Global United Technology Services Co., Ltd.

Report No.: GTS202108000221F02

TEST REPORT

Wyrestorm Technologies LLC **Applicant:**

23 Wood Rd, Round Lake, New York 12151, United States **Address of Applicant:**

Shen Zhen Proitav Technology Co., Ltd Manufacturer/Factory:

301-401, Building 16, Hejing Industrial Park, No.87, Hexiu West Address of

Road, Heping Community, Fuhai St., Baoan District, Shenzhen,

Manufacturer/Factory: China

Equipment Under Test (EUT)

Product Name: HDMI Switcher

Model No.: SW-540-TX-W (MS330-A01)

Trade Mark: WyreStorm

FCC ID: 2A2CW-SW540TXW

FCC CFR Title 47 Part 15 Subpart E Section 15.407 **Applicable standards:**

August 23, 2021 Date of sample receipt:

Date of Test: August 24, 2021-September 10, 2021

Date of report issue: September 13, 2021

Test Result: PASS *

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Page 1 of 40

2 Version

Version No.	Date	Description
00	September 13, 2021	Original
8 8 7 8		
p 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2
	2 2 2 2 2	2 2 2
2 2 2 2 2	2 2 2	2 2 2 2

Prepared By:	Trankly	Date:		September	13, 2021	
	Project Engineer		60		6	650
Check By:	Labour Cust	Date:	<i>f</i>	September	13, 2021	
	Reviewer					

3 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 CONTENTS	3
4 TEST SUMMARY	4
4.1 MEASUREMENT UNCERTAINTY	4
5 GENERAL INFORMATION	5
5.1 GENERAL DESCRIPTION OF EUT	
5.3 TEST FACILITY	6
5.5 DESCRIPTION OF SUPPORT UNITS	6
5.6 DEVIATION FROM STANDARDS	
6 TEST INSTRUMENTS LIST	7
7 TEST RESULTS AND MEASUREMENT DATA	9
7.1 ANTENNA REQUIREMENT:	
7.3 EMISSION BANDWIDTH	
7.5 POWER SPECTRAL DENSITY7.6 BAND EDGE	
7.7 RADIATED EMISSION	
8 TEST SETUP PHOTO	40
9 EUT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203	PASS
AC Power Line Conducted Emission	FCC part 15.207	PASS
Emission Bandwidth	FCC part 15.407	PASS
Peak Transmit Power	FCC part 15.407(a)(1)	PASS
Power Spectral Density	FCC part 15.407(a)(1)	PASS
Undesirable Emission	FCC part 15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Band Edge	FCC part 15.407(b)(1)	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

Test Method: KDB 662911 D01 Multiple Transmitter Output v02r01

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014

5 General Information

5.1 General Description of EUT

Product Name:	HDMI Switch	er			
Model No.:	SW-540-TX-	W (MS330-A01)			
Serial No.:	WS21260000	026	, B - 32	B B	
Test sample(s) ID:	GTS2021080	000221-1	g g	9 2	
Sample(s) Status:	Engineer san	nple	. 2 2	2 2	
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels	
	U-NII Band I	IEEE 802.11ac 20MHz	5180-5240	4	
Modulation technology:	OFDM			9 29	
Antenna Type:	Integral Antenna				
Antenna gain:	ANT 1: 2dBi				
	ANT 2: 2dBi				
Power supply:	Adapter 1:			E E	
	Model: NBS2	4J120200D5			
0 0 0 0	Input: AC 100	0-240V, 50/60Hz, 0.6A			
	Output: DC 12.0V, 2.0A, 24.0W				
	Adapter 2:				
	Model: FJ-SW1202000N				
	Input: AC 100	0-240V, 50/60Hz, 0.6A Max			
	Output: DC 1	2.0V, 2.0A, 24.0W			

Channel list	for 802.11ac	(HT20)	10 10	de de	69		9 9
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz

5.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation..

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11ac(HT20)	6/6.5 Mbps

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

	Manufacturer	Description	Model	Serial Number
100	Lenovo	Notebook PC	E40-80	N/A

5.6 Deviation from Standards

None.

6 Test Instruments list

Rad	iated Emission:	2 0 2	9 2 2	2	9 2	0 1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1 6	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	A HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breithand		BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Con	ducted Emission	6 - 6 - 6	6 6 .	F 6	4	
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
7	Thermo meter	ØKTJ Ø	TA328	GTS233	June. 24 2021	June. 23 2022
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022
9	// ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022	

General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022

7 Test results and Measurement Data

7.1 Antenna requirement:

15.203 requirement:

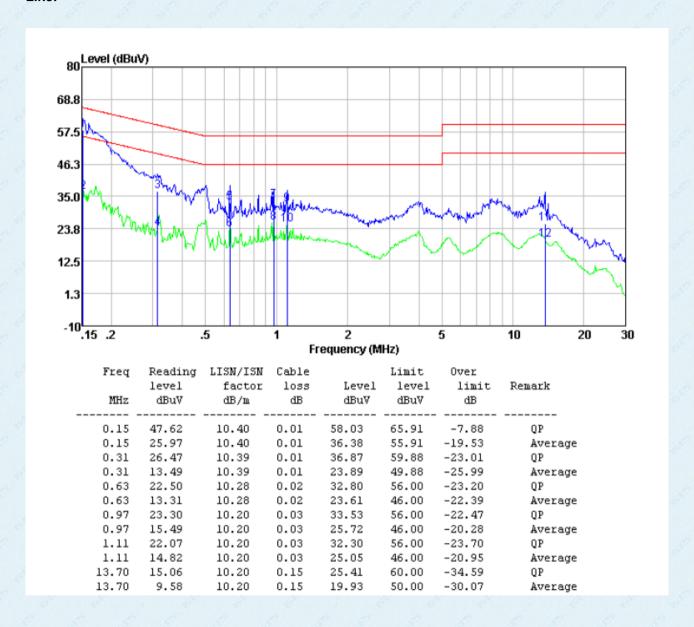
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2dBi, reference to the appendix II for details

7.2 Conducted Emissions

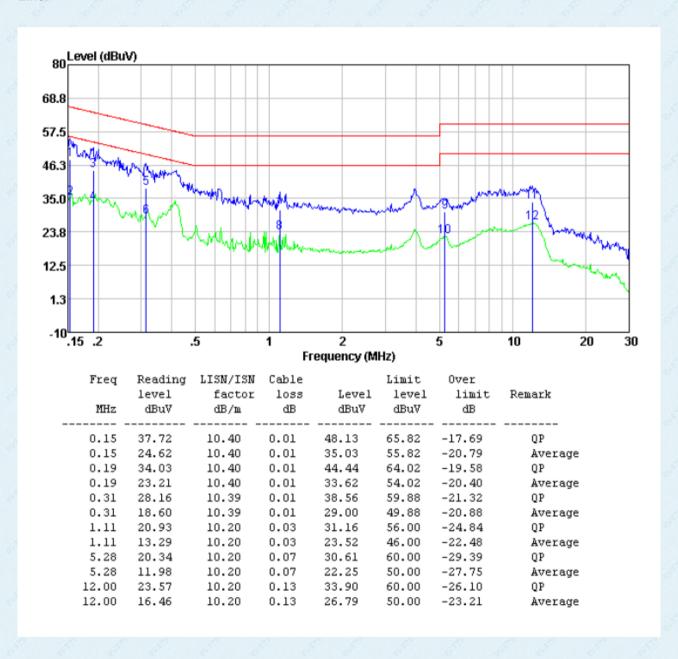
Test Requirement:	FCC Part15 C Section 15.20	7	9 9	100				
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz			60				
Class / Severity:	Class B	0 0 0	2 2	20				
Receiver setup:	RBW=9KHz, VBW=30KHz			9				
Limit:	Francisco (MIII-)	Limi	t (dBuV)	61				
	Frequency range (MHz)	Quasi-peak	Average	.S. P.				
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46	6				
	5-30	60	50	150				
	* Decreases with the logarith	m of the frequency.	9 19 19	1				
	are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.							
Test setup:	Refe	rence Plane		9				
	AUX Equipment Test table/Insulation p Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabiliza Test table height=0.8m	EMI Receive	ilter — AC powe	ır				
	rest table neight-o.om							
Test Instruments:	Refer to section 5.10 for deta	ils A	9 19 19	2				
Test Instruments: Test mode:			2 2 2	4				
	Refer to section 5.10 for detail		Press.: 1012	mbar				
Test mode:	Refer to section 5.10 for detail	S 69	Press.: 1012	mbar				

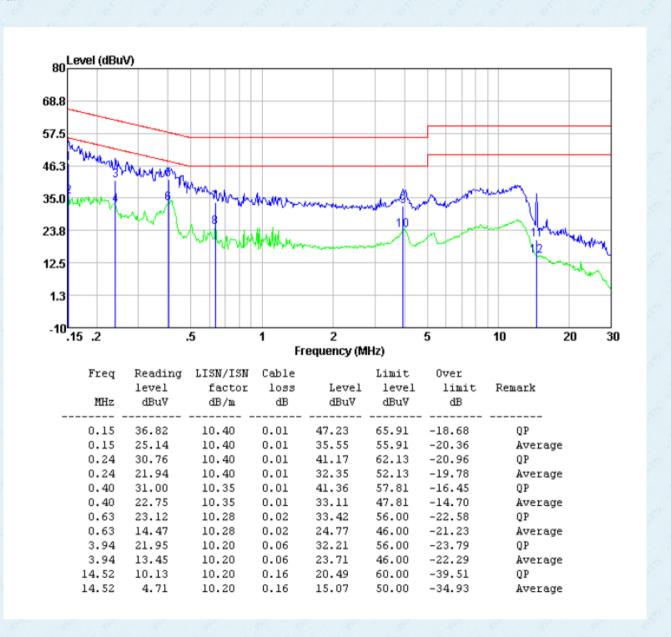

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

Adapter 1

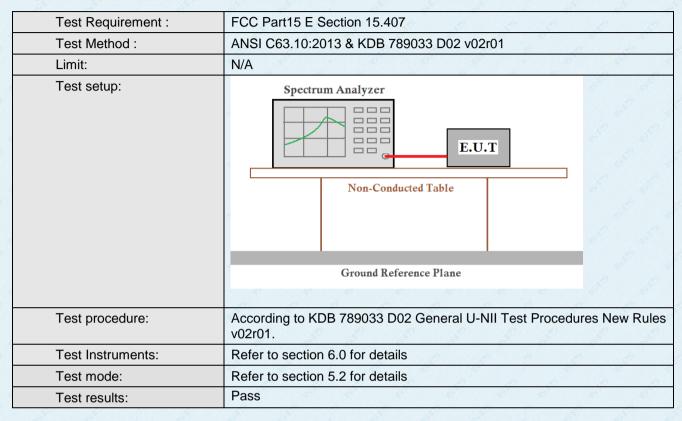
Line:


Neutral:


Adapter 2

Line:

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Emission Bandwidth

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.4 Peak Transmit Power

Test Requirement	FCC Part15 E Section	15.407		
Test Method:	ANSI C63.10:2013 & K	DB 789033 D02 v02r01		
FCC Limit:	Frequency band (MHz)	Limit		
	5150-5250	≤1W(30dBm) for master device		
	≤250MW(23.98dBm) for client device			
	5250-5350	≤250Mw(23.98dBm) for client device or 11dBm+10logB*		
	5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*		
	The maximum conductinterval of continuous terms of an rms-equiv			
IC Limit:		hall not exceed 200 mW or 10 + 10 log10B, dBm, s. B is the 99% emission bandwidth in megahertz		
Test setup:	Power Meter Non-Conducted Ground Reference			
Test procedure:				
rest procedure.	(i) Measurements meter with a th conditions liste	n RF average power meter may be performed using a wideband RF power ermocouple detector or equivalent if all of the d below are satisfied configured to transmit continuously or to transmit duty cycle.		
	b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.			
	c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.			
		d of the transmitted signal by at least a factor of		
	five. (ii) If the transmitte	of the transmitted signal by at least a factor of er does not transmit continuously, measure the f the transmitter output signal as described in		
	five. (ii) If the transmitted duty cycle, x, of section B). (iii) Measure the average of the section B.	er does not transmit continuously, measure the f the transmitter output signal as described in		
	five. (ii) If the transmitted duty cycle, x, on section B). (iii) Measure the avoir is an average of the company of the comp	er does not transmit continuously, measure the f the transmitter output signal as described in verage power of the transmitter. This measurement		
Test Instruments:	five. (ii) If the transmitted duty cycle, x, on section B). (iii) Measure the avoir is an average of the company of the comp	er does not transmit continuously, measure the f the transmitter output signal as described in verage power of the transmitter. This measurement over both the on and off periods of the transmitter. surement in dBm by adding 10 log(1/x) where x is e.g., 10log(1/0.25) if the duty cycle is 25 percent).		
Test Instruments: Test mode:	five. (ii) If the transmitted duty cycle, x, or section B). (iii) Measure the avis an average of the duty cycle (er does not transmit continuously, measure the f the transmitter output signal as described in verage power of the transmitter. This measurement over both the on and off periods of the transmitter. surement in dBm by adding 10 log(1/x) where x is e.g., 10log(1/0.25) if the duty cycle is 25 percent).		

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.5 Power Spectral Density

Test Requirement:	nt: FCC Part15 E Section 15.407					
Test Method :	ANSI C63.10:2013 & KDB	ANSI C63.10:2013 & KDB 789033 D02 v02r01				
FCC Limit:	Frequency band (MHz)	Limit				
	5150-5250	≤17dBm in 1MHz for master device				
		≤11dBm in 1MHz for client device				
	5250-5350	≤11dBm in 1MHz for client device				
	5470-5725	≤11dBm in 1MHz for client device				
	conducted emission by dii to the equipment under te					
IC Limit:	e.i.r.p. spectral density band.	shall not exceed 10 dBm in any 1.0 MHz				
Test setup:	Spectrum Analyzer Non-Conduct Ground Reference					
Test procedure:	being tested by followir maximum conducted o receiver: select the appalternatives to each) are labeled, "Compute power 2) Use the peak search further spectrum. 3) Make the following adjust applicable: a) If Method SA-2 or Sawhere x is the duty cycle b) If Method SA-3 Alter used in step E)2)g)(viiii)	ver spectrum for the EUT operating mode ing the instructions in section E)2) for measuring sutput power using a spectrum analyzer or EMI propriate test method (SA-1, SA-2, SA-3, or and apply it up to, but not including, the step ver". unction on the instrument to find the peak of the sustments to the peak value of the spectrum, if A-2 Alternative was used, add 10 log(1/x), sile, to the peak of the spectrum. renative was used and the linear mode was 1, add 1 dB to the final result to compensate for a linear averaging and power averaging.				
Test Instruments:	Refer to section 6.0 for deta	ails				
Test mode:	Refer to section 5.2 for deta					
Test results:	Pass	Burnell Burnell Burnell Burnell Burnell				

Measurement Data: The detailed test data see Appendix for WIFI_5G.

7.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205					
Test Method:	ANSI C63.10:201	3	49	9 9		
Test site:	Measurement Dis	stance: 3m (Se	emi-Anecho	ic Chambe	r)	
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 120KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value	
Limit:	outside of th dBm/MHz. (2) For transmitte outside of th dBm/MHz. I generate en applicable te band (include emission EIR) (3) For transmitte	MHz 6MHz 6MHz 6MHz 6Hz 6Hz 6Hz 6Hz 6sion limits: ers operating e 5.15-5.35 G ers operating e 5.15-5.35 G evices operation in the choical required indoor use the choical required in the choical requi	in the 5.25- in the 5.25- in the band shating in the 5.15-5.2 ements for se) or alter dBm/MHz in the 5.47-3	-5.25 GHz hall not excee 5.25-5.35 GHz becoperation in the 5.15-5 5.725 GHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Quasi-peak Value Average Value Peak Value band: all emissions eed an EIRP of -27 band: all emissions eed an EIRP of -27 band must meet all and must meet	
Test Procedure:	ground at a 3 determine the b. The EUT was antenna, which tower. c. The antenna ground to determine the measurer d. For each sus case and the meters and the degrees to firm e. The test-recesspecified Bail f. If the emission the limit specified for the EUT was an determined to the second the seco	meter camber position of the set 3 meters che was mounted being the set 3 meters che was mounted to the maximum of the maximum	er. The table the highest ra away from the don't he to the drom one the aximum value fizations of the the was turne the was turne the was turne the was turne the was to Pe flaximum Ho EUT in peak ting could be the don't he will the don't he was ting could be the don't he will the don't he will the was turne t	was rotate adiation. the interferon p of a varial meter to foue of the fiethe antennation heights find from 0 deepends and the control of the	ur meters above the eld strength. Both a are set to make ged to its worst rom 1 meter to 4 egrees to 360	

	peak or average method as specified and then reported in a data sheet.			
Test setup:	For radiated emissions above 1GHz Comparison of the content of			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

All adapter have test, only the worst case adapter 1 report.

Above 1GHz

ANT 1:

802.11ac(H	Г20)	3	9 9	- 9	PK	20	9 4	9 9
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150	44.36	32.07	8.99	37.49	47.93	68.2	-20.27	Horizontal
5350	46.23	31.75	9.29	37.2	50.07	68.2	-18.13	Horizontal
5150	43.21	32.07	8.99	37.49	46.78	68.2	-21.42	Vertical
5350	43.96	31.75	9.29	37.2	47.8	68.2	-20.4	Vertical
802.11ac(H	Т20)		9 9	9	AV		9	9
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150	35.24	32.07	8.99	37.49	38.81	54	-15.19	Horizontal
5350	32.21	31.75	9.29	37.2	36.05	54	-17.95	Horizontal
5150	32.65	32.07	8.99	37.49	36.22	54	-17.78	Vertical
5350	35.14	31.75	9.29	37.2	38.98	54	-15.02	Vertical

ANT 2:

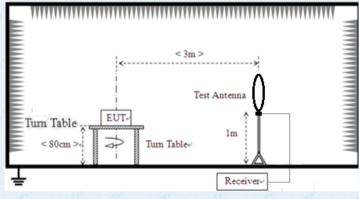
802.11ac(H	T20)		, ° .	4	PK	Y	, w	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/ m)	Over Limit (dB)	polarization
5150	43.21	32.07	8.99	37.49	46.78	68.2	-21.42	Horizontal
5350	45.69	31.75	9.29	37.2	49.53	68.2	-18.67	Horizontal
5150	43.21	32.07	8.99	37.49	46.78	68.2	-21.42	Vertical
5350	42.31	31.75	9.29	37.2	46.15	68.2	-22.05	Vertical
802.11ac(H	T20)	8 8	2 8	2	AV	10	7 5	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/ m)	Over Limit (dB)	polarization
5150	34.13	32.07	8.99	37.49	37.7	54	-16.3	Horizontal
5350	31.59	31.75	9.29	37.2	35.43	54	-18.57	Horizontal
5150	31.54	32.07	8.99	37.49	35.11	54	-18.89	Vertical
5350	34.03	31.75	9.29	37.2	37.87	54	-16.13	Vertical

7.7 Radiated Emission

Test Requirement :	FCC Part15 C Section 15.209 and 15.205
Test Method :	ANSI C63.10: 2013
Test Frequency Range:	9kHz to 40GHz

		0 20 20	7.34 ·		202108000221F02
Test site:	Measurement Dis	stance: 3m (Ser			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9kHz-150KHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value
	150kHz-30MHz		9kHz	30kHz	Quasi-peak Value
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
	710070 10112	AV	1MHz	3MHz	Average Value
FCC Limit:					
		eld strength (microvo	olts/meter)	Measuremen	nt distance (meters)
	8	0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz)			300
					30
	30-88	0**			3
		50**			3
		00**			3
	Above 960 50	00			3
	the frequency b MHz. Radiated measurements	ands 9-90 kHz emission limits employing an	z, 110-490 s in these t average d	kHz and a three band etector.	ds are based on
Test Procedure:	1GHz and 1. meter cambe position of th 2. The EUT wa antenna, wh tower. 3. The antenna the ground t Both horizor make the m 4. For each su case and the meters and degrees to f 5. The test-rec Specified Ba 6. If the emissi the limit spe values of the did not have	f the EUT. It procedure as the est procedure: It splaced on the set procedure: It splaced on the set procedure: It splaced on the set set of about a set 3 meters which was mounted a height is varied to determine the other of determine the spected emission of the antennation of the maximulation of the set of	top of a rota ove 1GHz) as rotated 36 sion. away from the ed on the to d from one e maximum polarization on, the EUT was turned the was turned m reading. as set to Pelaximum Ho EUT in peak ing could be reported. O	ating table (above the geometric form) a varial meter to for value of the analysis arrange of the analysis arrange of the fold Mode. The control of the mode was a stopped and otherwise the tested one	(0.8m for below ground at a 3 to determine the ence-receiving ble-height antenna ur meters above e field strength. tenna are set to ged to its worst from 1 meter to 4 grees to 360 Function and a 10dB lower than and the peak ne emissions that

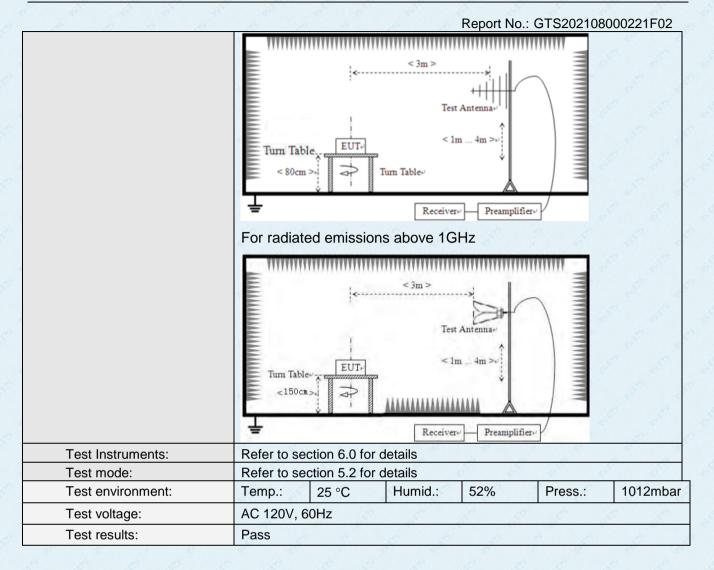
Xixiang Road, Baoan District, Shenzhen, Guangdong, China


- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal halfwave dipole antenna by the following formula:

EIRP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.

Test setup:


For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

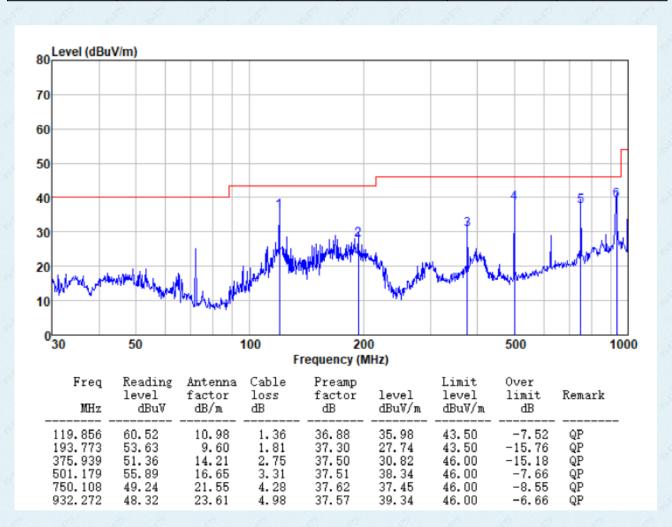
Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

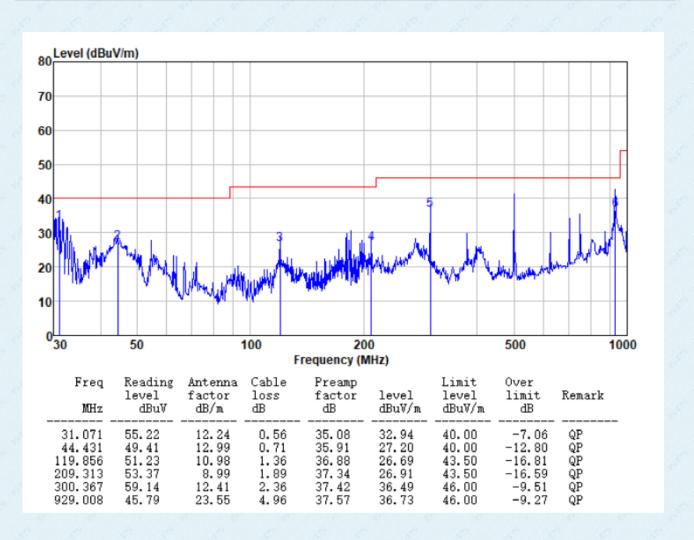
Measurement Data:

9 kHz ~ 30 MHz

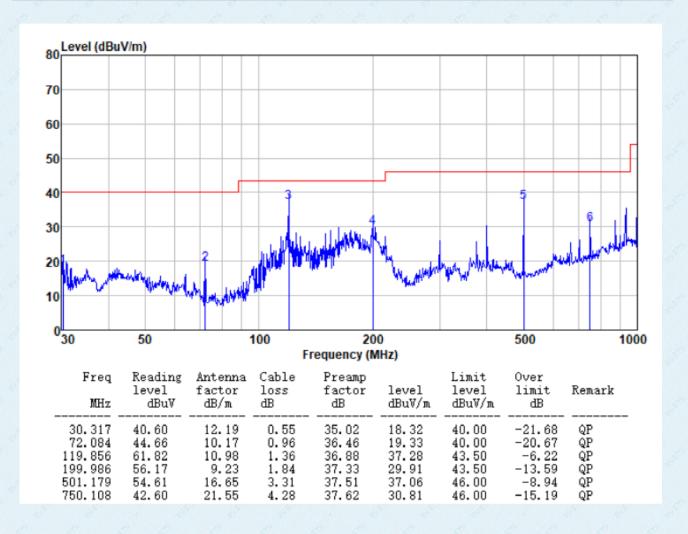

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

All antennas have test, only the worst case ANT 1 report.

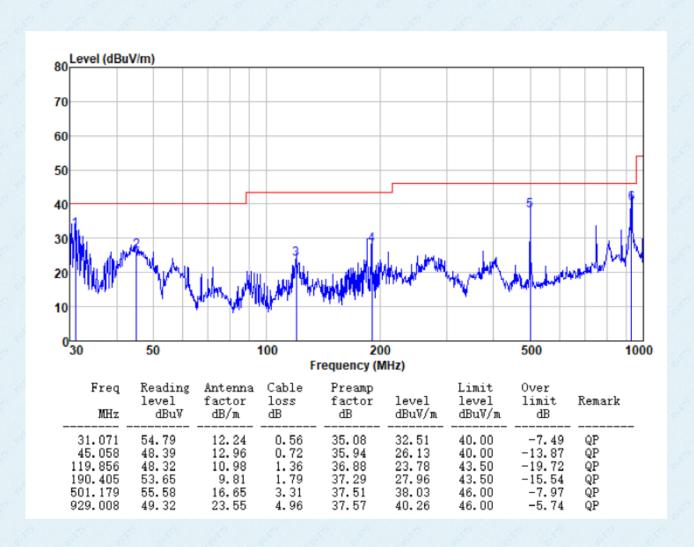
Adapter 1:


30MHz~1GH

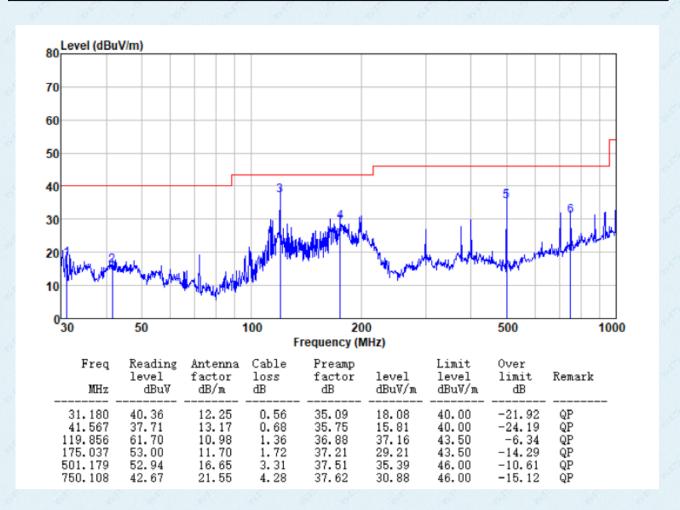
						l
Test mode:	802.11ac(HT20)	Test channel:	Lowest	Polarziation:	Horizontal	l



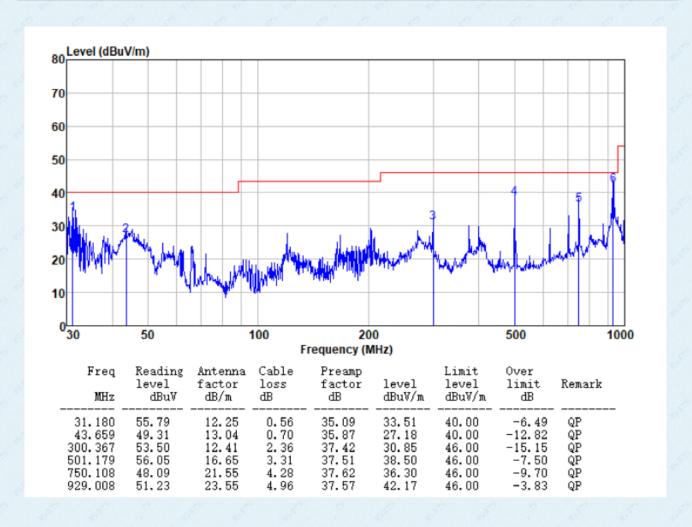
Test mode:	802.11ac(HT20)	Test channel:	Lowest	Polarziation:	Vertical
------------	----------------	---------------	--------	---------------	----------



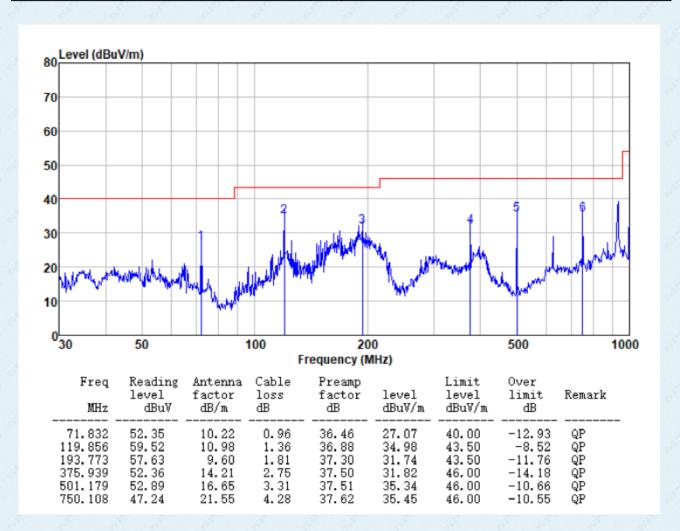
Test mode:	802.11ac(HT20)	Test channel:	Middle	Polarziation:	Horizontal

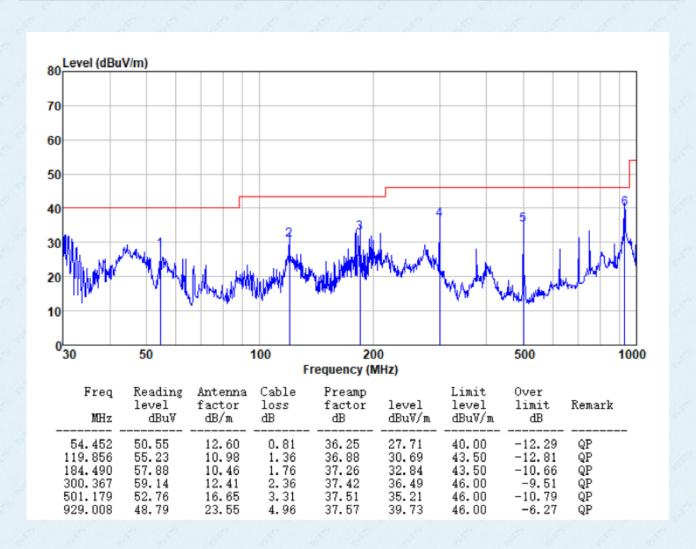


Test mode:	802.11ac(HT20)	Test channel:	Middle	Polarziation:	Vertical
------------	----------------	---------------	--------	---------------	----------

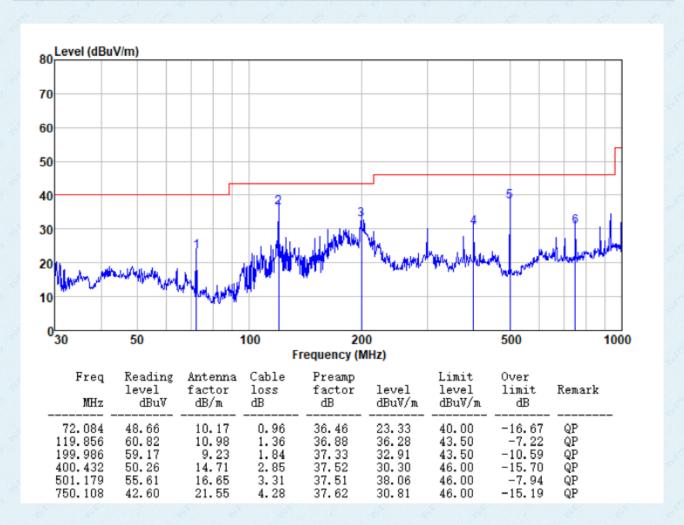


Test mode: 802.11ac(HT20) Test channel: Highest Polarziation: Horizontal

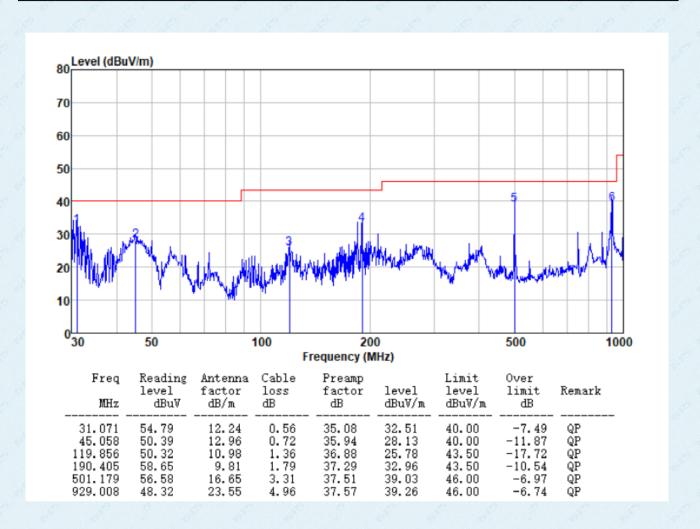

Test mode:	802.11ac(HT20)	Test channel:	Highest	Polarziation:	Vertical


Adapter 2: 30MHz~ 1GHz

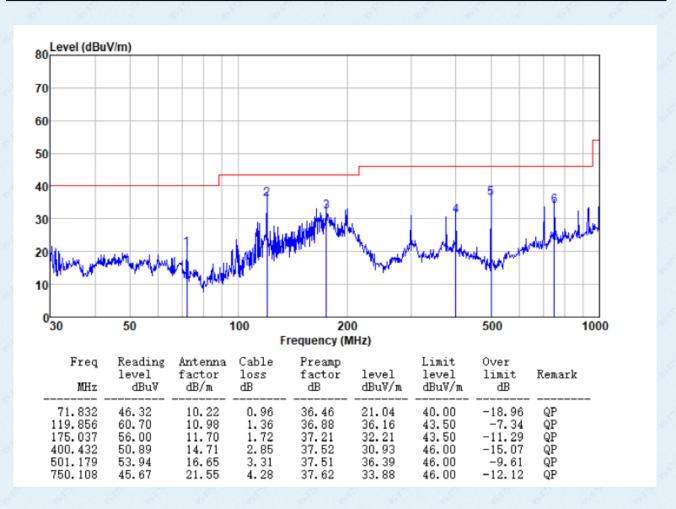
1					
Test mode:	802.11ac(HT20)	Test channel:	Lowest	Polarziation:	Horizontal



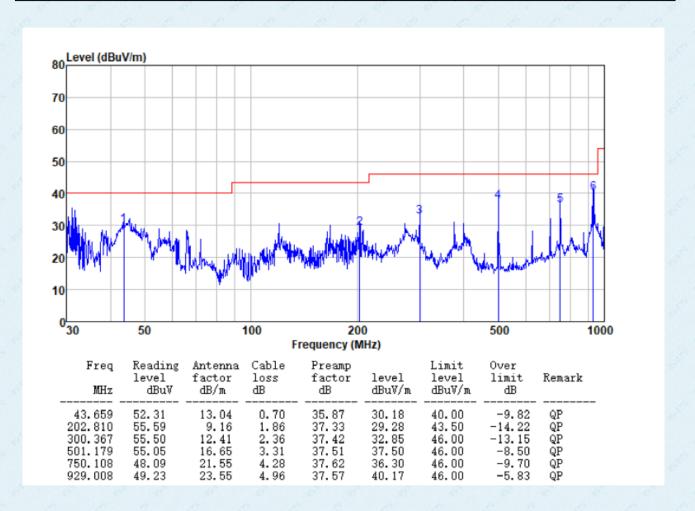
Test mode:	802.11ac(HT20)	Test channel:	Lowest	Polarziation:	Vertical



Test mode:	802.11ac(HT20)	Test channel:	Middle	Polarziation:	Horizontal



<					
Test mode:	802.11ac(HT20)	Test channel:	Middle	Polarziation:	Vertical



Test mode: 802.11ac(HT20) Test channel: Highest Polarziation: Horizontal

<					
Test mode:	802.11ac(HT20)	Test channel:	Highest	Polarziation:	Vertical

Above 1GHz

ANT 1:

ANT 1:		6 6			6 6		6		
802.11ac(H	Γ20) 5180N	//Hz	8		PK	8 6			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	31.20	39.67	14.62	32.65	52.84	68.20	-15.36	Vertical	
15540.00	32.03	38.60	17.66	34.46	53.83	68.20	-14.37	Vertical	
10360.00	34.21	39.67	14.62	32.65	55.85	68.20	-12.35	Horizontal	
15540.00	34.26	38.60	17.66	34.46	56.06	68.20	-12.14	Horizontal	
802.11ac(H	Γ20) 5180N	ИHz	S. C.	St. St.	AV	8 8		S S	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10360.00	20.03	39.67	14.62	32.65	41.67	54.00	-12.33	Vertical	
15540.00	21.01	38.60	17.66	34.46	42.81	54.00	-11.19	Vertical	
10360.00	20.96	39.67	14.62	32.65	42.60	54.00	-11.4	Horizontal	
15540.00	22.54	38.60	17.66	34.46	44.34	54.00	-9.66	Horizontal	
802.11ac(H	Γ20) 5200N	ИHz	250	8 . 8	PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	34.65	39.75	14.63	32.71	56.32	68.20	-11.88	Vertical	
15600.00	30.01	38.33	17.67	34.17	51.84	68.20	-16.36	Vertical	
10400.00	30.11	39.75	14.63	32.71	51.78	68.20	-16.42	Horizontal	
15600.00	31.08	38.33	17.67	34.17	52.91	68.20	-15.29	Horizontal	
802.11ac(H	Γ20) 5200N	ИHz	- E	S S	AV	8 - 8	4	e e	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10400.00	21.32	39.75	14.63	32.71	42.99	54.00	-11.01	Vertical	
15600.00	21.35	38.33	17.67	34.17	43.18	54.00	-10.82	Vertical	
10400.00	21.03	39.75	14.63	32.71	42.70	54.00	-11.3	Horizontal	
15600.00	20.98	38.33	17.67	34.17	42.81	54.00	-11.19	Horizontal	
802.11ac(H	Γ20) 5240N	ИHz	- 6°	61 61	PK		65		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	30.32	39.82	14.68	32.86	51.96	68.20	-16.24	Vertical	
15720.00	34.12	38.09	17.73	33.66	56.28	68.20	-11.92	Vertical	
10480.00	31.02	39.82	14.68	32.86	52.66	68.20	-15.54	Horizontal	
15720.00	32.65	38.09	17.73	33.66	54.81	68.20	-13.39	Horizontal	

802.11ac(H	802.11ac(HT20) 5240MHz					AV			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
10480.00	23.31	39.82	14.68	32.86	44.95	54.00	-9.05	Vertical	
15720.00	23.96	38.09	17.73	33.66	46.12	54.00	-7.88	Vertical	
10480.00	21.01	39.82	14.68	32.86	42.65	54.00	-11.35	Horizontal	
15720.00	20.98	38.09	17.73	33.66	43.14	54.00	-10.86	Horizontal	

ANT 2:

802.11ac(H	T20) 5180N	1Hz	6 6	8 8	PK		6 6	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	29.31	39.67	14.62	32.65	50.95	68.20	-17.25	Vertical
15540.00	29.87	38.60	17.66	34.46	51.67	68.20	-16.53	Vertical
10360.00	31.03	39.67	14.62	32.65	52.67	68.20	-15.53	Horizontal
15540.00	33.21	38.60	17.66	34.46	55.01	68.20	-13.19	Horizontal
802.11ac(H	T20) 5180N	lHz	- 4 ⁸ - 4	Y 6	AV		8	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.00	18.01	39.67	14.62	32.65	39.65	54.00	-14.35	Vertical
15540.00	20.54	38.60	17.66	34.46	42.34	54.00	-11.66	Vertical
10360.00	19.32	39.67	14.62	32.65	40.96	54.00	-13.04	Horizontal
15540.00	22.10	38.60	17.66	34.46	43.90	54.00	-10.1	Horizontal
802.11ac(H	T20) 5200N	lHz	\$ 6		PK	. 6	6 6	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	33.68	39.75	14.63	32.71	55.35	68.20	-12.85	Vertical
15600.00	29.21	38.33	17.67	34.17	51.04	68.20	-17.16	Vertical
10400.00	29.65	39.75	14.63	32.71	51.32	68.20	-16.88	Horizontal
15600.00	30.32	38.33	17.67	34.17	52.15	68.20	-16.05	Horizontal
802.11ac(H	T20) 5200N	lHz	6 6		AV		6	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	19.50	39.75	14.63	32.71	41.17	54.00	-12.83	Vertical
15600.00	19.54	38.33	17.67	34.17	41.37	54.00	-12.63	Vertical
10400.00	20.31	39.75	14.63	32.71	41.98	54.00	-12.02	Horizontal
15600.00	19.30	38.33	17.67	34.17	41.13	54.00	-12.87	Horizontal

802.11ac(HT20) 5240MHz					PK			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	28.15	39.82	14.68	32.86	49.79	68.20	-18.41	Vertical
15720.00	30.32	38.09	17.73	33.66	52.48	68.20	-15.72	Vertical
10480.00	28.41	39.82	14.68	32.86	50.05	68.20	-18.15	Horizontal
15720.00	30.21	38.09	17.73	33.66	52.37	68.20	-15.83	Horizontal
802.11ac(HT20) 5240MHz					AV			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480.00	20.64	39.82	14.68	32.86	42.28	54.00	-11.72	Vertical
15720.00	22.69	38.09	17.73	33.66	44.85	54.00	-9.15	Vertical
10480.00	20.14	39.82	14.68	32.86	41.78	54.00	-12.22	Horizontal
15720.00	19.32	38.09	17.73	33.66	41.48	54.00	-12.52	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. Test result margin more than 20dB under PK limit, then average measurement needn't be performed.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055,					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on Ar	Temperature Chamber EUT Variable Power Supply Intenna connector				
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Test results: Pass					

Measurement Data: The detailed test data see Appendix for WIFI_5G.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---