	EMC TE	EST R	EP	ORT	
Project No.	LBE20240138	Issue No.		1	
	Name of organization	Samsung Electr	onics Co.,	Ltd.	
Applicant	Address	(Maetan-dong) ´ Suwon-si, Gyeo		ung-ro, Yeongtong-gu, 6677, Korea	
	Date of receipt	March 25, 2024			
	Type of device	 Class B pers Other Class B 	 All other receivers subject to Part 15 Class B personal computers and peripherals Other Class B digital devices and peripherals FM Broadcast Receiver 		
	Equipment authorization	Certification	🗆 Suppli	er's Declaration of Conformity	
	FCC ID	A3LSML305			
EUT	Kind of product	Smart Wearable	•		
	Model No.	SM-L305U			
	Variant Model No.	Refer to clause 4.6			
	Manufacturer	Samsung Electronics Vietnam Co., Ltd. Yenphong 1 - I.P Yentrung Commune, Yenphong Dist., Bac Ninh Province, Vietnam			
Applied Sta	ndards	47 CFR Part 15	, Subpart E	3, Class B / ANSI C63.4-2014	
Test Period		March 26, 2024 ~ April 01, 2024		2024	
Issue date		April 23, 2024			
	Complied ent under test has found to l attached test result for mor		the applied	d standards.	
Tested by	: Yong-Sang Park	Reviewe	dby:(Chang-Eun Park	
×	S. MA			C-E-Park	
	ults in this report only apply , without written permission		•	eport must not be reproduced, * Not KOLAS report	
	Samsung Electron dong) 129, Samsung-ro, Y				

Smart Wearable: SM-L305U

Table of Contents

1.	Report Information	
	1.1 Revision history	
•		
2.	Summary of test results	
	2.1 Emission	
3.	General Information	
	3.1 Test facility	3
4.	Test Setup configuration	4
	4.1 Test Peripherals	
	4.2 EUT operating mode	5
	4.3 Details of Sampling	5
	4.4 Used cable description	6
	4.5 Test arrangement	7
	4.6 EUT Description	
	4.7 EUT Frequencies	
	4.8 Test configuration and condition	
	4.9 Measurement uncertainty	
5.	Results of individual test	
	5.1 Conducted Emission	
	5.2 Radiated Emission	

1. Report Information

1.1 Revision history

No.	Date of Issue	Revised detailed information
Issue 0	April 2, 2024	There are no revisions and this version is basic test report.
Issue 1	April 23, 2024	 Added the variant model name by customer's request. (SM-L305F) Corrected the typing error for supporting LTE band. (From 67 to 71)

※ Remark

Only compliance with Part 15B (Section 15.107 Conducted limits) requirements for the receiver part of the licensed transmitter (equipment code CXX) is covered by this report.

2. Summary of test results

2.1 Emission

The EUT has been tested according to the following specifications:

Applied	Test type	Applied standard	Result
	Conducted Emission (Mains port)	47 CFR Part 15 Subpart B / ANSI C63.4-2014 (Class B)	Complied
	Radiated Emission		Complied

3. General Information

3.1 Test facility

The Global CS Center is located on Samsung Electronics Co., Ltd. at (Maetan-dong) 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea. All testing are performed in Semi-anechoic chambers conforming to the site attenuation characteristics defined by ANSI C63.4, CISPR 32, CISPR 16-1-4 and Shielded rooms. And all antennas are properly calibrated using ANSI C63.5:2017.

The Global CS Center is an ISO/IEC 17025 accredited testing laboratory by the National Radio Research Agency with designation No. KR0004. for EMC testing.

4. Test Setup configuration

4.1 Test Peripherals

The cables used for these peripherals are either permanently attached by the peripheral manufacturer or coupled with an assigned cable as defined below.

The following is a listing of the EUT and peripherals utilized during the performance of EMC test:

Description	Model No.	Serial No.	Manufacturer / Trademark	FCC ID
Smart Wearable	SM-L305U	-	SAMSUNG	A3LSML305
Wireless Charger	EP-OL300	-	RF TECH	-
Laptop Computer	Latitude5580	1WYRYM2	Dell	SDoC
Laptop Computer	Latitude5580	D3HRYM2	Dell	SDoC
Laptop AC Adapter	LA65NM130	5DEA	Dell	SDoC
Laptop AC Adapter	LA65NM130	5B3C	Dell	SDoC
Mouse	AA-SM7PCPB	CN57BA5903634AD V8JJCD4371	SAMSUNG	SDoC
Mouse	SMH-210UB	TAKGA05788Z	SAMSUNG	SDoC
Router	DIR-806A	RF0F1D8018454	D-Link	SDoC
Router	DIR-806A	RF0F1D8011504	D-Link	SDoC
Travel Adapter	EP-TA800	R37W88G8JEBDKA	SoluM	-

4.2 EUT operating mode

To achieve compliance applied standard specification including CXX, and JAB requirement, the following mode(s) were made during compliance testing:

4.2.1 Conducted Emission

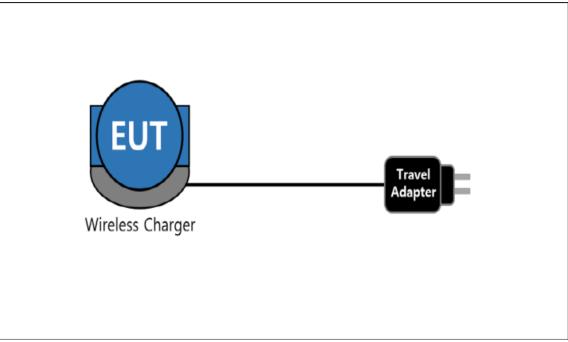
No.	Operating mode
1	Wireless charging (w/TA) + Cellular receiver (LTE FDD26 Center Frequency)
2	Audio playback from internal memory + Wireless charging (w/TA)
3	Wireless charging (w/USB port of laptop computer)

4.2.2 Radiated Emission

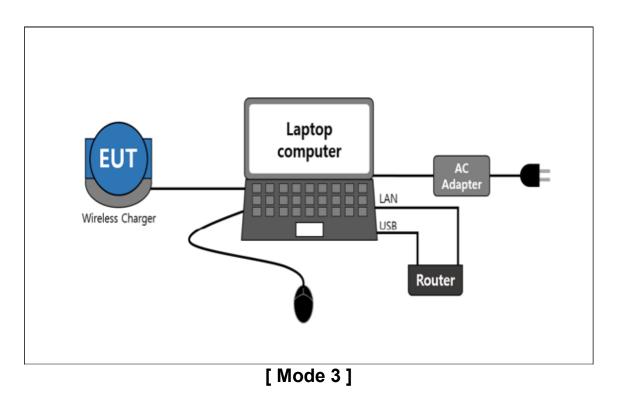
No.	Operating mode
1	Wireless charging (w/TA)
2	Audio playback from internal memory
3	Wireless charging (w/USB port of laptop computer)

4.3 Details of Sampling

Customer selected, single unit.


4.4 Used cable description

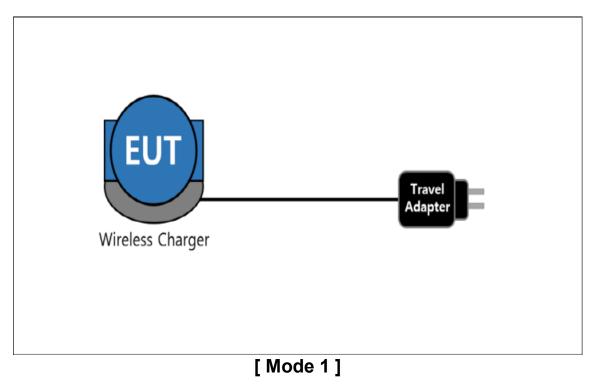
The EUT is configured, installed, arranged and operated in a manner consistent with typical applications. Interface cables/loads/devices are connected to at least one of each type of interface port of the EUT, and where practical, each cable shall be terminated in a device typical of actual usage. The type(s) of interconnecting cables to be used and the interface port (of the EUT) to which these were connected:

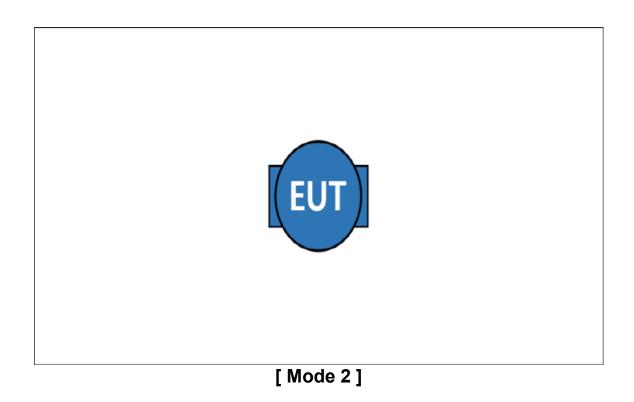

Connected cable	Length [m]	Shielded [Y/N]	Note
Wireless Charger Cable	0.8	Y	For Wireless Charger
Power	1.8	N	From Laptop Computer to AC Adapter
Power	1.5	N	For Laptop AC Adapter
LAN	1.5	N	From Laptop Computer to Router
USB	0.8	Y	From Laptop Computer to Router for DC Power
USB	1.8	Y	From Laptop Computer to Mouse

4.5 Test arrangement

4.5.1 Conducted Emission

[Mode 1 – 2]

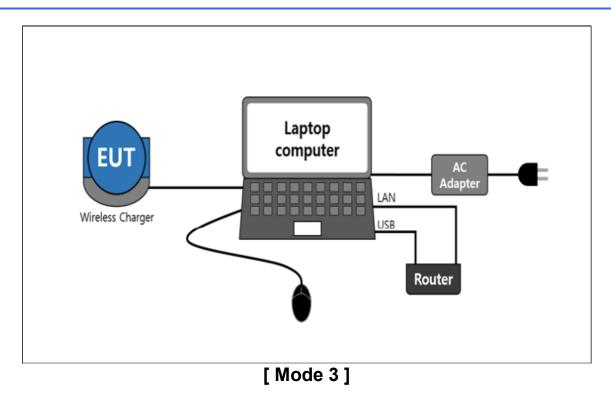



This report must not be reproduced, except in full, without written permission from Global CS Center. Form No.: SRA-TRF-46/11

-7/23**-**

Smart Wearable: SM-L305U

4.5.2 Radiated Emission



This report must not be reproduced, except in full, without written permission from Global CS Center. Form No.: SRA-TRF-46/11

-8/23-

Smart Wearable: SM-L305U

4.6 EUT Description

The EUT is a watch type smart wearable which can operate on WCDMA FDD 1/2/4/5/8, LTE FDD 1/2/3/4/5/7/8/12/13/14/18/19/20/25/26/28/66/71, LTE TDD 40 and incorporates a Bluetooth, Wi-Fi (802.11 b/g/n/a), Audio, GNSS, NFC and Wireless Charging.

4.6.1 The variant models

- SM-L305F

4.7 EUT Frequencies

The highest frequencies (Generated and used)	Frequency [MHz]	
Wi-Fi	5 825	

4.8 Test configuration and condition

The system was configured for testing in a typical fashion that a customer would normally use. Cables were attached to each of the available I/O Ports. Where applicable, peripherals were attached to the I/O cables.

The EUT was investigated in three orientations and the worst case orientation is reported.

For the AC conducted emissions test, the conducted emissions of receiver modes which operate within the frequency range of 30-960 MHz were compared through preliminary tests. However, no significant differences were found to affect the conducted emission, so the test result for one representative receiver frequency band (LTE FDD26) were reported.

The audio(1 kHz sound) were repetitively played.

The EUT was charged with wireless charger connected to travel adapter or USB port of laptop computer.

Power source for the EUT operating was supplied by CVCF.

- Test Voltage : AC 120 V, 60 Hz

4.9 Measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus : (According to CISPR 16-4-2 and UKAS M3003)

Test type		Measurement uncertainty (C.L. approximately 95 %, <i>k</i> = 2)
Conducted Emission	AC Mains	2.8 dB
Radiated Emission	Horizontal	4.4 dB
(Below 1 GHz)	Vertical	4.8 dB
Radiated Emission	Horizontal	5.0 dB
(Above 1 GHz)	Vertical	5.0 dB

* Remark

1) The values for uncertainty of conducted and radiated emissions are less than the Corresponding values of Ucispr given in CISPR 16-4-2. Therefore no adjustment of measurement results is necessary when comparing them with the relevant limits.

5. Results of individual test

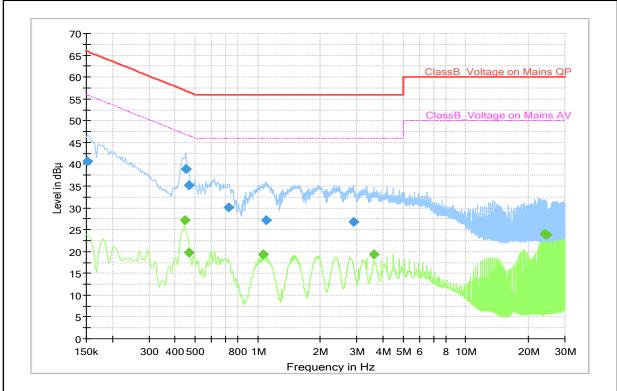
5.1 Conducted Emission

The EUT is connected to a LISN via travel adapter. If the EUT is connected to the Laptop Computer USB port, the Laptop AC adapter is connected to a LISN.

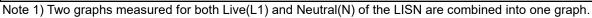
Both conducted lines are measured in Quasi-Peak and CISPR-Average mode, including the worstcase data points for each tested configuration. The EUT measured in accordance with the methods described in standards.

Frequency range Limits	Resolution Bandwidth	Limits [dB(µV)]			
[MHz]	[kHz]	Quasi-peak	Average		
0.15 to 0.50	9	66 to 56	56 to 46		
0.50 to 5	9	56	46		
5 to 30	9	60	50		
NOTE 1 The lower limit shal	E 1 The lower limit shall apply at the transition frequency.				
NOTE 2 The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.					

Limits for Conducted emission at the mains ports of Class B


5.1.1 Test instrumentation

EMC		Model			Next Calibration	
No.	Test Instrument	name	Manufacturer Serial No.		Date	Interval (Month)
E5I-006	LTE Communicator	CMW500	R&S	132728	2024-04-05	12
E5I-127	Two-Line V-Network	ENV216	R&S	102061	2025-01-19	12
E5I-247	EMI Test Receiver	ESW8	R&S	103124	2024-07-21	12
-	Test software	EMC32	R&S	Ver 10.60.20	-	-

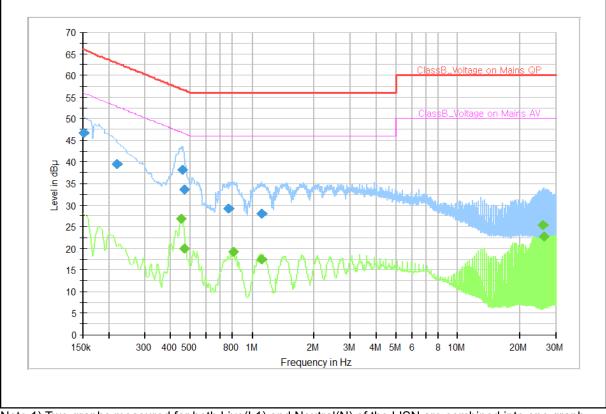

5.1.2 Temperature and humidity condition

Test date	2024-03-26 Test engineer		Yong-Sang Park		
	Ambient temperature	ture (23.2 ± 1.0) ℃ Limit (15.0			
Climate condition	Humidity	(42.3 ± 1.0) % R.H.	Limit (25.0 to 75.0) % R.H.		
	Atmospheric pressure	(102.0 ± 1.0) kPa	Limit (86.0 to 106.0) kPa		
Test place	Shield Room (SR8)				

5.1.3 Test Results

□ Operating Mode 1: AC Mains

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.152	40.6		65.9	25.3	N	10.4
0.445		27.1	47.0	19.9	Ν	10.7
0.449	39.0		56.9	17.9	Ν	10.7
0.467	35.1		56.6	21.5	Ν	10.7
0.467		19.7	46.6	26.9	Ν	10.7
0.726	30.2		56.0	25.8	Ν	10.6
1.057		19.3	46.0	26.7	Ν	10.5
1.104	27.2		56.0	28.8	Ν	10.5
2.891	26.8		56.0	29.2	Ν	10.4
3.626		19.4	46.0	26.6	Ν	10.4
24.090		24.1	50.0	25.9	L1	10.5
24.380		23.9	50.0	26.1	L1	10.5


OP / CAV final	al measurement	results table.
	a measurement	iesuits table.

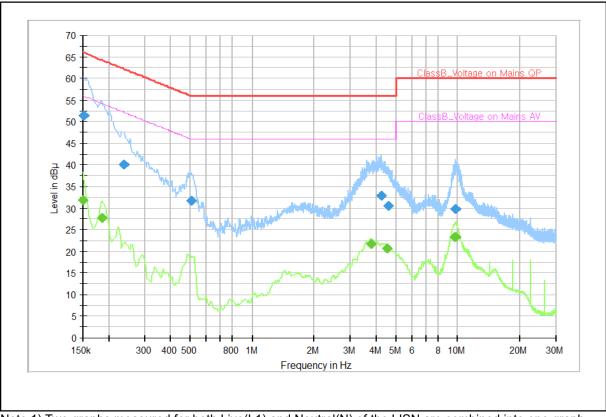
Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

-13/23-

Operating Mode 2: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.


Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.152	46.7		65.9	19.2	N	10.4
0.220	39.5		62.8	23.3	N	10.4
0.454		26.9	46.8	19.9	N	10.7
0.458	38.1		56.7	18.6	N	10.7
0.467		19.9	46.6	26.7	N	10.7
0.467	33.6		56.6	23.0	N	10.7
0.769	29.2		56.0	26.8	N	10.6
0.812		19.1	46.0	26.9	N	10.6
1.106		17.4	46.0	28.6	N	10.5
1.106	27.9		56.0	28.1	N	10.5
25.818		25.3	50.0	24.7	L1	10.5
26.108		22.7	50.0	27.3	L1	10.5

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

-14/23-

Operating Mode 3: AC Mains

Note 1) Two graphs measured for both Live(L1) and Neutral(N) of the LISN are combined into one graph.

Frequency (MHz)	QP (dBµV)	CAV (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)
0.150		31.8	56.0	24.2	L1	9.9
0.152	51.5		65.9	14.4	N	10.4
0.186		27.8	54.2	26.4	L1	10.2
0.238	40.0		62.2	22.2	N	10.3
0.506	31.6		56.0	24.4	L1	10.3
3.800		21.6	46.0	24.4	N	10.4
4.227	32.8		56.0	23.2	N	10.4
4.524		20.7	46.0	25.3	L1	10.0
4.607	30.5		56.0	25.5	N	10.4
9.634		23.3	50.0	26.7	L1	10.1
9.701		23.2	50.0	26.8	L1	10.1
9.744	29.8		60.0	30.2	L1	10.1

Note 2) Level (QP and/or CAV) = Meter Reading (QP and/or CAV) + Corr. (LISN Insertion Loss + Cable Loss) Margin (QP and/or CAV) = Limit – Level (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

-15/23-

5.2 Radiated Emission

The following data lists the significant emission frequencies, measured levels, correction factors (for antenna and cables), orientation of table, polarization and height of antenna, the corrected reading, the limit, and the amount of margin.

Peak measurements were made over the changeable frequency range 30 MHz to 1 GHz at a measurement distance of 3 m for the following antenna and turntable arrangements:

Antenna Height [cm]	Antenna Polarization	Resolution Bandwidth [kHz]	Video Bandwidth [kHz]	Turntable position [degrees]
100 ~ 400	Horizontal, Vertical	120	300	Continuous

Measurements within 6 dB of the limit were then maximized by adjusting turntable position.

Final measurements were made using quasi-peak detector.

Peak/CISPR-Average measurements were made over the changeable frequency range 1 GHz to 40 GHz or 5th harmonics of the highest frequency generated or used in the device or on which the device operates or tunes at a measurement distance of 3 m for the following antenna and turntable arrangements. The measurements above 1 GHz were performed with the bore-sighting antenna aimed at the EUT.

Antenna Height [cm]	Antenna Polarization	Resolution Bandwidth [MHz]	Video Bandwidth [MHz]	Turntable position [degrees]
100 ~ 400	Horizontal, Vertical	1	3	Continuous

Measurements within 6 dB of the limit were then maximized by adjusting turntable position. Final measurements were made using peak and CISPR-average detectors.

Limits for Radiated emission of Class B at a measuring distance of 3 m and 10 m

Frequency range Limits	Field Strength				
[MHz]	3 m [µV/m]	3 m [dB(µV/m)]	10 m [dB(µV/m)]		
30 to 88	100	40.0	29.5		
88 to 216	150	43.5	33.0		
216 to 960	200	46.0	35.5		
Above 960	500	54.0	43.5		

Note) Distance correction formula from D1(3m) to D2(10m)

: Limit at D2 = Limit at D1 + 20Log(D1 /D2)

Results checked manually; and points close to the limit line were re-measured.

-16/23-

5.2.1 Test instrumentation

ЕМС	Toot In other and	Model			Next Calibration	
No.	Test Instrument	name	Manufacturer	Serial No.	Date	Interval (Month)
E5I-020	EMI Test Receiver	ESU40	R&S	100375	2024-10-11	12
E5I-015	EMI Test Receiver	ESU8	R&S	100481	2024-07-04	12
E5I-248	EMI Test Receiver	ESW44	R&S	103129	2024-07-21	12
E5I-223	6 dB Fixed Attenuator	8491A	Keysight	MY52462298	2024-05-26	24
E5I-070	BiLog Antenna	CBL6112D	TESEQ	35383	2025-07-21	24
E5I-228	6 dB Fixed Attenuator	8491B-006	Agilent	58358	2025-07-21	24
E5I-121	BiLog Antenna	CBL6112D	TESEQ	36999	2025-07-21	24
E5I-093	Preamplifier	310N	SONOMA	273122	2025-01-19	12
E5I-094	Preamplifier	310N	SONOMA	282363	2025-01-19	12
E5I-036	Horn Antenna	HF907	R&S	100507	2024-04-11	12
E5I-039	Signal Conditioning Unit	SCU-18	R&S	10211	2024-04-05	12
E5I-243	WideBand Horn Antenna	QMS-00880	STEATITE	25187	2024-12-05	12
E5I-042	Signal Conditioning Unit	SCU-40A	R&S	10004	2024-09-21	12
-	Test software	EP7RE	ΤΟΥΟ	Ver 8.0.20	-	
-	Test software	EMC32	R&S	Ver 10.60.2	-	-

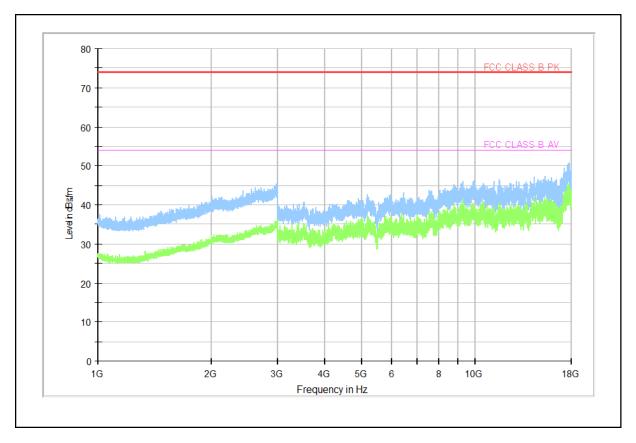
5.2.2 Temperature and humidity condition

Test date	2024-04-01 Test engineer		Yong-Sang Park		
	Ambient temperature	(23.3 ± 1.0) ℃	Limit (15.0 to 35.0) ℃		
Climate condition	Humidity	(34.9 ± 1.0) % R.H.	Limit (25.0 to 75.0) % R.H.		
	Atmospheric pressure	(101.0 ± 1.0) kPa Limit (86.0 to 106.0) kPa			
Test place	Semi-Anechoic Chamber (SAC5)				

5.2.3 Test Results

□ Operating Mode 1

- Frequencies below 1 GHz

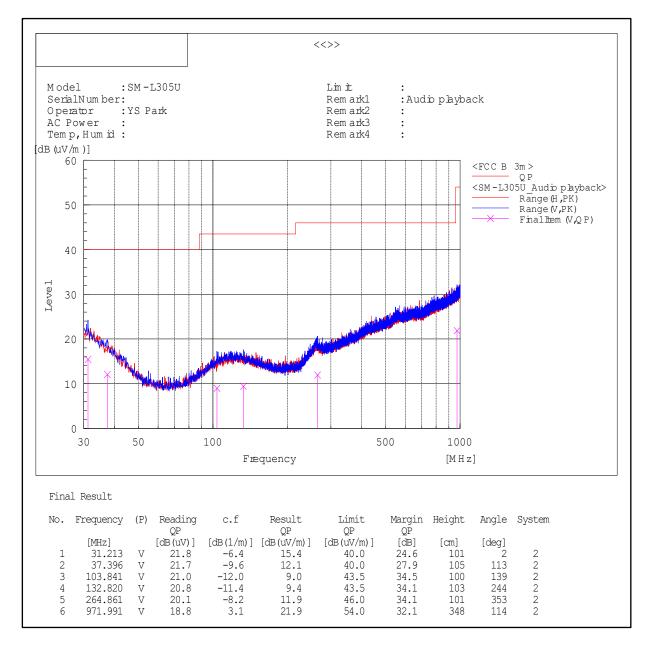

Note1) Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)

Margin (QP) = Limit – Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

Smart Wearable: SM-L305U

- Frequencies above 1 GHz

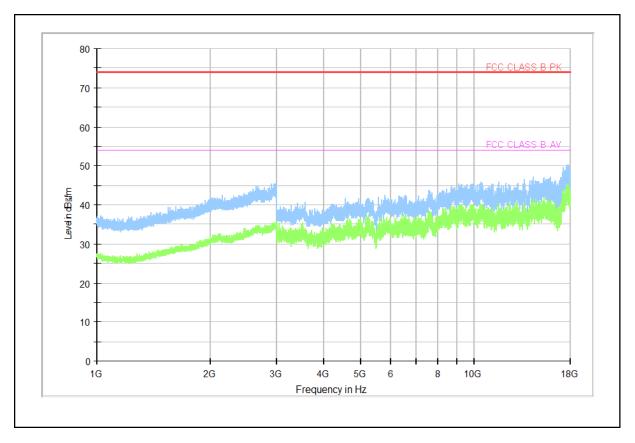


Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV) PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

Operating Mode 2

- Frequencies below 1 GHz

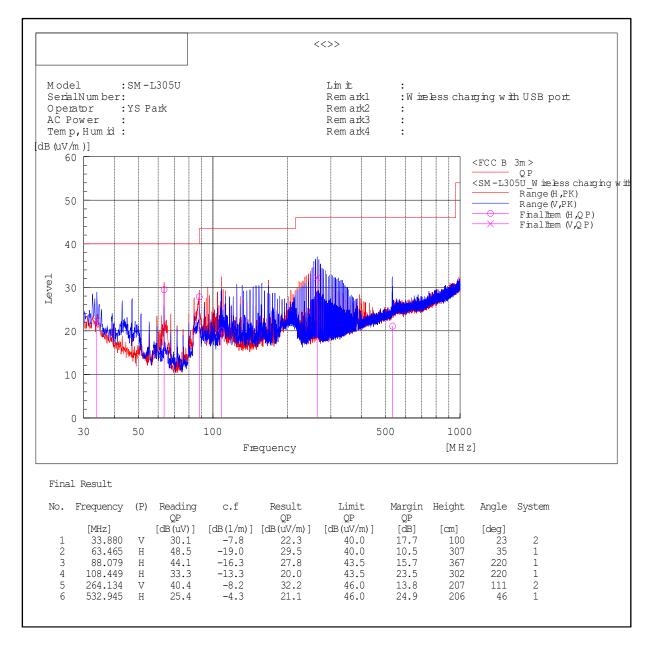

Note1) Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)

Margin (QP) = Limit – Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

Smart Wearable: SM-L305U

- Frequencies above 1 GHz

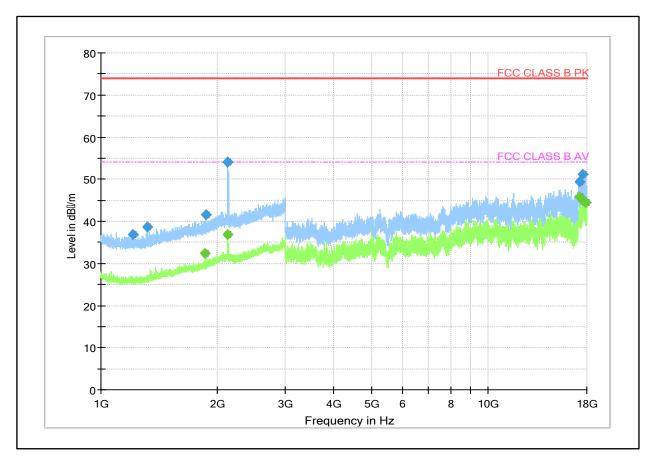


Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV) PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

□ Operating Mode 3

- Frequencies below 1 GHz


Note1) Result (QP) = Reading (QP) + c.f (Antenna Factor + Cable Loss - Amp. Gain)

Margin (QP) = Limit – Level (QP)

QP = Quasi-Peak, c.f = Correction Factor

Smart Wearable: SM-L305U

- Frequencies above 1 GHz

Frequency (MHz)	PK (dBμV/m)	CAV (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1 212.200	36.9		74.0	37.1	101.0	V	39.0	8.0
1 314.200	38.6		74.0	35.4	103.0	V	136.0	8.7
1 860.200		32.4	54.0	21.6	105.0	V	0.0	13.0
1 866.400	41.6		74.0	32.4	104.0	V	0.0	13.1
2 127.200	54.1		74.0	19.9	101.0	V	305.0	14.9
2 127.200	54.1		74.0	19.9	110.0	V	305.0	14.9
2 128.400		36.9	54.0	17.1	104.0	V	18.0	14.9
17 220.000		45.7	54.0	8.3	111.0	Н	194.0	37.5
17 221.000	49.3		74.0	24.7	107.0	Н	128.0	37.5
17 558.000	51.2		74.0	22.8	108.0	Н	109.0	38.2
17 580.500		45.0	54.0	9.0	102.0	V	54.0	37.8
17 931.000		44.4	54.0	9.6	103.0	Н	175.0	37.4

Note 1) We have also tested from 18 GHz to 30 GHz and found no emissions.

Note 2) Level (PK and/or CAV) = Reading (PK and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amp. Gain) Margin (PK and/or CAV) = Limit – Level (PK and/or CAV)

PK = Peak, CAV = CISPR-Average, Corr. = Correction Factor

-23/23-