

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure								
Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time				
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(minutes)				
0.3-1.34	614	1.63	*(100)	30				
1.34-30	824/f	2.19/f	*(180/f²)	30				
30-300	27.5	0.073	0.2	30				
300-1500	/		f/1500	30				
1500-100,000	/		1.0	30				

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Calculated Data:

Mode	Frequency Range	Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit (mW/cm²)
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(III vv/CIII)
GPRS 850	824~849	3.29	2.13	26.5	446.68	20	0.1895	0.55
WCDMA Band V	824~849	3.29	2.13	23.5	223.87	20	0.0950	0.55
GPRS 1900	1850~1910	5.30	3.39	24.5	281.84	20	0.1900	1.00
WCDMA Band II	1850~1910	5.30	3.39	23.0	199.53	20	0.1345	1.00

Note:

(1) For GPRS Mode, the time based average power is relevant, the difference in between depends on the duty cycle of the TDMA signal.

Number of Time slot	1	2	3	4
Duty Cycle	1:8	1:4	1:2.66	1:2
Time based Ave. power compared to slotted Ave. power	-9 dB	-6 dB	-4.25 dB	-3 dB

Result: The device meet FCC MPE at 20 cm distance.