

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: INFINIX MOBILITY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT, Hong Kong RA230331-16121E-RF-00A 2AIZN-XS01

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Report Date: Portable Wireless Speaker XS01 N/A Infinix 2023/03/31 2023/04/17

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy. Yu

Andy Yu EMC Engineer

Approved By:

Candy . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503290
 Web: www.atc-lab.com

Version 7: 2023-01-30

Page 1 of 67

FCC-BT

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
TEST METHODOLOGY	••••••
TEST FACILITY	
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
Special Accessories Eouipment Modifications	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	7
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 – RF EXPOSURE	11
APPLICABLE STANDARD	11
FCC §15.203 – ANTENNA REQUIREMENT	12
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver Setup	
Test Procedure	
TRANSD FACTOR & MARGIN CALCULATION	14
TEST DATA	
FCC §15.205, §15.209 & §15.247(D) - RADIATED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
Test Procedure	
Factor & Margin Calculation	
TEST DATA	18
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	
Test Procedure Test Data	
TEST DATA	26

FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	27
APPLICABLE STANDARD	27
Test Procedure	
TEST DATA	28
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	29
APPLICABLE STANDARD	29
Test Procedure	
TEST DATA	29
FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	30
TEST DATA	30
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	31
APPLICABLE STANDARD	
Test Procedure	
ТЕЅТ DATA	31
FCC §15.247(D) - BAND EDGES TESTING	32
APPLICABLE STANDARD	32
Test Procedure	32
TEST DATA	32
APPENDIX	
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	43
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENT	62

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230331-16121E-RF-00A	Original Report	2023-04-17

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	Bluetooth: 2402~2480MHz
Maximum conducted Peak output power	Bluetooth: 7.80dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	2dBi (provided by the applicant)
Voltage Range	DC3.7V from battery or DC5V from Adapter
Sample serial number	23KB_4 for Radiated Emissions Test 23KB_3 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	5%
RF output pov	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz-18GHz	4.98dB
Radiated	18GHz-26.5GHz	5.06dB
	26.5GHz-40GHz	4.72dB
Temperature		1 °C
Humidity		6%
Supply voltages		0.4%

Measurement Uncertainty

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"BT_Tool V1.1.0*" exercise software was used and the power level is 6*. The software and power level was provided by the manufacturer.

Special Accessories

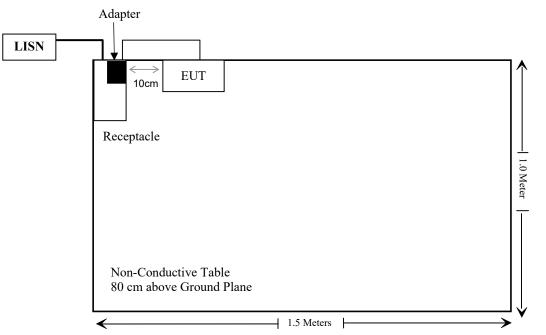
No special accessory.

Equipment Modifications

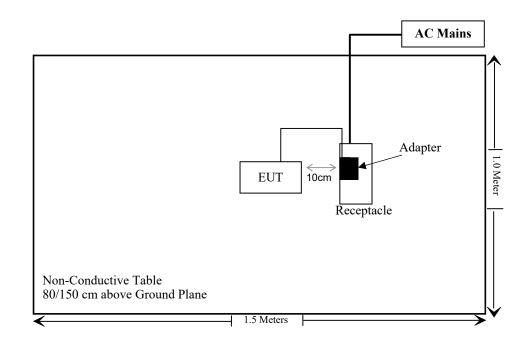
No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
TECNO	Adapter	U050TSA	AH07015321906


External I/O Cable

Cable Description	Length (m)	From Port	То
Unshielded Un-detachable AC cable	1.2	LISN	Receptacle
Un-shielding Detachable USB Cable	0.5	EUT	Adapter


Report No.: RA230331-16121E-RF-00A

Block Diagram of Test Setup

For conducted emission

For Radiated Emissions:

Version 7: 2023-01-30

Page 8 of 67

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC§15.247 (i), §1.1307 (b) (1) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
	Conducted Emissions Test					
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24	
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24	
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/12/07	2023/12/06	
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24	
	Conducted E	mission Test Sof	tware: e3 19821b (V9)		
		Radiated Emiss	ions Test			
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24	
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24	
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07	
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07	
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07	
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05	
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29	
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25	
	Radiated En	nission Test Softw	ware: e3 19821b (V	/9)		
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24	
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24	
		RF Conducte	d Test			
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24	
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23	
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power (dBm)	Max tune-up conducted power (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BT	2402-2480	8.0	6.31	5	2.0	3.0	Yes

Result: No SAR test is required

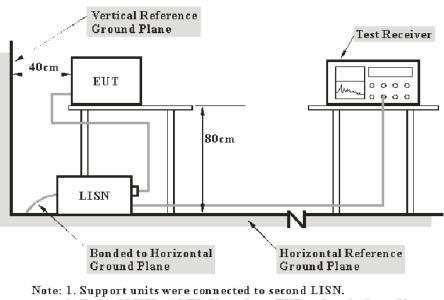
FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT has one internal antenna, which was permanently attached, and the maximum antenna gain is 2.0dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Version 7: 2023-01-30

Transd Factor & Margin Calculation

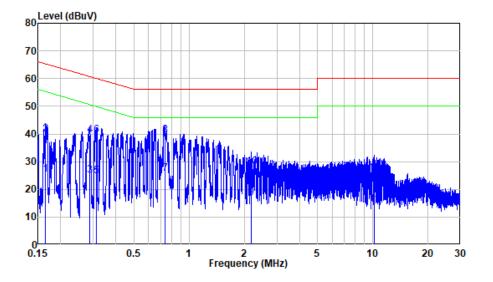
The Transd factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Transd Factor = LISN VDF + Cable Loss

The "**Over Limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a over limit of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Over Limit = level – Limit Level= reading level+ Transd Factor

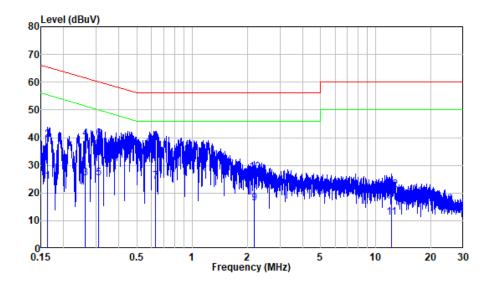
Test Data


Environmental Conditions

Temperature:	21 °C
Relative Humidity:	60%
ATM Pressure:	101.0 kPa

The testing was performed by Jerry Wu on 2023-04-11.

EUT operation mode: Charging + BT Transmitting (the worst case is 8DPSK mode, low channel)


AC 120V/60 Hz, Line

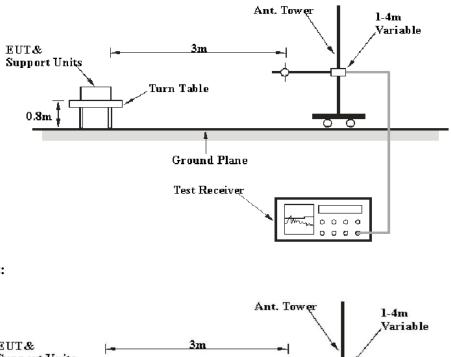
Site :	:	Shielding Room
Condition:	:	Line
Job No. :	:	RA230331-16121E-RF
Mode :	:	Charging+BT Transmitting
Power :		AC 120V 60Hz

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.165	10.23	15.14	25.37	55.20	-29.83	Average
2	0.165	10.23	29.54	39.77	65.20	-25.43	QP
3	0.289	10.30	14.79	25.09	50.57	-25.48	Average
4	0.289	10.30	29.39	39.69	60.57	-20.88	QP
5	0.312	10.30	14.45	24.75	49.93	-25.18	Average
6	0.312	10.30	29.13	39.43	59.93	-20.50	QP
7	0.738	10.41	15.24	25.65	46.00	-20.35	Average
8	0.738	10.41	29.19	39.60	56.00	-16.40	QP
9	2.185	10.42	6.41	16.83	46.00	-29.17	Average
10	2.185	10.42	17.65	28.07	56.00	-27.93	QP
11	10.152	10.39	3.98	14.37	50.00	-35.63	Average
12	10.152	10.39	15.47	25.86	60.00	-34.14	QP

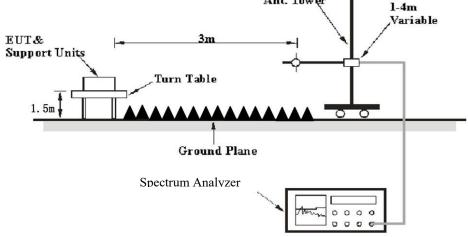
AC 120V/60 Hz, Neutral

Site	:	Shielding Room
Condition	:	Neutral
Job No.	:	RA230331-16121E-RF
Mode	:	Charging+BT Transmitting
Power	:	AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.163	9.80	14.43	24.23	55.30	-31.07	Average
2	0.163	9.80	29.48	39.28	65.30	-26.02	QP
3	0.263	9.80	15.59	25.39	51.35	-25.96	Average
4	0.263	9.80	29.82	39.62	61.35	-21.73	QP
5	0.310	9.80	15.56	25.36	49.98	-24.62	Average
6	0.310	9.80	29.61	39.41	59.98	-20.57	QP
7	0.630	9.81	14.25	24.06	46.00	-21.94	Average
8	0.630	9.81	28.46	38.27	56.00	-17.73	QP
9	2.170	9.82	6.43	16.25	46.00	-29.75	Average
10	2.170	9.82	17.51	27.33	56.00	-28.67	QP
11	12.156	9.92	1.37	11.29	50.00	-38.71	Average
12	12.156	9.92	11.29	21.21	60.00	-38.79	QP


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

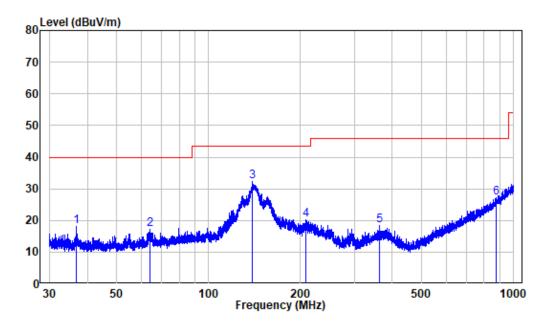
Temperature:	20.5~24 °C
Relative Humidity:	54~57 %
ATM Pressure:	101.0kPa

The testing was performed by Jason Liu on 2023-04-11 for below 1GHz and Jason Liu on 2023-04-13 for above 1GHz

EUT operation mode: Charging + BT Transmitting

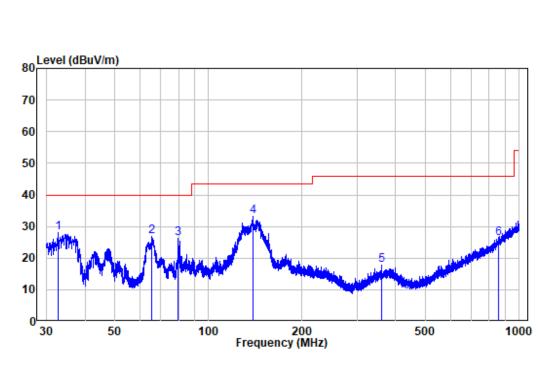
Note: Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded

Version 7: 2023-01-30


Page 18 of 67

FCC-BT

30MHz-1GHz: (worst case is 8DPSK Mode, low channel)


Note: When the test result of Peak was less than the limit of QP, just the peak value was recorded.

Horizontal:

Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230331-16121E-RF
Test Mode:	Charging+BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	36.750	-14.47	32.44	17.97	40.00	-22.03	Peak
2	64.348	-13.75	30.95	17.20	40.00	-22.80	Peak
3	138,995	-10.55	42.74	32.19	43.50	-11.31	Peak
4	208.306	-10.88	30.99	20.11	43.50	-23.39	Peak
5	364.100	-11.47	29.91	18.44	46.00	-27.56	Peak
6	875.631	-1.51	28.55	27.04	46.00	-18.96	Peak

Site : chamber Condition: 3m VERTICAL Job No. : RA230331-16121E-RF Test Mode: Charging+BT Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	32.706	-14.37	42.51	28.14	40.00	-11.86	Peak
2	65.774	-13.77	40.67	26.90	40.00	-13.10	Peak
3	79.800	-13.19	39.50	26.31	40.00	-13.69	Peak
4	139.117	-10.55	43.72	33.17	43.50	-10.33	Peak
5	360.922	-11.55	29.39	17.84	46.00	-28.16	Peak
6	855.149	-2.27	28.58	26.31	46.00	-19.69	Peak

Report No.: RA230331-16121E-RF-00A

Frequency	Receiver		Turntable	Rx Ar	ntenna	Factor	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Ampitude (dBµV/m)	(dBµV/m)	(dB)
			Low Cl	hannel(2	2402MH	Iz)			
2321.17	65.31	РК	216	2.4	Н	-10.48	54.83	74	-19.17
2356.24	67.39	PK	236	1.1	V	-10.78	56.61	74	-17.39
2390	65.59	PK	352	1.1	Н	-10.70	54.89	74	-19.11
2390	65.76	PK	233	2	V	-10.70	55.06	74	-18.94
4804	79.10	PK	277	2.4	Н	-6.11	72.99	74	-1.01
4804	77.65	PK	248	2.4	V	-6.11	71.54	74	-2.46
			Middle (Channel	(2441M	Hz)			
4882	76.03	РК	165	1.3	Н	-5.90	70.13	74	-3.87
4882	73.20	РК	24	1.3	V	-5.90	67.30	74	-6.70
			High Cl	nannel(2	2480 MF	Hz)			
2483.5	72.47	РК	304	1.3	Н	-10.55	61.92	74	-12.08
2483.5	69.53	РК	220	2.5	V	-10.55	58.98	74	-15.02
2485.6	72.35	РК	212	1.6	Н	-10.53	61.82	74	-12.18
2483.65	69.46	РК	72	2.1	V	-10.55	58.91	74	-15.09
4960	72.01	РК	147	2.3	Н	-5.47	66.54	74	-7.46
4960	71.41	РК	11	2.3	V	-5.47	65.94	74	-8.06

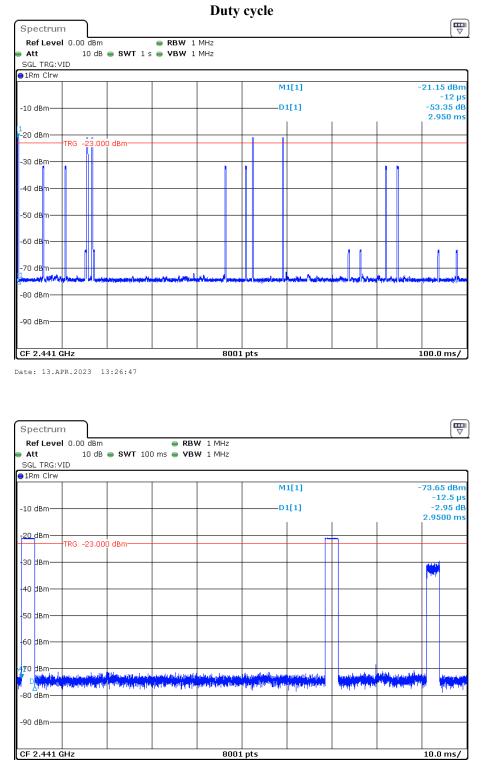
Above 1GHz: (worst case is 8DPSK Mode, 3DH5)

Report No.: RA230331-16121E-RF-00A

	Field Strength of Average							
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	FCC Part 15.247			
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Factor Amplitude (dBuV/m)		Margin (dB)	Comment	
			Low Channel	(2402MHz)				
2321.17	54.83	Н	-24.58	30.25	54	-23.75	Bandedge	
2356.24	56.61	V	-24.58	32.03	54	-21.97	Bandedge	
2390	54.89	Н	-24.58	30.31	54	-23.69	Bandedge	
2390	55.06	V	-24.58	30.48	54	-23.52	Bandedge	
4804	72.99	Н	-24.58	48.41	54	-5.59	Harmonic	
4804	71.54	V	-24.58	46.96	54	-7.04	Harmonic	
			Middle Channe	el(2441MHz)				
4882	70.13	Н	-24.58	45.55	54	-8.45	Harmonic	
4882	67.30	V	-24.58	42.72	54	-11.28	Harmonic	
			High Channel	(2480MHz)				
2483.5	61.92	Н	-24.58	37.34	54	-16.66	Bandedge	
2483.5	58.98	V	-24.58	34.40	54	-19.60	Bandedge	
2485.6	61.82	Н	-24.58	37.24	54	-16.76	Bandedge	
2483.65	58.91	V	-24.58	34.33	54	-19.67	Bandedge	
4960	66.54	Н	-24.58	41.96	54	-12.04	Harmonic	
4960	65.94	V	-24.58	41.36	54	-12.64	Harmonic	

Note:

Corrected Ampitude = Corrected Factor + Reading Margin = Corrected Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

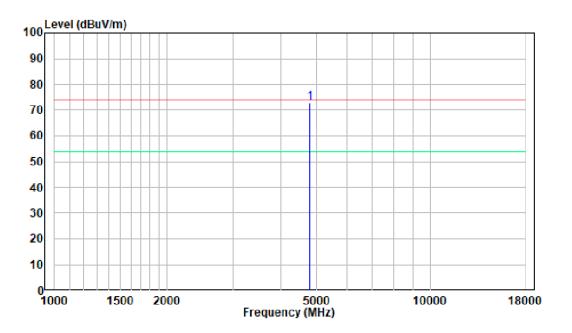

The other emissions which was 20dB below the limit or in noise floor level was not recorded.

Worst case duty cycle:

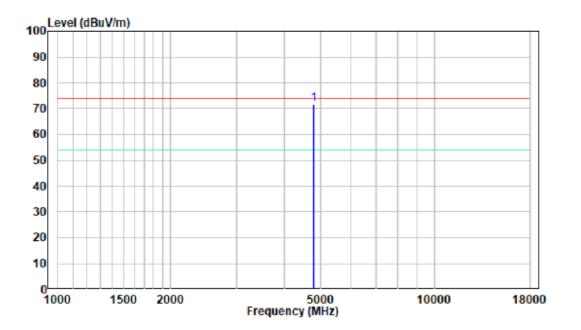
Refer following plots, the maximum hops in 100ms is 2(second high signal was from other channels) Duty cycle = Ton/100ms = 2.95*2/100=0.059

Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.059 = -24.58

Report No.: RA230331-16121E-RF-00A



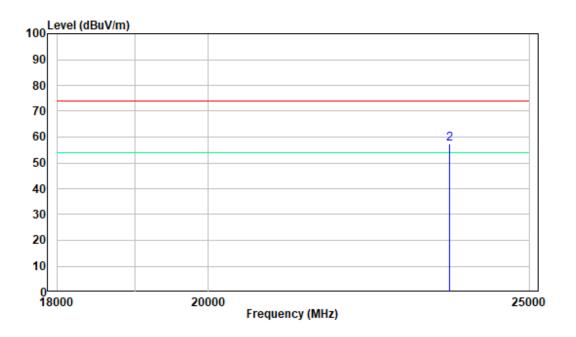
Date: 13.APR.2023 13:26:05


1-18GHz

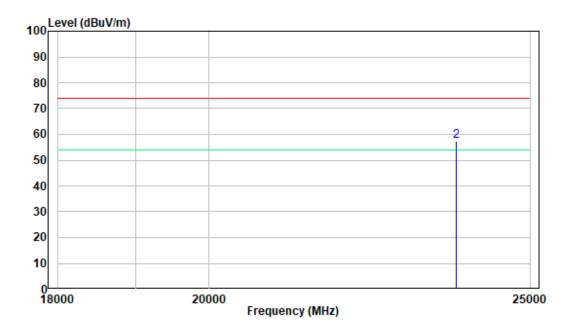
Pre-scan for Low Channel

Horizontal:

Vertical:



Report No.: RA230331-16121E-RF-00A

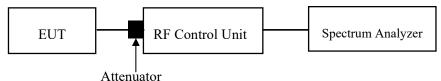

18-25GHz

Pre-scan for Low Channel

Horizontal:

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST


Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.2

- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 °C
ATM Pressure:	101.0 kPa

The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

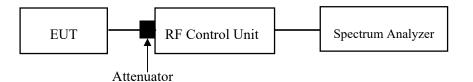
Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.7 & Clause 6.9.2

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	55 °C		
ATM Pressure:	101.0 kPa		

The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST


Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.3

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

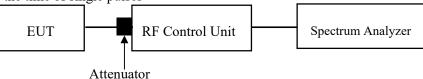
Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	55 °C		
ATM Pressure:	101.0 kPa		

The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)


Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.4

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25 ℃		
Relative Humidity:	55 °C		
ATM Pressure:	101.0 kPa		

The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.5

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

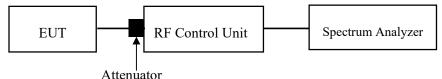
Environmental Conditions

Temperature:	25 °C		
Relative Humidity:	55 °C		
ATM Pressure:	101.0 kPa		

The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting

FCC §15.247(d) - BAND EDGES TESTING


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 7.8.6 & Clause 6.10

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

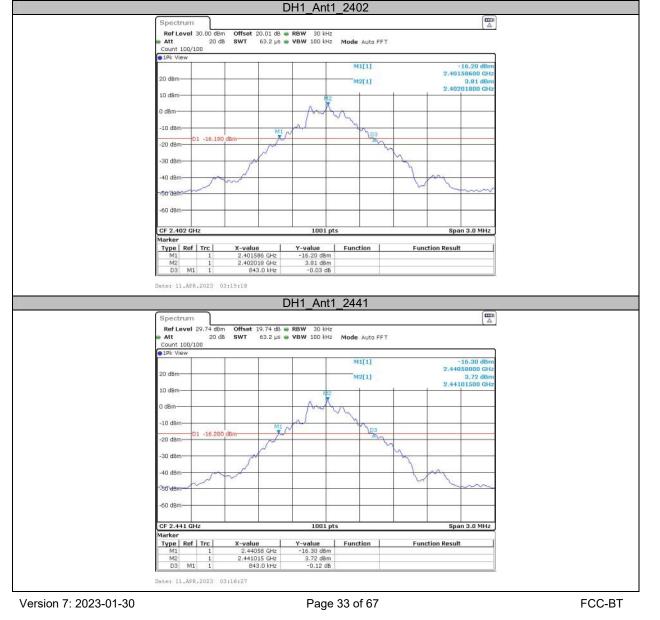
Test Data

Environmental Conditions

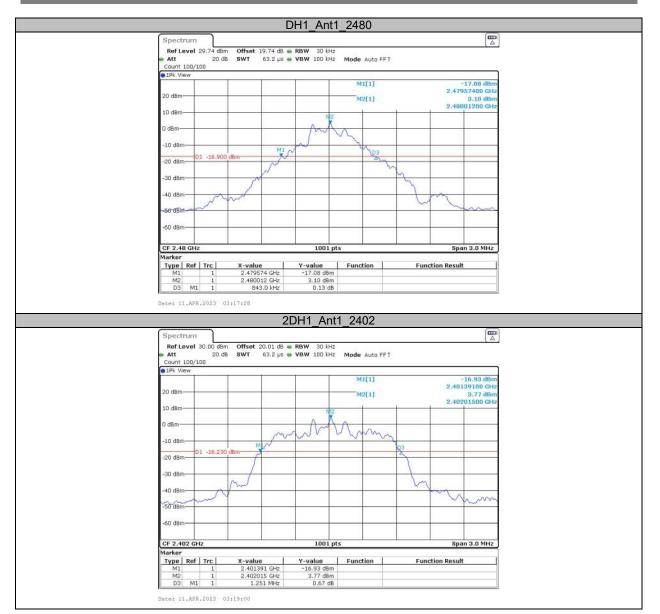
Temperature:	25 °C		
Relative Humidity:	55 °C		
ATM Pressure:	101.0 kPa		

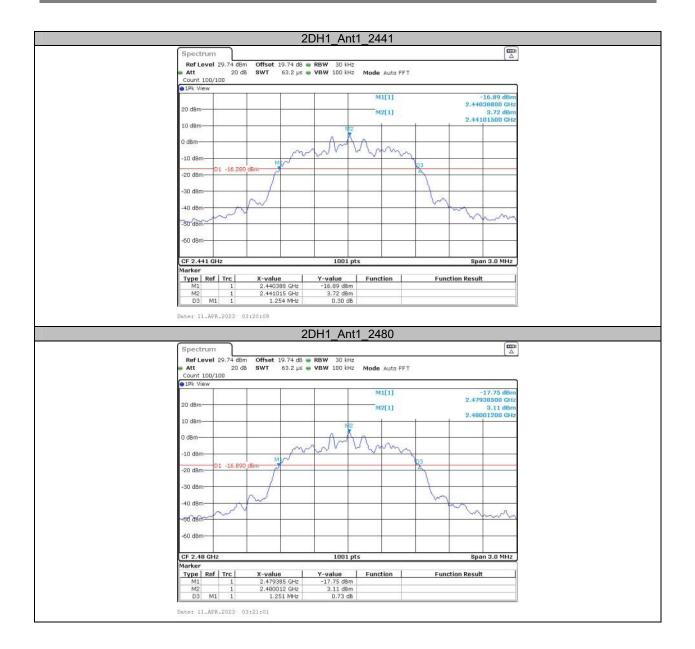
The testing was performed by Jacob Huang on 2023-04-11.

EUT operation mode: Transmitting


APPENDIX

Appendix A: 20dB Emission Bandwidth


Test R	lesult
--------	--------


Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
DH1		2402	0.84	2401.59	2402.43		
	Ant1	2441	0.84	2440.58	2441.42		
		2480	0.84	2479.57	2480.42		
2DH1	Ant1	2402	1.25	2401.39	2402.64		
		2441	1.25	2440.39	2441.64		
		2480	1.25	2479.39	2480.64		
3DH1	Ant1	2402	1.22	2401.42	2402.64		
		2441	1.22	2440.42	2441.64		
		2480	1.22	2479.42	2480.64		

Test Graphs

Report No.: RA230331-16121E-RF-00A

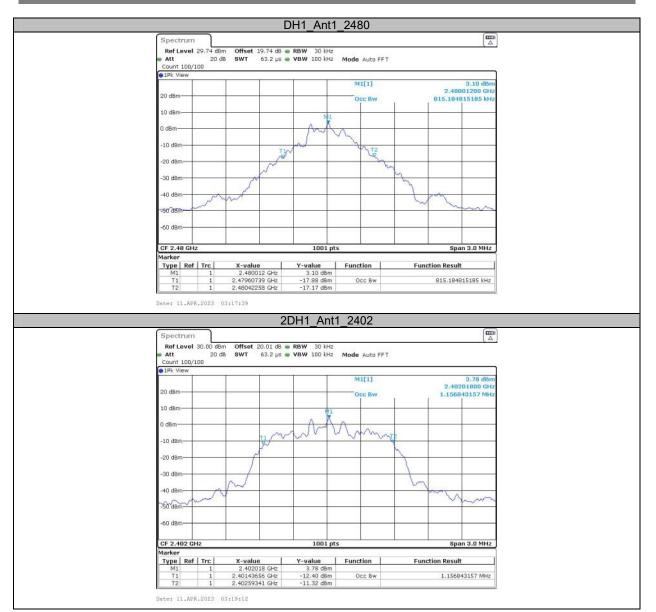


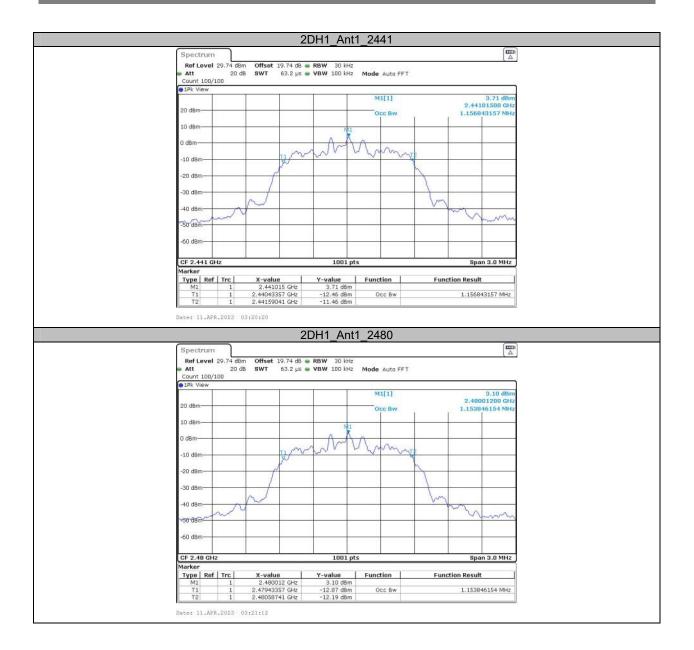
Version 7: 2023-01-30

Report No.: RA230331-16121E-RF-00A

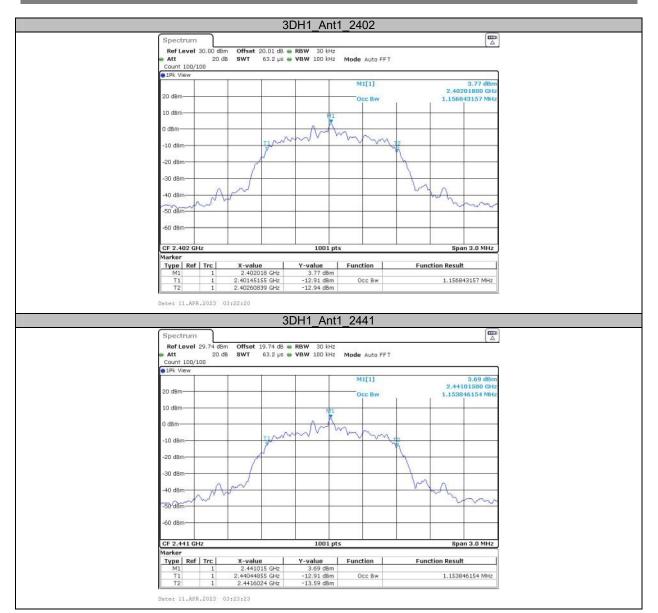
Shenzhen Accurate Technology Co., Ltd.




Appendix B: Occupied Channel Bandwidth Test Result


Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.812	2401.616	2402.429		
DH1	Ant1	2441	0.815	2440.610	2441.426		
		2480	0.815	2479.607	2480.423		
		2402	1.157	2401.437	2402.593		
2DH1	Ant1	2441	1.157	2440.434	2441.590		
		2480	1.154	2479.434	2480.587		
		2402	1.157	2401.452	2402.608		
3DH1	Ant1	2441	1.154	2440.449	2441.602		
		2480	1.157	2479.446	2480.602		

Test Graphs

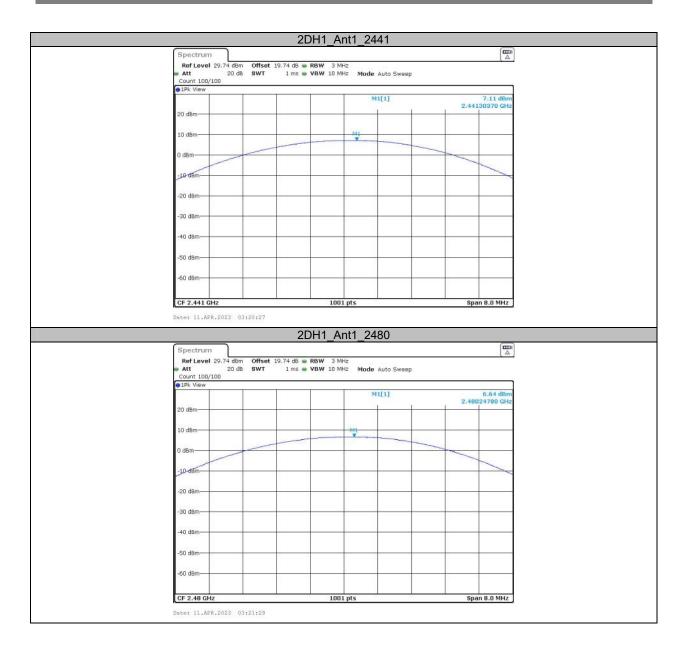

Report No.: RA230331-16121E-RF-00A

Version 7: 2023-01-30

Report No.: RA230331-16121E-RF-00A

Report No.: RA230331-16121E-RF-00A

Appendix C: Maximum conducted output power Test Result Peak


Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2402	4.84	≤20.97	PASS
DH1	Ant1	2441	4.93	≤20.97	PASS
		2480	4.49	≤20.97	PASS
		2402	7.04	≤20.97	PASS
2DH1	Ant1	2441	7.11	≤20.97	PASS
		2480	6.64	≤20.97	PASS
		2402	7.77	≤20.97	PASS
3DH1	Ant1	2441	7.80	≤20.97	PASS
		2480	7.35	≤20.97	PASS


Test Graphs

Version 7: 2023-01-30

Spectru	m				
		set 19.74 dB 🖷 RBW			_
👄 Att	20 dB SW	T 1 ms 🖷 VBW	10 MHz Mode Auto Sweep		
Count 10					r I
	1		M1[1]	7.35 dBm	1
			the state of the s	2.48007190 GHz	
20 dBm-		0 0			1
10 dBm-			60		-
				1	
0 dBm-					-
	-				
-10-dBm-					
and the second se					1
-20 dBm-					
and denti-					
-30 dBm-					
-50 0011					
10.10					
-40 dBm-					
200.0020					
-50 dBm-					1
A-22030-00					
-60 dBm-		5 S			1
CF 2.48			1001 pts	Span 8.0 MHz	4
CF 2.48	112		root prs	Span 8.0 MHz	1

Appendix D: Carrier frequency separation Test Result

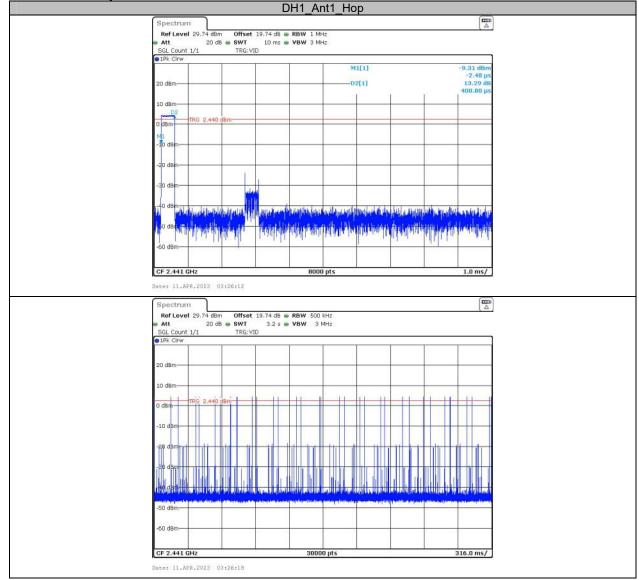
Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.003	≥0.560	PASS
2DH1	Ant1	Нор	1	≥0.833	PASS
3DH1	Ant1	Нор	1.003	≥0.813	PASS

Test Graphs

	DH1_Ant1_Hop		
Spectrum			
	.74 dB 👄 RBW 100 kHz		
Count 100/100	8.9 µs 🖶 VBW 300 kHz 🛛 Mode Auto FFT		
• 1Pk View	M1[1]	4.29 dBm	
		2.44101594 GHz	
20 dBm	-D2[1]	0.34 dB 1.00290 MHz	
10 dBm			
MI		2	
0 dBm			
-10 dBgp			
-20 dBm-			
-30 dBm			
-40 dBm			
-50 dBm-			
00 000			
-60 dBm			
Start 2.4405 GHz	691 pts	Stop 2.4425 GHz	
Date: 11.APR.2023 03:25:43			
Date: 11.APR.2023 03:25:43	2DH1 Ant1 Hop		
	2DH1_Ant1_Hop	m .	
Spectrum Ref Level 29.74 dBm Offset 19	.74 dB 🖷 RBW 100 kHz		
Spectrum Ref Level 29.74 dBm Offset 19			
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT		_
Spectrum RefLevel 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IPk View	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1]	4.27 dBm 2.44101594 GHz	
Spectrum RefLevel 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT	4.27 dBm	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Swit	1.74 dB ● RBW 100 HHz 8.9 μs ● VBW 300 HHz Mode Auto FFT M1[1] D2[1]	4.27 d8m 2.44101594 GHz 0.33 d8 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 PIPk View 20 dBm 20 dBm 20 dBm 20 dBm	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Switch 100/100 Image: Swit	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29,74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IVk View 1 1 20 dBm 10 dBm Mit 1	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 PIPk View 20 dBm 10 dBm 0 dBm	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB Outh 100/100 Image: Control 100/100 Image: Pick View Image: Control 100/100 Image: Control 100/100 Image: Control 100/100 <th>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</th> <th>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</th> <th></th>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IPk View 20 dBm 10 dBm 0 dBm -10 dBm	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB Outh 100/100 Image: Control 100/100 Image: Pick View Image: Control 100/100 Image: Control 100/100 Image: Control 100/100 <th>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</th> <th>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</th> <th></th>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 db SWT 1 Count 100/100 ● IPk View 0 0 IB 0 20 dBm 0 dBm 0 IB IB 0 IB IB <th>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</th> <th>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</th> <th></th>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT Count 100/100 IPk View 0 0 dBm 0 M1 0 dBm 0 M1 -10 dBm -10 dBm -10 dBm	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 db SWT 1 Count 100/100 ● IPk View 0 0 IB 0 20 dBm 0 dBm 0 IB IB 0 IB IB <td>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</td> <td>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</td> <td></td>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IPI: View 0 Bm 10 0 dBm 0 dBm 10 dBm 10 10 dBm M1 0 dBm 10 dBm 10 -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm <td< td=""><td>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</td><td>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</td><td></td></td<>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	
Spectrum Ref Level 29.74 dBm Offset 19 Att 20 dB SWT 1 Count 100/100 IPI: View 0 Bm 10 0 dBm 0 dBm 10 dBm 10 10 dBm M1 0 dBm 10 dBm 10 -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm <td< td=""><td>.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]</td><td>4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz</td><td></td></td<>	.74 dB ● RBW 100 kHz 8.9 µs ● VBW 300 kHz Mode Auto FFT M1[1] D2[1]	4.27 dBm 2.44101594 GHz 0.33 dB 1.00000 MHz	

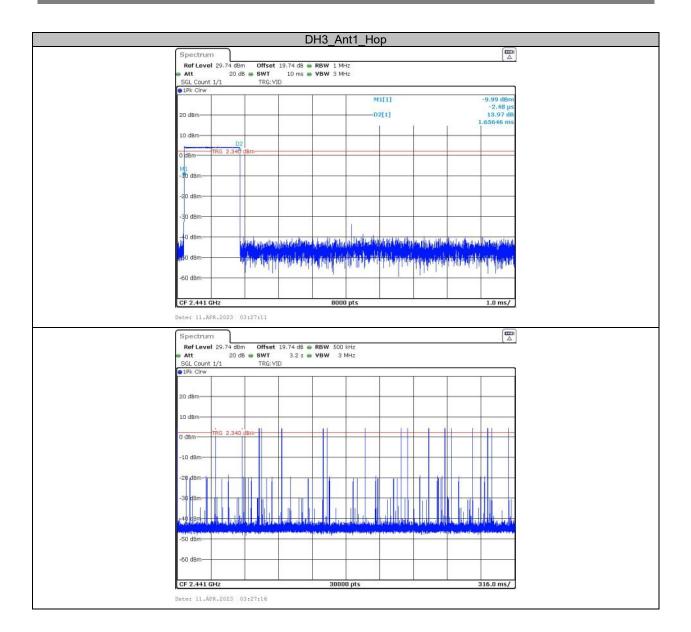
Spectrum		
Ref Level 29.74 dBm Offset 19.74 dB RBW Att 20 dB SWT 18.9 µs VBW		<u> </u>
Count 100/100		
The Alew	M1[1]	4.26 dBm
20 dBm	-02[1]	2.44101594 GHz 0.36 dB
	а т	1.00290 MHz
10 dBm	D2	
0.dBm		
-10 dBm-		
-20 dBm		
-30 dBm		
-40 dBm		
-50 dBm		
-60 dBm-		
		Stop 2.4425 GHz
-60 dBm		

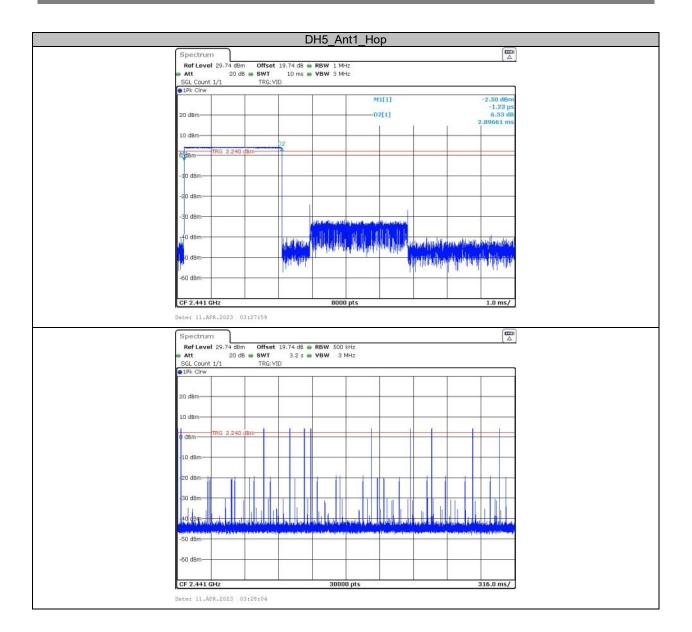
Appendix E: Time of occupancy Test Result

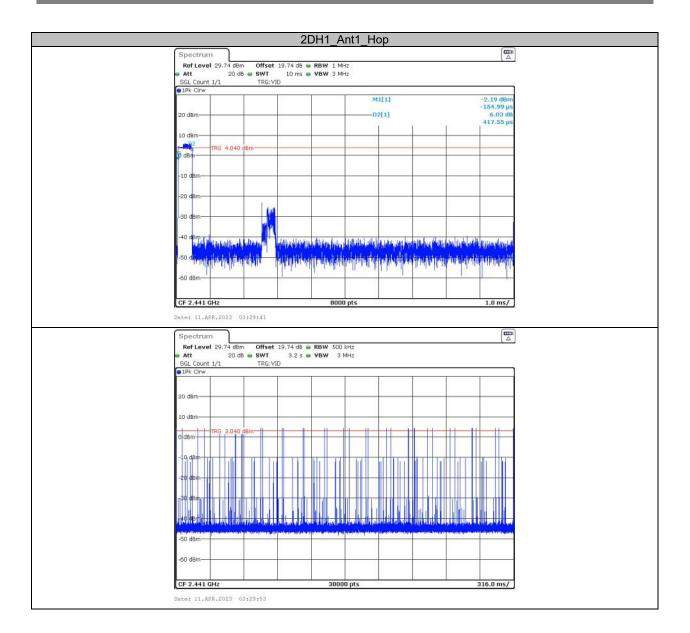

Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.41	330	0.135	≤0.4	PASS
DH3	Ant1	Нор	1.66	180	0.298	≤0.4	PASS
DH5	Ant1	Нор	2.90	110	0.319	≤0.4	PASS
2DH1	Ant1	Нор	0.42	330	0.138	≤0.4	PASS
2DH3	Ant1	Нор	1.66	170	0.283	≤0.4	PASS
2DH5	Ant1	Нор	2.90	110	0.319	≤0.4	PASS
3DH1	Ant1	Нор	0.42	330	0.139	≤0.4	PASS
3DH3	Ant1	Нор	1.66	160	0.266	≤0.4	PASS
3DH5	Ant1	Нор	2.91	120	0.349	≤0.4	PASS

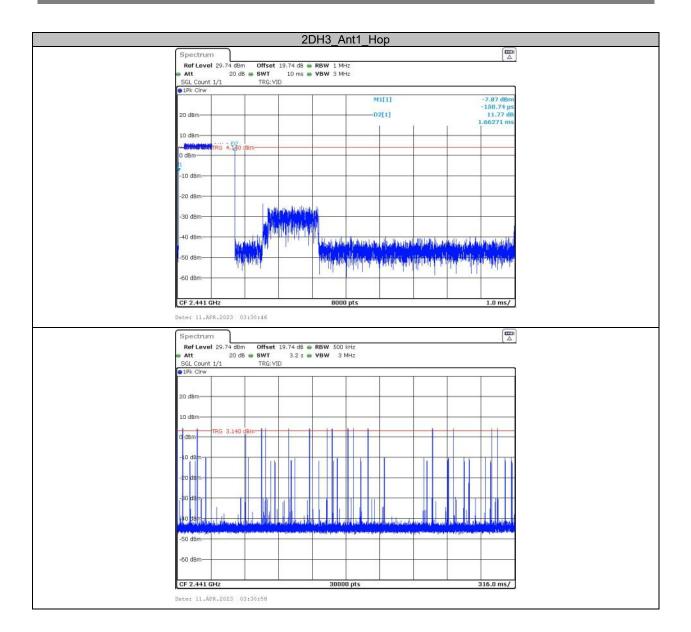
Note 1: A period time=0.4*79=31.6(S), Result=BurstWidth*Totalhops

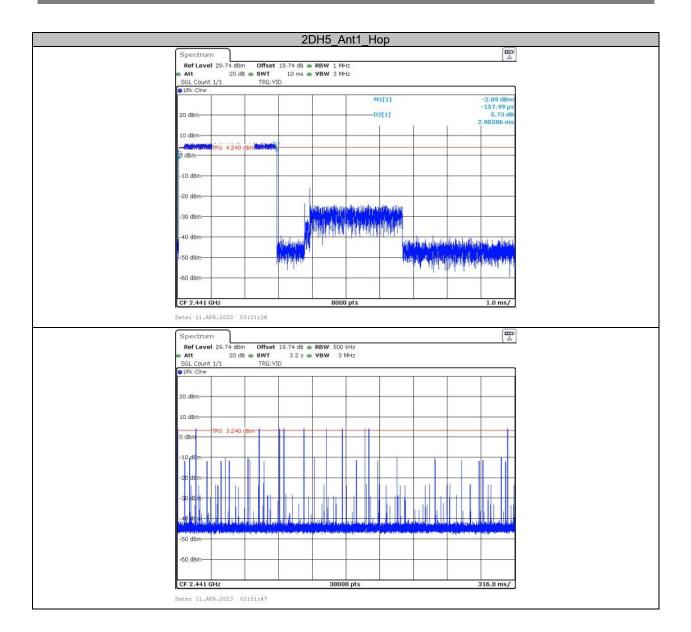
Note 2: Totalhops=Hopping Number in 3.16s*10

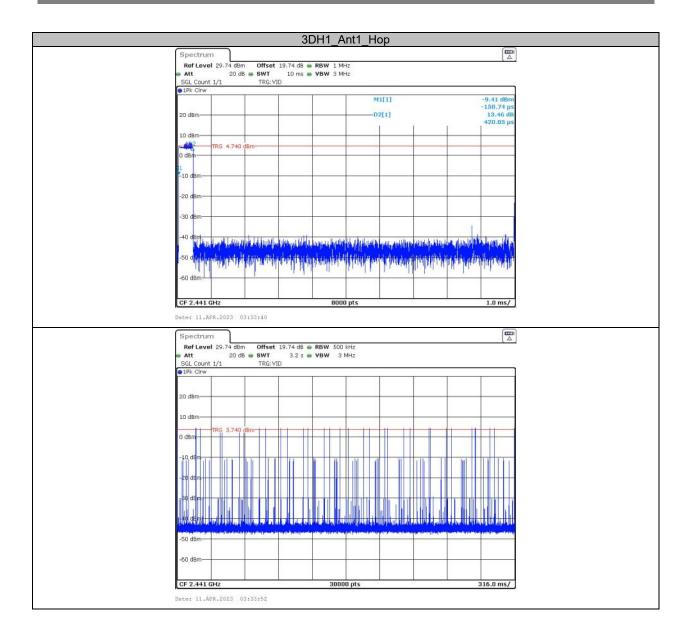

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s(Second high signals were other channel)

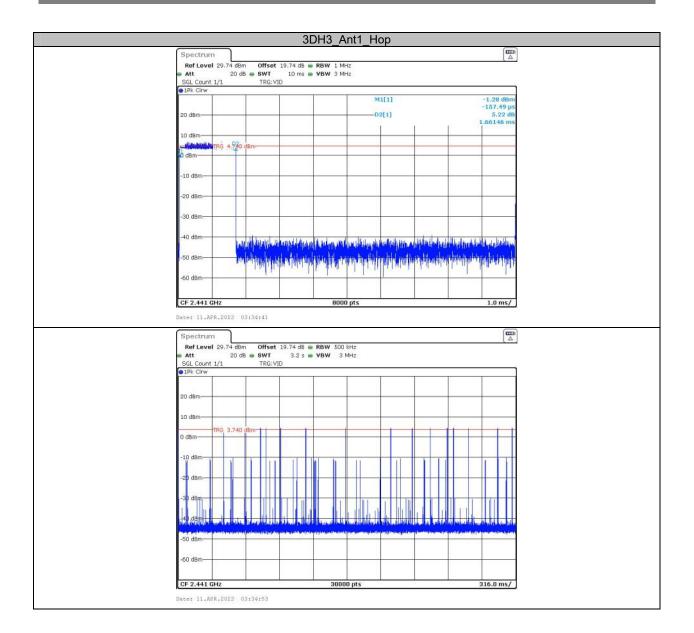

Test Graphs

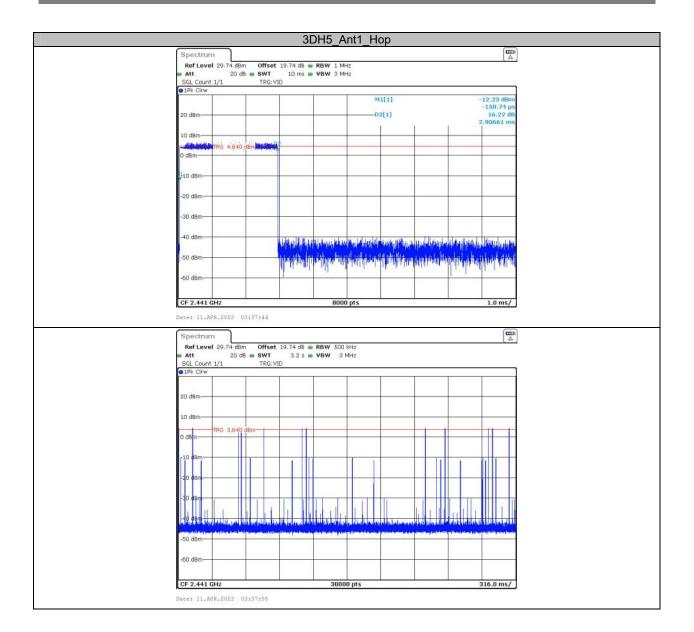



Version 7: 2023-01-30


FCC-BT

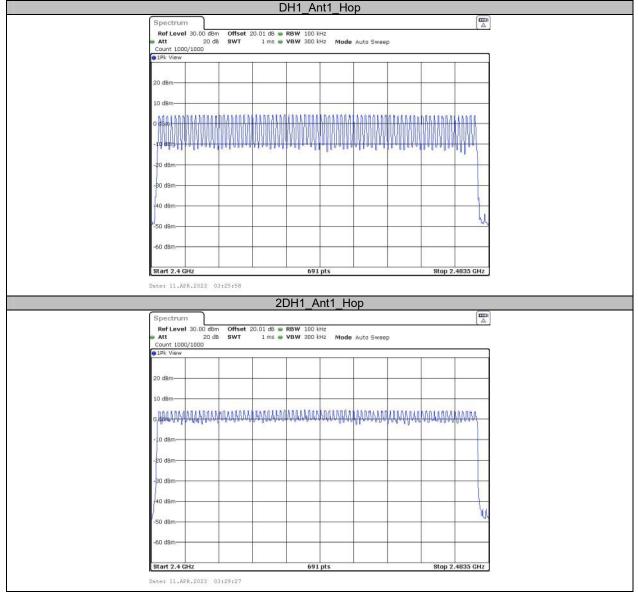






Version 7: 2023-01-30

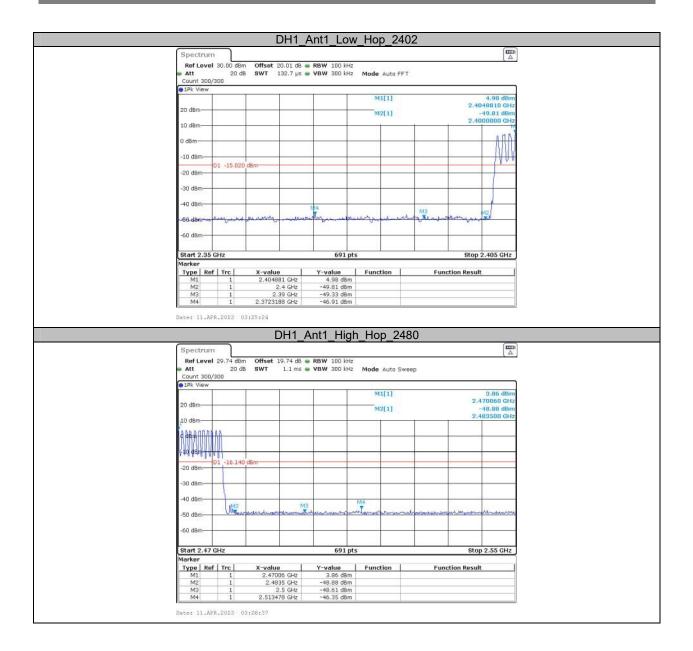
FCC-BT

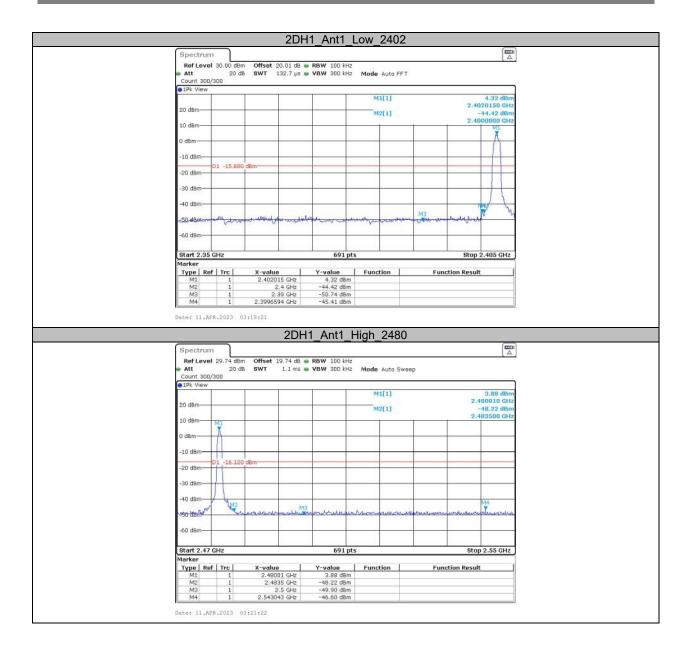


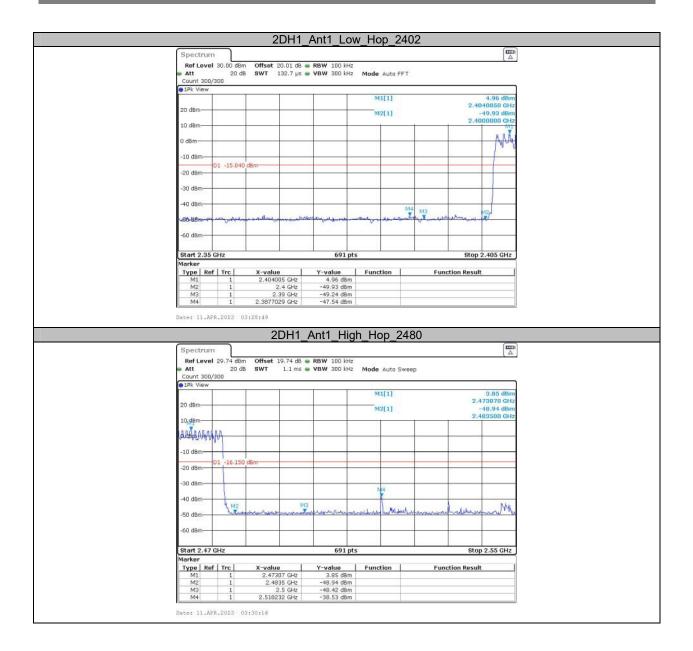
Appendix F: Number of hopping channels Test Result

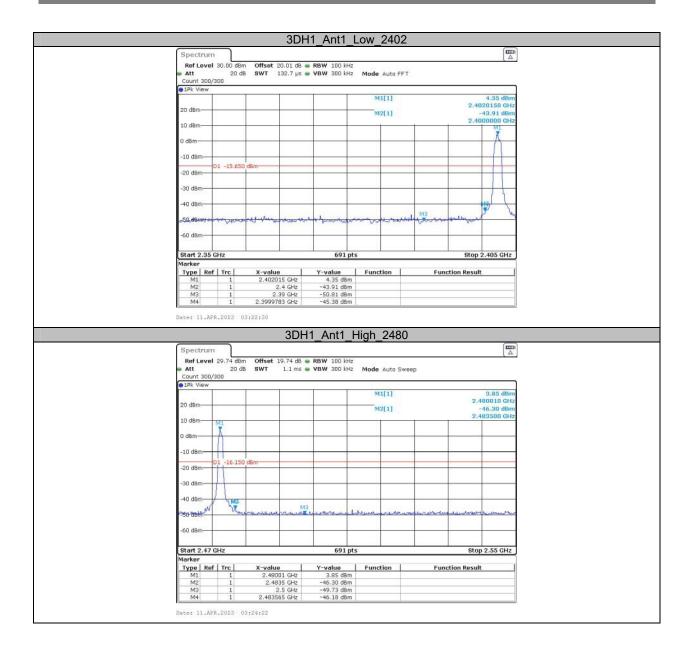
Test Mode	Antenna	Frequency[MHz]	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

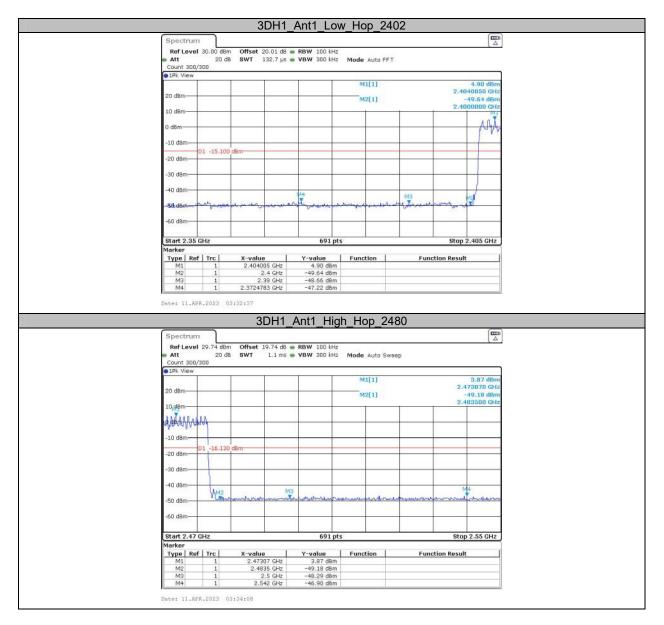

Version 7: 2023-01-30


Report No.: RA230331-16121E-RF-00A


Spectrum 🛄
Ref Level 30.00 dBm Offset 20.01 dB RBW 100 kHz Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep
Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000
IPk View
20 dBm
10 dBm
is were discovered was not a leave the discovered and a state to a merely way when a state of the state of the
~papyhalannanharannymannanharhannanharhannanharannannanharharananharh
-10 dBm
-20 dBm-
-50 dbm
-30 dBm-
40 dBm
-50 dBm
-60 dBm-
Start 2.4 GHz 691 pts Stop 2.4835 GHz


Appendix G: Band edge measurement Test Graphs

	DH1 Ant	1_Low_2402		
Spectrum	_			
Ref Level 30.00 dBm C	Offset 20.01 dB 🖷 RBW 10			1
	WT 132.7 µs 🖷 VBW 30			
1Pk View				
		M1[1]	4.37 dBm	
20 dBm		M2[1]	2.4820150 GHz -43.78 dBm	
10 dBm			2.4000000 GHz	
			M1	
0 dBm				
-10 dBm-				
-20 dBm-				
-30 dBm-				
-40 dBm				
50 d9ma	and the support		M3 Vu	
we wanted a state of the second state of the	Concorrent Const	the second states and	Martine and and and	
-60 dBm-				
Start 2.35 GHz	,	01 ate	Ptop 9 405 OUT	
Start 2.35 GHz Marker		91 pts	Stop 2.405 GHz	
Type Ref Trc >	K-value Y-valu		Function Result	
M1 1 M2 1	2.402015 GHz 4.37 2.4 GHz -43.78	'dBm IdBm		
M3 1	2.39 GHz -50.80	dBm		
Date: 11.APR.2023 03:15	11/26	1_High_2480		
Date: 11,APR.2023 03:15 Spectrum Ref Level 29.74 dBm C	DH1_Ant	1_High_2480	(m) A]
Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 db S	DH1_Ant	1_High_2480]
 Date: 11,APR.2023 03:15 Spectrum Ref Level 29.74 dBm C	DH1_Ant	1_High_2480 0 KHz 0 KHz Mode Auto Sweep		
 Spectrum Rof Lovel 29.74 dBm C Att 20 db S Count 300/300 IPk View	DH1_Ant	1_High_2480	3,87 dBm	
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 dB S Court 300/300	DH1_Ant	1_High_2480 0 KHz 0 KHz Mode Auto Sweep	3,87 dBm 2,480010 GHz -49,32 dBm]
 Spectrum Rof Lovel 29.74 dBm C Att 20 db S Count 300/300 IPk View	DH1_Ant	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz]
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Aft 20 dB S Count 300/300 1Pk View 20 dBm 10 dBm M1 K	DH1_Ant	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm]
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 dB S Count 300/300 In Pk View 20 dBm 10 dBm 0 dBm	DH1_Ant	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm]
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 db S Count 300/300 IPk View 20 dBm 10 dBm -10 dBm	DH1_Ant Dffset 19.74 dB @ RBW 10 Dffset 19.74 dB @ RBW 10 Dffset 19.74 dB @ VBW 30	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm	
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 dB S Count 300/300 1Pk View 20 dBm 10 dBm -10 dBm	DH1_Ant Dffset 19.74 dB @ RBW 10 Dffset 19.74 dB @ RBW 10 Dffset 19.74 dB @ VBW 30	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm	
 Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm C Att 20 dB S Count 300/300 IPk View 20 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 2	DH1_Ant Dfset 19.74 dB RBW 10	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm	
 Spectrum Ref Level 29.74 dBm C Att 20 dBm 20 dBm 10 dBm 10 dBm 51 -10 dBm 01 -30 dBm 01 -16.130 dBm -30 dBm	DH1_Ant Dfset 19.74 dB RBW 10	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm	
Spectrum Ref Level 29,74 dBm C Att 20 dB 20 dBm 0 10 dBm 51 0 0 -10 dBm 01 -16.130 dBm -30 dBm -30 dBm -40 dBm M4 -40 dBm -40 dBm	DH1_Ant Dffset 19.74 dB • RBW 10 WWT 1.1 ms • VBW 30	1_High_2480 0 kHz 0 kHz Mode Auto Sweep M1[1]	3,87 dBm 2,480010 GHz -49,32 dBm	
Spectrum Ref Level 29.74 dBm C Ref Level 29.74 dBm C Att 20 dBm C Count 300/300 ● 1Pk View 20 dBm 10 dBm 61 0 10 dBm 61 0 10 dBm 61 -0 -10 dBm 61 -30 dBm -30 dBm -40 dBm 40 dBm 40 <td>:38 DH1_Ant Offset 19.74 dB • RBW 10 WT 1.1 ms • VBW 30</td> <td>1_High_2480</td> <td>3,87 dBm 2,480010 GHz -49,32 dBm</td> <td></td>	:38 DH1_Ant Offset 19.74 dB • RBW 10 WT 1.1 ms • VBW 30	1_High_2480	3,87 dBm 2,480010 GHz -49,32 dBm	
Date: 11.APR.2023 03:15 Spectrum Rof Level 29.74 dBm C Att 20 dbm C 10 dBm 01 0 -10 dBm 01 -16.130 dBm -30 dBm 03 -40 dBm	:38 DH1_Ant Offset 19.74 dB • RBW 10 WT 1.1 ms • VBW 30	1_High_2480	3.87 dBm 2.40010 GHz -49.32 dBm 2.483500 GHz	
Date: 11.APR.2023 03:15 Spectrum Ref Lovel 29.74 dBm Att 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	:38 DH1_Ant Offset 19.74 dB • RBW 10 WT 1.1 ms • VBW 30	1_High_2480	3.87 dBm 2.40010 GHz -49.32 dBm 2.483500 GHz	
Date: 11.APR.2023 03:15 Spectrum Rof Level 29.74 dBm C Att 20 dbm C 10 dBm 01 0 -10 dBm 01 -16.130 dBm -30 dBm 03 -40 dBm	:38 DH1_Ant Offset 19.74 dB @ RBW 10 WVT 1.1 ms @ VBW 30	1_High_2480	3.87 dBm 2.40010 GHz -49.32 dBm 2.483500 GHz	
Date: 11.APR.2023 03:15 Spectrum Ref Lovel 29.74 dBm C Att 20 dB C Count 300/300 ● IPK View 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm Start 2.47 GHz Marker	:38 DH1_Ant Dffset 19.74 dB @ RBW 10 WT 1.1 ms @ VBW 30	1_High_2480	3.87 dBm 2.48010 GHz -49.32 dBm 2.483500 GHz	
Date: 11.APR.2023 03:15 Spectrum Ref Level 29.74 dBm Att 20 dB 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -20 dBm -10 dBm	38 DH1_Ant Offset 19.74 d8 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1_High_2480	3.87 dBm 2.40010 GHz -49.32 dBm 2.483500 GHz	
Spectrum Ref Level 29.74 dBm C Att 20 dB 20 dB 20 dBm 10 dBm M1 0 0 -10 dBm 01 -16.130 dBm -30 dBm -30 dBm -01 -16.130 dBm -30 dBm -50 dBm -60 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -30 dBm -10 dBm	:38 DH1_Ant Offset 19.74 d8 RBW 10 WT 1.1 ms VBW 30 WT 1.1 ms VBW 30 WT 1.1 ms VBW 30 WT 2.4000 GH2 3.47 2.4000 GH2 3.47 2.4020 GH2 -493.37	1_High_2480	3.87 dBm 2.48010 GHz -49.32 dBm 2.483500 GHz	
Spectrum Ref Level 29.74 dBm C Ref Level 29.74 dBm C Att 20 dbm C Att 20 dBm Image: Count 300/300	38 DH1_Ant Dffset 19.74 dB 88 BW 10 WT 1.1 ms VBW 30	1_High_2480 0 HHz 0 HHz 0 HHz 0 HHz Mode Auto Sweep M1[1] M2[1] M2[1]	3.87 dBm 2.48010 GHz -49.32 dBm 2.483500 GHz	



Shenzhen Accurate Technology Co., Ltd.

***** END OF REPORT *****

Version 7: 2023-01-30