

TEST REPORT

Test report no.: 1-6824/13-01-03

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Area of Testing:

Radio Communications & Compatibility Testing (RCT)

Applicant

Electrosuisse Albislab

Albisriederstrasse 199 8047 Zürich / SWITZERLAND Phone: 044 956 14 62 Fax: 044 956 19 64

Contact: Pascal Treichler

e-mail: pascal.treichler@electrosuisse.ch

Manufacturer

Electrosuisse Albislab

Albisriederstrasse 199 8047 Zürich / SWITZERLAND

Test standard/s

47 CFR Part 22 Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile

services

47 CFR Part 24 Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal

communications services

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Emergency Watch GSM 800 / 1900 MHz

Model name: LM15US0001 FCC ID: RI7GE865

IC: 11484A-15US0001

Frequency: GSM 850 824.2 – 849.2MHz GSM 1900 1850.2 – 1909.8MHz

Technology tested: GSM

Expert

Antenna: Integrated antenna

Power supply: 4.0V DC by battery

Temperature range: -10°C to +40°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
Andreas Luckenbill	David Lang

2013-11-13 Page 1 of 23

Testing Manager

Table of contents

1	Table	of contents	2
2	Gener	al information	3
		Notes and disclaimerApplication details	_
3	Test s	tandard/s	3
4	Test e	nvironment	4
5	Test it	tem	4
	5.1	Additional information	4
6	Test la	aboratories sub-contracted	4
7		iption of the test setup	
	7.1	Radiated measurements chamber C	5
8		nary of measurement results	
		GSM 850	
		PCS 1900	
9	RF me	easurements	8
	9.	Description of test setup	8
		Results GSM 850	
		2.2 Spurious emissions radiated	
		Results PCS 1900	
	_	3.1 RF output power	
10	_	est equipment and ancillaries used for tests	
11		bservations	
• •			
	nex A	Document history	
Anı	nex B	Further information	
Anı	nex C	Accreditation Certificate	23

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2013-09-23
Date of receipt of test item: 2013-10-14
Start of test: 2013-10-17
End of test: 2013-10-22

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 22	01.10.2012	Title 47 of the Code of Federal Regulations; Chapter I; Part 22 - Public mobile services
47 CFR Part 24	01.10.2012	Title 47 of the Code of Federal Regulations; Chapter I; Part 24 - Personal communications services
RSS - 132 Issue 3	01.01.2013	Spectrum Management and Telecommunications Radio Standards Specification - Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
RSS - 133 Issue 6	01.01.2013	Spectrum Management and Telecommunications Policy - Radio Standards Specifications, 2 GHz Personal Communication Services

2013-11-13 Page 3 of 23

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: T_{max} +40 °C during high temperature tests

T_{min} -10 °C during low temperature tests

Relative humidity content: 55 %

Barometric pressure: not relevant for this kind of testing

V_{nom} 4.0 V DC by battery

Power supply: V_{max} 4.2 V

V_{min} 3.22 V

5 Test item

Kind of test item	:	Emergency Watch GSM 800 / 1900 MHz
Type identification	:	LM15US0001
S/N serial number	:	19997
HW hardware status	:	1.5US
SW software status	:	2172
Frequency band [MHz]	:	GSM 850 MHz / 1900 MHz
Type of modulation	:	GMSK
Antenna	:	Integrated antenna
Power supply	:	4 V DC by battery
Temperature range	:	-10°C to +40°C

5.1 Additional information

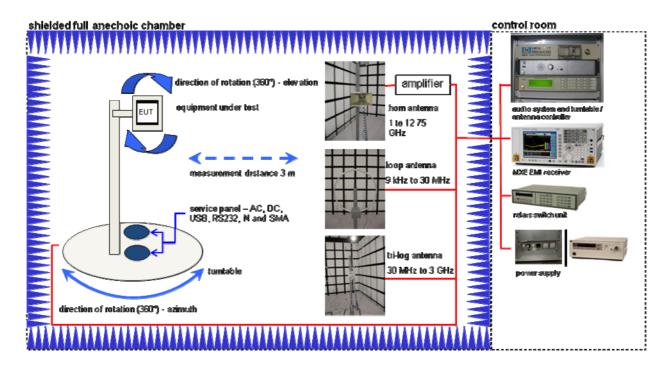
Test setup- and EUT-photos are included in test report:

1-6824_13-01-01_AnnexA

1-6824_13-01-01_AnnexB

1-6824_13-01-01_AnnexC

6 Test laboratories sub-contracted


None

2013-11-13 Page 4 of 23

7 Description of the test setup

7.1 Radiated measurements chamber C

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405
TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854
Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789
Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032
Active Loop Antenna	6502	EMCO	8905-2342	300000256
Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996
Switch / Control Unit	3488A	HP Meßtechnik	*	300000199
Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001156
Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155
Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997
Amplifier	js42-00502650-28-5a	Parzich GMBH	928979	300003143

2013-11-13 Page 5 of 23

7.2 Radiated measurements 12.75 GHz to 26 GHz

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda		300000786
Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda		300000486
Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP Meßtechnik	00419	300002268
Spectrum Analyzer 20 Hz - 50 GHz	FSU50	R&S	200012	300003443
Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517

2013-11-13 Page 6 of 23

8 Summar	y of measurement	results
----------	------------------	---------

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC identifier	Description	verdict	date	Remark
RF-Testing	CFR Part 22, 24 RSS 132, 133	passed	2013-11-13	Reduced testplan according costumers request.

8.1 GSM 850

Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					NP
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					NP
Block Edge Compliance	Nominal	Nominal					NP
Occupied Bandwidth	Nominal	Nominal					NP

Note: NA = Not applicable; NP = Not performed.

On customers request not all test cases were performed.

8.2 PCS 1900

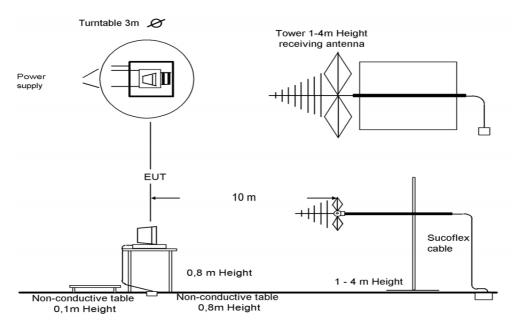
Test Case	temperature conditions	power source voltages	Pass	Fail	NA	NP	Remark
RF Output Power	Nominal	Nominal	\boxtimes				-/-
Frequency Stability	Nominal	Nominal					NP
Spurious Emissions Radiated	Nominal	Nominal					-/-
Spurious Emissions Conducted	Nominal	Nominal					NP
Block Edge Compliance	Nominal	Nominal					NP
Occupied Bandwidth	Nominal	Nominal					NP

Note: NA = Not applicable; NP = Not performed

On customers request not all test cases were performed.

2013-11-13 Page 7 of 23

9 RF measurements


9.1 Description of test setup

For the spurious measurements we use the substitution method according TIA/EIA 603.

9.1.1 Radiated measurements

The radiated emissions from the EUT are performed in a semi anechoic chamber. The EUT is placed on a conductive turntable and powered with nominal voltage. The signalling is performed either from outside the chamber with a signalling unit (AP or other) by air link using a signalling antenna or directly by special test software from the customer.

Semi anechoic chamber

Picture 1: Diagram radiated measurements

9 kHz - 30 MHz: active loop antenna

30 MHz – 1 GHz: tri-log antenna

> 1 GHz: horn antenna

2013-11-13 Page 8 of 23

9.2 Results GSM 850

All GSM-band measurements are done in GSM mode only (circuit switched).

All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated. For each mode the highest output power was determined and used.

9.2.1 RF output power

Description:

This paragraph contains average power, peak output power and ERP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters				
Detector:	Peak and RMS (Power in Burst)			
Sweep time:	Auto			
Video bandwidth:	1 MHz			
Resolution bandwidth:	1 MHz			
Span:	Zero Span			
Trace-Mode:	Max Hold			

Limits:

FCC	IC	
CFR Part 22.913 CFR Part 2.1046	RSS 132	
Nominal Peak Output Power		
+38.45 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.		

2013-11-13 Page 9 of 23

Results:

Output Power (conducted) GMSK mode			
Frequency (MHz)	Frequency (MHz) Average Output Power (dBm) Peak to Average Ratio (
824.2	NP	NP	
836.4	NP	NP	
848.8	NP	NP	
Measurement uncertainty	± 0.5 dB		

Output Power (radiated) GMSK mode		
Frequency (MHz) Average Output Power (dBm) - ERP		
824.2	18.5	
836.4	19.7	
848.8	20.0	
Measurement uncertainty	± 2.0 dB	

Result: Passed

2013-11-13 Page 10 of 23

9.2.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 848.8 MHz. This was rounded up to 12 GHz. The resolution bandwidth is set as outlined in Part 22.917. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the GSM-850 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Span:	100 MHz Steps	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 22.917 CFR Part 2.1053	RSS 132	
Spurious Emissions Radiated		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)		
-13 dBm		

2013-11-13 Page 11 of 23

Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the GSM-850 band (824.2 MHz, 836.4 MHz and 848.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

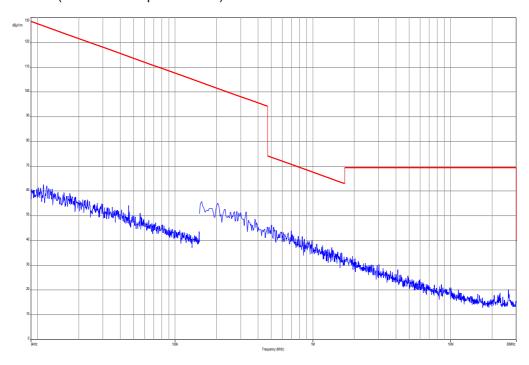
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

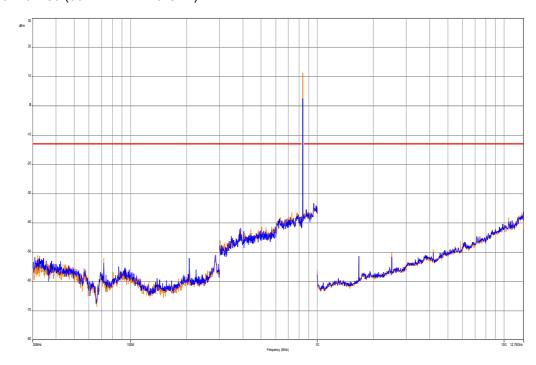
As can be seen from this data, the emissions from the test item were within the specification limit.

	SPURIOUS EMISSION LEVEL (dBm)							
Harmonic	Ch. 128 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 189 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 251 Freq. (MHz)	Level [dBm]
2	1648.4	-	2	1672.8	-52	2	1697.6	-
3	2472.6	-	3	2509.2	-50	3	2546.4	-
4	3296.8	-	4	3345.6	NF	4	3395.2	-
5	4121.0	-	5	4182.0	NF	5	4244.0	-
6	4945.2	-	6	5018.4	NF	6	5092.8	-
7	5769.4	-	7	5854.8	NF	7	5941.6	-
8	6593.6	-	8	6691.2	NF	8	6790.4	-
9	7417.8	-	9	7527.6	NF	9	7639.2	-
10	8242.0	-	10	8364.0	NF	10	8488.0	-
Measurement uncertainty				± 3dB				

NF = Noise floor


Result: Passed

2013-11-13 Page 12 of 23



Plots:

Plot 1: Channel 189 (Traffic mode up to 30 MHz)

Plot 2: Channel 189 (30 MHz – 12.75 GHz)

2013-11-13 Page 13 of 23

9.3 Results PCS 1900

All GSM-band measurements are done in GSM mode only (circuit switched). All tests were performed with one timeslot in uplink activated and one timeslot in downlink activated.

9.3.1 RF output power

Description:

This paragraph contains average power, peak output power and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Measurement:

The mobile was set up for the maximum output power with pseudo random data modulation.

Measurement parameters		
Detector:	Peak and RMS (Power in Burst)	
Sweep time:	Auto	
Video bandwidth:	1 MHz	
Resolution bandwidth:	1 MHz	
Span:	Zero Span	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 24.232 CFR Part 2.1046	RSS 133	
Nominal Peak Output Power		
+33.00 dBm In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.		

2013-11-13 Page 14 of 23

Results:

Output Power (conducted) GMSK mode			
Frequency (MHz) Average Output Power (dBm) Peak to Average Ratio		Peak to Average Ratio (dB)	
1850.2	NP	NP	
1880.0	NP	NP	
1909.8	NP	NP	
Measurement uncertainty	± 0.5 dB		

Output Power (radiated) GMSK mode		
Frequency (MHz) Average Output Power (dBm) - EIRP		
1850.2	22.7	
1880.0	22.8	
1909.8	21.9	
Measurement uncertainty	± 2.0 dB	

Result: Passed

2013-11-13 Page 15 of 23

9.3.2 Spurious emissions radiated

Description:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4:2009 requirements and is recognized by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the PCS1900 band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load (if possible).
- c) A double ridged wave guide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and 1 MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters.
- e) Now each detected emissions were substituted by the substitution method, in accordance with the TIA/EIA 603.

Measurement:

Measurement parameters		
Detector:	Peak	
Sweep time:	2 sec.	
Video bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Resolution bandwidth:	Below 1 GHz: 100 kHz Above 1 GHz: 1 MHz	
Span:	100 MHz Steps	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
CFR Part 24.238 CFR Part 2.1053	RSS 133	
Spurious Emissions Radiated		
Attenuation ≥ 43 + 10log(P) (P, Power in Watts)		
-13 dBm		

2013-11-13 Page 16 of 23

Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the PCS1900 band (1850.2 MHz, 1880.0 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the PCS1900 band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

The final open field radiated levels are presented on the next pages.

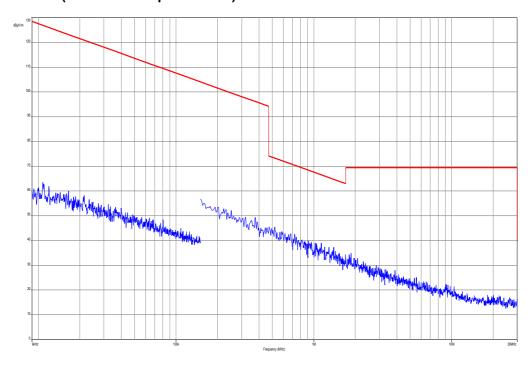
All measurements were done in horizontal and vertical polarization; the plots show the worst case.

The plots show only the middle channel. If spurious were detected, the lowest and highest channel were checked too. The found values are stated in the table below.

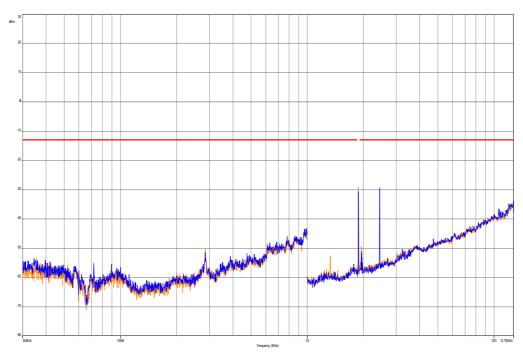
As can be seen from this data, the emissions from the test item were within the specification limit.

SPURIOUS EMISSION LEVEL (dBm)									
Harmonic	Ch. 512 Freq. (MHz)	Level [dBm]	Harmonic	Ch. 661 Freq. (MF		Level [dBm]	Harmonic	Ch. 810 Freq. (MHz)	Level [dBm]
2	3700.4	-	2	3760.0)	NF	2	3819.6	ı
3	5550.6	-	3	5640.0)	NF	3	5729.4	-
4	7400.8	-	4	7520.0	ס	NF	4	7639.2	-
5	9251.0	-	5	9400.0)	NF	5	9549.0	1
6	11101.2	-	6	11280.	0	NF	6	11458.8	-
7	12951.4	-	7	13160.	0	-54	7	13368.6	-
8	14801.6	-	8	15040.0		-54	8	15278.4	-
9	16651.8	-	9	16920.0		-54	9	17188.2	-
10	18502.0	-	10	18800.0		NF	10	19098.0	-
Measurement uncertainty					± 3dB				

NF = Noise floor


Result: Passed

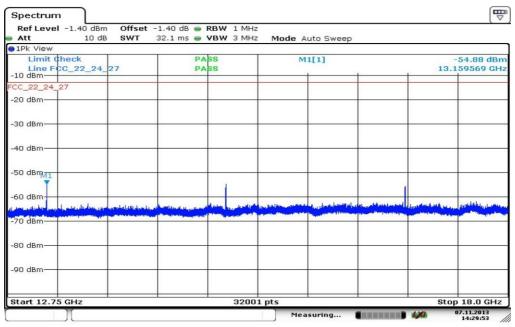
2013-11-13 Page 17 of 23



Plots:

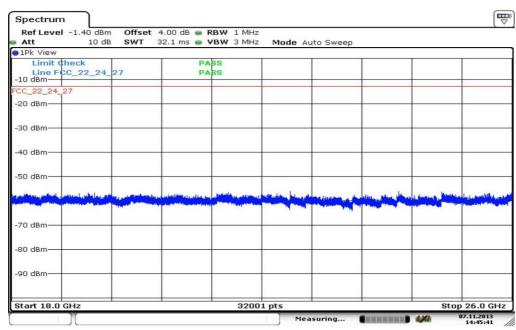
Plot 1: Channel 661 (Traffic mode up to 30 MHz)

Plot 2: Channel 661 (30 MHz - 12.75 GHz)



Carrier notched with 1.9 GHz rejection filter

2013-11-13 Page 18 of 23



Plot 3: Channel 661 (12.75 GHz - 18 GHz)

Date: 7.NOV.2013 14:29:53

Plot 4: Channel 661 (18 GHz - 26 GHz)

Date: 7.NOV.2013 14:45:41

2013-11-13 Page 19 of 23

10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Labor/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKI!	08.05.2013	08.05.2015
2	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
3	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	*	300000199	ne		
4	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001156	ne		
5	n. a.	Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997	ne		
6	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
7	n. a.	Amplifier	js42- 00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
8	n. a.	Band Reject filter	WRCG185 5/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
9	n. a.	Band Reject filter	WRCG240 0/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
10	n. a.	Highpass Filter	WHKX7.0/1 8G-8SS	Wainwright	18	300003789	ne		
11	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	371	300003854	vlKI!	14.10.2011	14.10.2014
12	n. a.	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologi es	MY51210197	300004405	k	21.02.2013	21.02.2014
13	n. a.	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	22.08.2012	22.08.2014
14	11b	Microwave System Amplifier, 0.5- 26.5 GHz	83017A	HP Meßtechnik	00419	300002268	ev		
15	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
16	A029	Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442	k	19.07.2013	19.07.2015

Agenda: Kind of Calibration

k

ne

not required (k, ev, izw, zw not required)

periodic self verification ev Ve long-term stability recognized

calibration / calibrated

Attention: extended calibration interval vlkl!

NK! Attention: not calibrated ΕK limited calibration

cyclical maintenance (external cyclical maintenance) ZW

izw internal cyclical maintenance blocked for accredited testing g

next calibration ordered / currently in progress *)

2013-11-13 Page 20 of 23

11 Observations

No observations exceeding those reported with the single test cases have been made.

2013-11-13 Page 21 of 23

Annex A Document history

Version	Applied changes	Date of release
1.0	Initial release	2013-11-12

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2013-11-13 Page 22 of 23

Annex C Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html

2013-11-13 Page 23 of 23