBµV/m) 54 54	-7.99 -4.98
11020 16530	H/V H H V V	reading (dBµV) 37.98 39.26	(dBµV)	Factor (dB/m) 8.03 9.76	Peak (dBµV/m) 46.01 49.02	AV (dBµV/m) 	(dBμV/m) 74 74 	(dBµV/m) 54 54 	(dB) -7.99 -4.98
(MHz) 11020 16530 	H/V H H H	reading (dBµV) 37.98 39.26 	(dBµV)	Factor (dB/m) 8.03 9.76 8.03	Peak (dBµV/m) 46.01 49.02 48.50	ΑV (dBμV/m) 	(dBμV/m) 74 74 74	(dBµV/m) 54 54 54	(dB) -7.99 -4.98
11020 16530 11020 16530	H/V H H V V	reading (dBµV) 37.98 39.26 40.47 37.89	(dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76	Peak (dBµV/m) 46.01 49.02 48.50 47.65	ΑV (dBμV/m) 	74 74 74 74 74	(dBµV/m) 54 54 54 54 54	(dB) -7.99 -4.985.50 -6.35
11020 16530 11020 16530 	H/V H H V V V	reading (dBµV) 37.98 39.26 40.47 37.89	(dBµV)	8.03 9.76 8.03 9.76 ac(VHT40)	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:55	ΑV (dBμV/m) 	(dBµV/m) 74 74 74 74	(dBµV/m) 54 54 54 54	(dB) -7.99 -4.985.50 -6.35
11020 16530 11020 16530 	H/V H H V V	reading (dBµV) 37.98 39.26 40.47 37.89	(dBµV)	8.03 9.76 8.03 9.76 ac(VHT40)	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:555 Emissio	AV (dBμV/m) 90	74 74 74 74 74	(dBµV/m) 54 54 54 54 54	(dB) -7.99 -4.985.50 -6.35
11020 16530 11020 16530 	H/V H H V V V Ant. Pol.	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading	(dBµV) 11 AV reading	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:555 Emissio	AV (dBµV/m) 90 n Level AV	(dBµV/m) 74 74 74 74 Peak limit	(dBµV/m) 54 54 54 54 AV limit	(dB) -7.99 -4.985.50 -6.35
11020 16530 11020 16530 Frequency (MHz)	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading (dBµV)	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m)	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:555 Emission Peak (dBµV/m)	AV (dBµV/m) 90 on Level AV (dBµV/m)	74 74 74 74 74 74 74 Peak limit (dBμV/m)	(dBµV/m) 54 54 54 54 AV limit (dBµV/m)	(dB) -7.99 -4.985.50 -6.35 Margin (dB)
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading (dBµV) 38.72	(dBµV) 11 AV reading (dBµV)	8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:55 Emissic Peak (dBµV/m) 46.76	AV (dBµV/m) 90 on Level AV (dBµV/m)	74 74 74 74 74 74 74 Peak limit (dBμV/m)	(dBµV/m) 54 54 54 54 54 AV limit (dBµV/m) 54	(dB) -7.99 -4.985.50 -6.35 Margin (dB) -7.24
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading (dBµV) 38.72 36.66	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:556 Emissic Peak (dBµV/m) 46.76 46.40	AV (dBµV/m) 90 on Level AV (dBµV/m) 	(dBµV/m) 74 74 74 74 74 Peak limit (dBµV/m) 74 74	(dBµV/m) 54 54 54 54 AV limit (dBµV/m) 54 54	-7.99 -4.98 -5.50 -6.35 Margin (dB) -7.24 -7.60
11020 16530 11020 16530 Frequency (MHz) 11180	H/V H H V V V Ant. Pol. H/V	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading (dBµV) 38.72 36.66	(dBµV) 11 AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:556 Emissic Peak (dBµV/m) 46.76 46.40	AV (dBµV/m) 90 on Level AV (dBµV/m) 	(dBµV/m) 74 74 74 74 74 Peak limit (dBµV/m) 74 74	(dBµV/m) 54 54 54 54 AV limit (dBµV/m) 54 54	-7.99 -4.98 -5.50 -6.35 Margin (dB) -7.24 -7.60
11020 16530 11020 16530 Frequency (MHz) 11180 16770	H/V H H H V V V Ant. Pol. H/V H H	reading (dBµV) 37.98 39.26 40.47 37.89 Peak reading (dBµV) 38.72 36.66	(dBµV) AV reading (dBµV)	Factor (dB/m) 8.03 9.76 8.03 9.76 ac(VHT40) Correction Factor (dB/m) 8.04 9.74	Peak (dBµV/m) 46.01 49.02 48.50 47.65 CH118:555 Emissic Peak (dBµV/m) 46.76 46.40	AV (dBμV/m) 90 on Level AV (dBμV/m) 	(dBµV/m) 74 74 74 74 74 Peak limit (dBµV/m) 74 74	(dBµV/m) 54 54 54 54 54 AV limit (dBµV/m) 54 54	-7.99 -4.98 -5.50 -6.35 Margin (dB) -7.24 -7.60

			11ac	(VHT40) CI	H134: 5670	MHz			
Frequency (MHz)	Ant. Pol. H/V	(dBµV)	AV reading (dBuV)	(dB/m)	Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11340	Н	36.50		8.05	44.55		74	54	-9.45
17010	Н	35.74		9.72	45.46		74	54	-8.54
	/H								
()	(C)		(20)		()	2 ()		(20)	
11340	V	37.43	-12	8.05	45.48		74	54	-8.52
17010	V	38.86		9.72	48.58		74	54	-5.42
	V								
			11ac	(VHT80) C	H106: 5530	MHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11060	Н	38.91		8.03	46.94		74	54	-7.06
16590	Н	40.56		9.75	50.31		74	54	-3.69
/	Н		-f^\	\	/				
			NO.)	,	(0)		KO /	
11060	V	39.49		8.03	47.52		74	54	-6.48
16590	V	35.86		9.75	45.61		74	54	-8.39
	V								
			11a	(HT80) CH	122: 5610N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
11220	Н	41.16		8.05	49.21		74	54	-4.79
16830	,H	38.22		9.72	47.94		74	54	-6.06
(Н		<i></i>		(
					7				
11220	V	39.27		8.05	47.32		74	54	-6.68
16830	V	39.59		9.72	49.31		74	54	-4.69
	V								

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

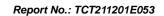
Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS				
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.				

Test plots as follows:

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	5180
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result
Temperature (C)	voitage(vDC)	Frequen	cy(MHz)	Frequency(F	Hz)
45		5180	.0091	9100	PASS
35		5180	.0065	6500	PASS
25	3.7V	5179.9872 -12800		PASS	
15	3.7 V	5179	.9986	-1400	PASS
5		5180	.0037	3700	PASS
0		5180	.0044	4400	PASS
	3.6V	5179	.9833	-16700	PASS
20	3.7V	5180	.0039	3900	PASS
	4.2V	5179	.9828	-17200	PASS

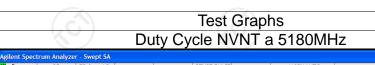
Test mode:	802.11ac(HT20)	Frequency(MHz):			5200	
Tomporature (°C)		Measure		Delta		Dogult	
Temperature (°C)	Voltage(VDC)	Frequency	(MHz)	Frequency(Hz)		Result	
45		5200.00	095	9500		PASS	
35		5200.00	081	8100		PASS	
25	3.7V	5200.00	074	7400		PASS	
15	3.7 V	5200.00	046	4600		PASS	
5		5199.99	982	-1800		PASS	
0		5199.98	377	-12300		PASS	
	3.6V	5199.9960		-4000		PASS	
20	3.7V	5200.0038		3800		PASS	
	4.2V	5200.00	052	5200		PASS	

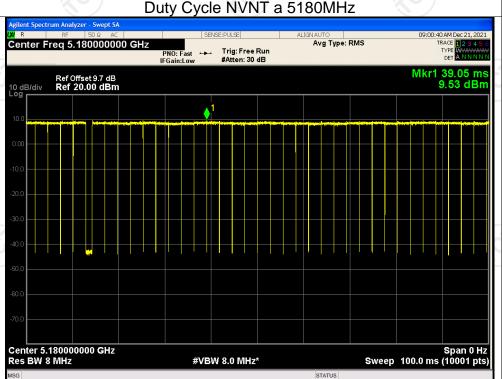
Test mode:	802.11ac(HT20)	Freque	equency(MHz):		5240	
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
Temperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Nesull	
45		5240.	.0049	4900		PASS	
35		5240.	.0021	2100		PASS	
25	3.7V	5240.	.0026	2600		PASS	
15	3.7 V	5239.	.9994	-600		PASS	
5		5239.	.9982	-1800	7	PASS	
0	(² C ₂)	5239.	.9975	-2500	()	PASS	
	3.6V	5240.	.0033	3300		PASS	
20	3.7V	5240.	.0017	1700		PASS	
	4.2V	5239.	.9988	-1200		PASS	


Test mode:		802.11ac(HT40)		Freque	Frequency(MHz):		5190	
Temperature (°C)	\/c	ltage(VDC)	Measu	rement	De	lta	Resu	ılt
remperature (C)	>	mage(VDC)	Frequency(MHz)		Frequency(Hz)		IXESUIL	
45			5190	.0123	123	800	PAS	S
35			5190	.0117	117	00	PAS	S
25		3.7V	5190	.0104	104	100	PAS	S
15		3.7 V	5190	.0036	360	00	PAS	S
5			5190	.0061	61	00	PAS	S
0			5190	.0075	750	00	PAS	S
		3.6V	5189.	.9912	-88	00	PAS	S
20		3.7V	5189.	.9978	-22	00	PAS	S
		4.2V	5190.	.0049	490	00	PAS	S

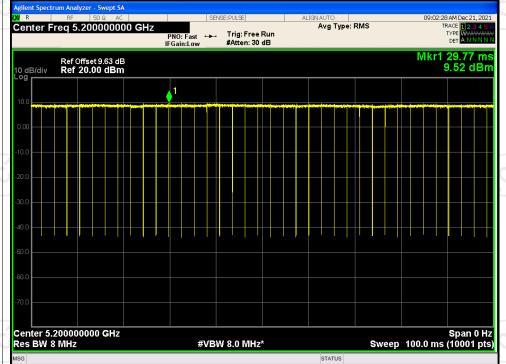
Test mode:		802.11ac(l	HT40) Freque		ency(MHz):		5230	
Temperature (°C)	Voltage(VDC)		Measu	rement	Delta		Result	
Temperature (C)	٧٥	mage(VDC)	Frequen	cy(MHz)	Frequency(Hz)		Result	
45			5230	.0117	11700		PASS	
35			5230.	.0121	12100		PASS	
25		3.7V	5230.	.0094	9400	C)	PASS	
15		3.7 V	5229.	.9986	-1400		PASS	
5			5229.	.9982	-1800		PASS	
0			5230.0054		5400		PASS	
$(C_{\mathcal{O}})$		3.6V	5230.	.0048	4800		PASS	
20		3.7V	5230.	.0023	2300		PASS	
		4.2V	5229.	.9979	-2100		PASS	

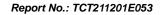
Test mode:	802.11	11ac(VHT80) Free		ency(MHz):	5210
Temperature (°C)	Voltage(VD	(:)	surement ency(MHz)	Delta Frequency(H	Hz) Result
45		52	09.9807	-19300	PASS
35		52	09.9844	-15600	PASS
25	3.7V	52	10.0047	4700	PASS
15	3.7 V	52	10.0033	3300	PASS
5		52	10.0026	2600	PASS
0		52	10.0061	6100	PASS
	3.6V	52	10.0058	5800	PASS
20	3.7V	52	09.9989	-1100	PASS
	4.2V	52	10.0080	8000	PASS

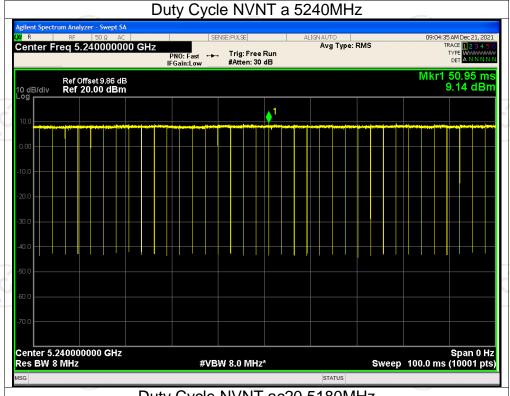

Appendix A: Test Result of Conducted Test

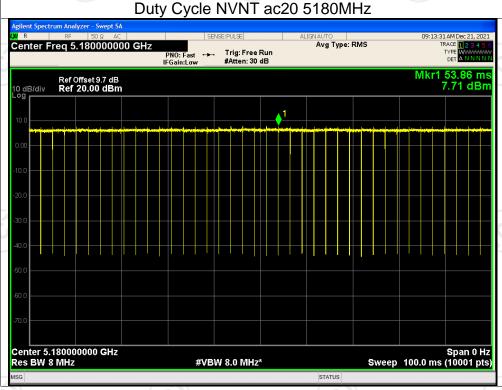

Duty Cycle

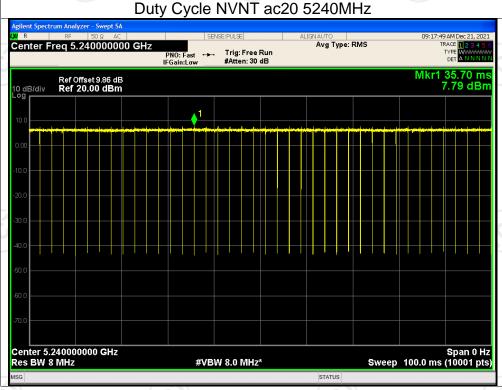
		Duty Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)
NVNT	а	5180	98.75
NVNT	a	5200	99.08
NVNT	а	5240	99.11
NVNT	ac20	5180	99.03
NVNT	ac20	5200	98.84
NVNT	ac20	5240	99.03
NVNT	ac40	5190	98.13
NVNT	ac40	5230	98.12
NVNT	ac80	5210	98.22
NVNT	n20	5180	99.03
NVNT	n20	5200	99.02
NVNT	n20	5240	99.03
NVNT	n40	5190	98.13
NVNT	n40	5230	98.02
NVNT	а	5260	99.09
NVNT	а	5280	99.10
NVNT	а	5320	99.03
NVNT	ac20	5260	99.03
NVNT	ac20	5280	99.02
NVNT	ac20	5320	98.91
NVNT	ac40	5270	98.80
NVNT	ac40	5310	98.76
NVNT	ac80	5290	98.87
NVNT	n20	5260	99.02
NVNT	n20	5280	98.98
NVNT	n20	5320	99.02
NVNT	n40	5270	98.80
NVNT	n40	5310	98.79
NVNT	а	5500	99.09
NVNT	а	5600	99.08
NVNT	а	5700	99.02
NVNT	ac20	5500	98.97
NVNT	ac20	5600	98.92
NVNT	ac20	5700	99.02
NVNT	ac40	5510	98.78
NVNT	ac40	5590	98.70
NVNT	ac40	5670	98.70
NVNT	ac80	5530	98.88
NVNT	ac80	5610	98.86
NVNT	n20	5500	99.01
NVNT	n20	5600	99.02
NVNT	n20	5700	99.02
NVNT	n40	5510	98.80
NVNT	n40	5590	98.80

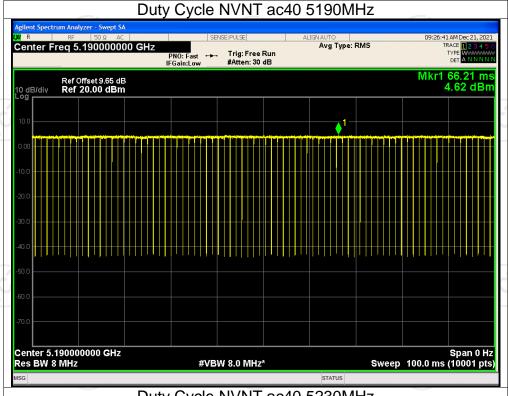


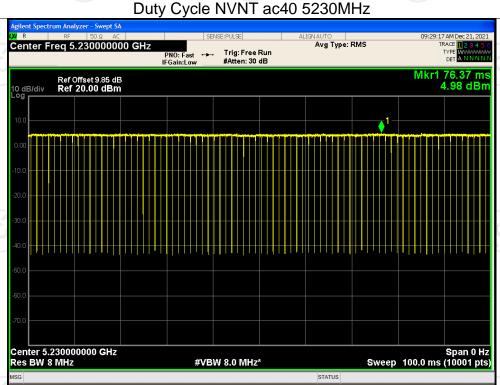

Report No.: TCT211201E053 5670 **NVNT** n40 98.80

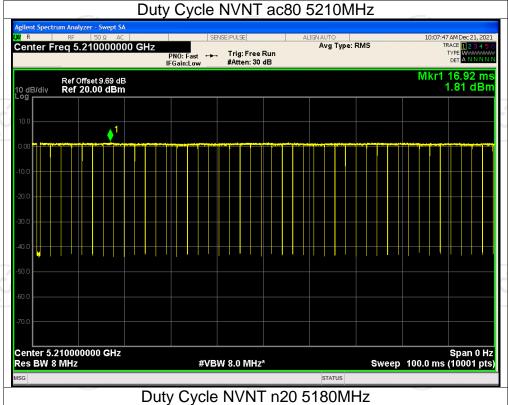


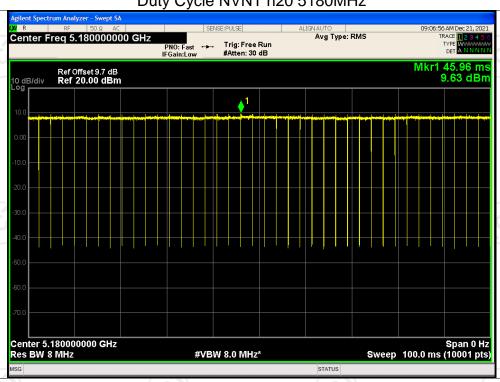

Duty Cycle NVNT a 5200MHz

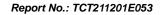


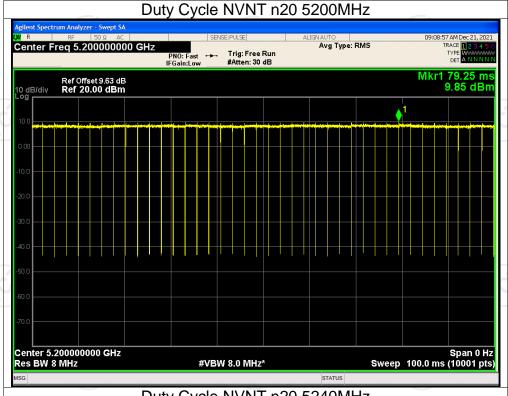


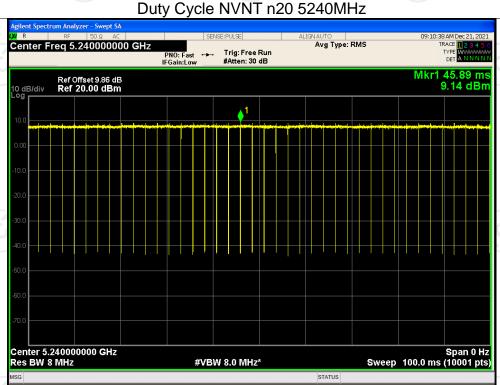


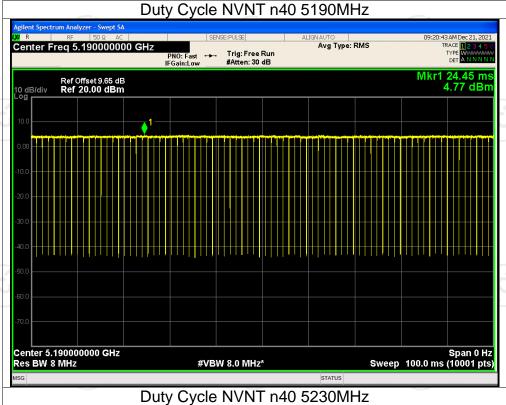


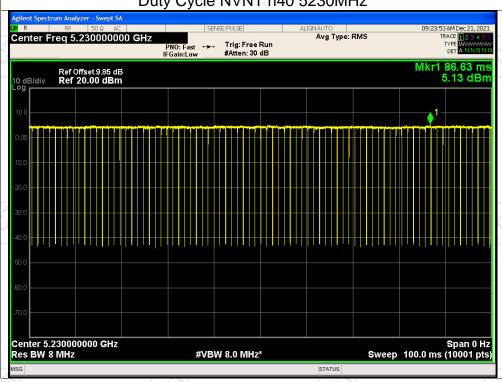


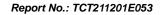


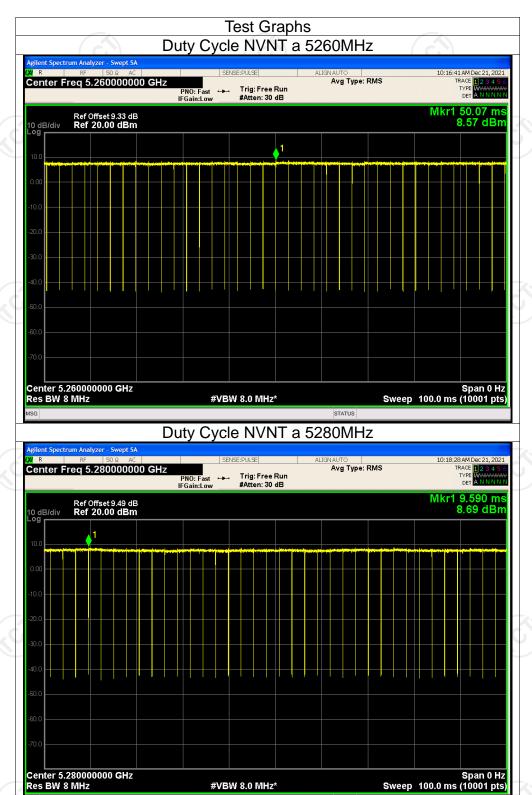


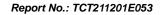


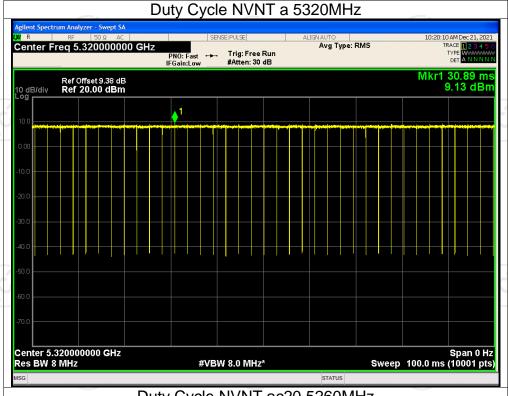


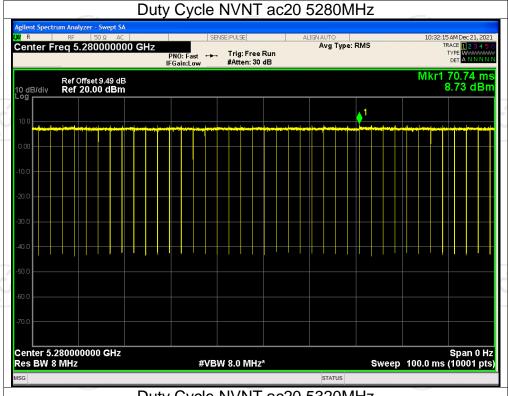


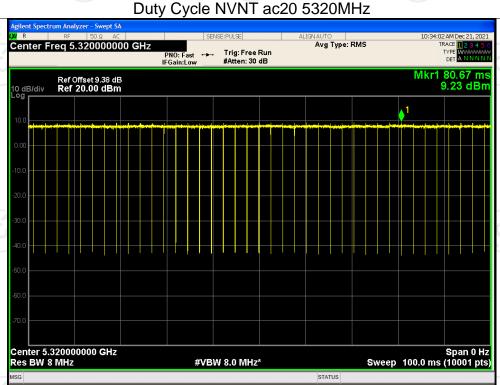


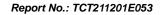


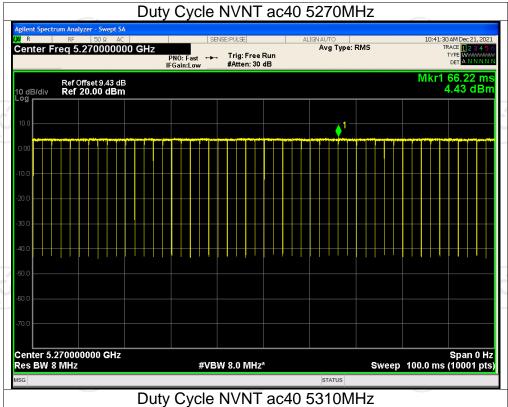


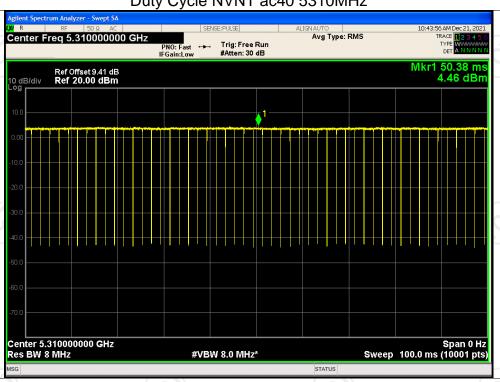


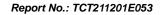


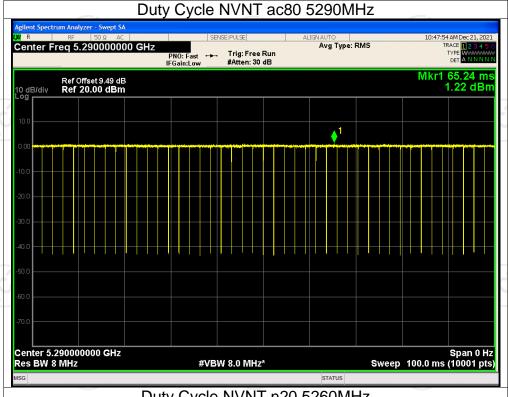


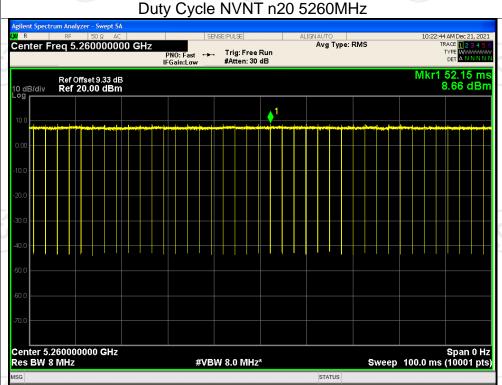


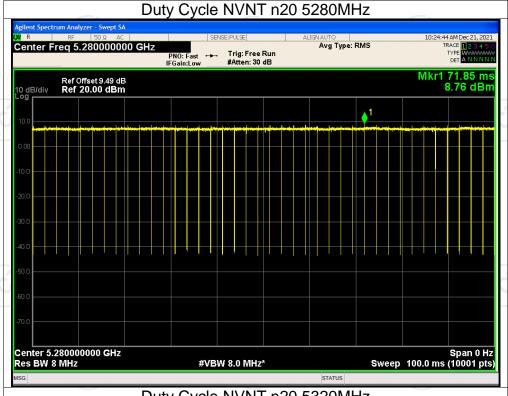


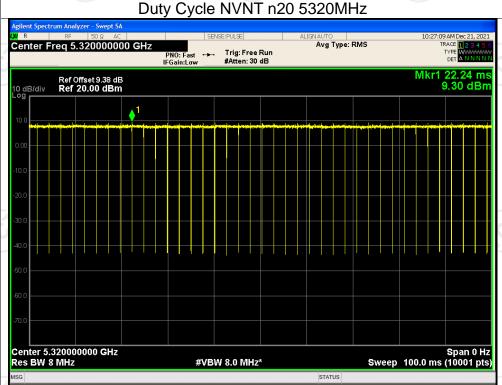




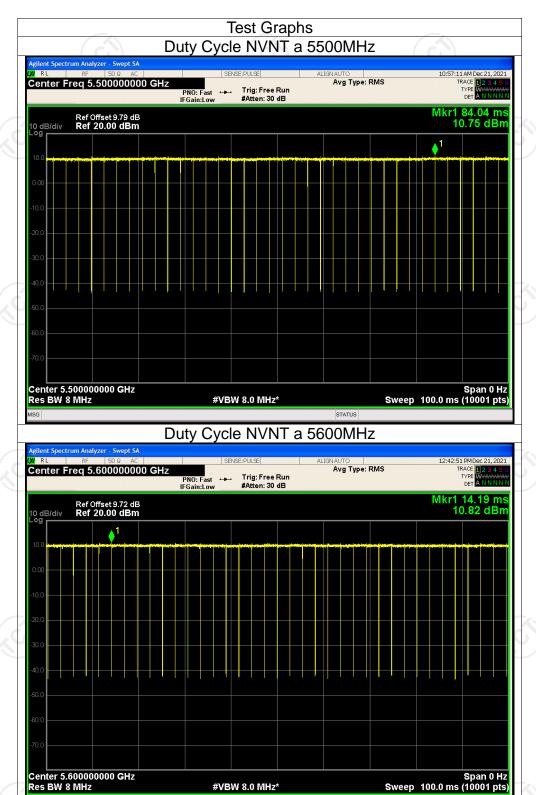












#VBW 8.0 MHz*