EXHIBIT C - RF EXPOSURE EVALUATION

Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

Limits for Occupational/Controlled Exposure										
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)						
0.3- 3.0	614	1.63	(100)*	6						
3.0 - 30	1842/f	4.89/f	(900/f ²)*	6						
30-300	61.4	0.163	1.0	6						
300-1500	/	/	f/300	6						
1500-100,000	/	/	5	6						

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Procedure

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Result

Operation Mode	Frequency (MHz)	Antenna Gain		Conducted output power including Tune-up Tolerance▲		Evaluation Distance (cm)	Power Density (mW/cm²)	MPE Limit (mW/cm²)
		(dBi)	(numeric)	(dBm)	(mW)			
VHF	156.05- 157.425	0	1.00	43.8	23988.33	35.00	0.781	1.0

The Conducted output power including Tune-up Tolerance provided by manufacturer. VHF maximum operation duty cycle is 50%.

Result: The device meet FCC MPE at 35 cm distance.

***** END OF REPORT *****

Report No.: 2402Z38638E-RF-00A