

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

AA4724

Test Report No:

R20240506-00-E1 Rev: B

Approved by:

al ano

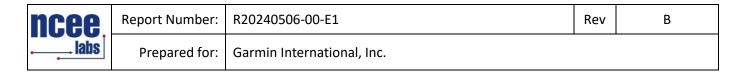
Fox Lane, EMC Test Engineer

DATE:

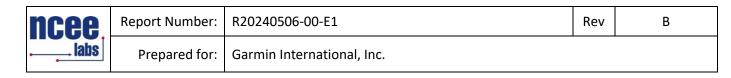
April 25, 2025

Total Pages:

59


The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee,	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		


REVISION PAGE

Rev. No.	Date	Description
0	27 November 2024	Issued by FLane
0		Prepared by Flane, ESchmidt
A	21 April 2025	Added FVIN – FL
D		Corrected Plot labeling
В	25 April 2025	Updated equipment list – FL

CONTENTS

Revi	sion Pa	ge	2
1.0	Sum	imary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Lab	pratory and General Test Description	6
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	10
	4.1	Output Power	12
	4.2	Bandwidth	13
	4.3	Duty Cycle	14
	4.4	Radiated emissions	16
	4.5	Conducted Spurious Emissions	22
	4.6	Band edges	28
	4.7	Power Spectral Density	29
	4.8	Conducted AC Mains Emissions	30
Арр	endix A	: Sample Calculation	33
Арр	endix B	- Measurement Uncertainty	34
Арр	endix C	– Graphs and Tables	35
REP		ID	59

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass			
FCC Part 15.247(b)(3) RSS-247 Issue 3 Section 5.4(d)	Peak output power	Pass			
FCC Part 15.247(a)(2) RSS-247 Issue 3 Section 5.2 (a)	Bandwidth	Pass			
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass			
FCC Part 15.247(e) RSS-247 Issue 3 Section 5.2 (b)	Power Spectral Density	Pass			
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass			
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	Pass			

ncee,	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

EUT	AA4724
FCC ID	IPH-A4724
IC ID	1792A-A4724
FVIN	13.17
EUT Received	30 August 2024
EUT Tested	2 September 2024- 18 November 2024
Serial No.3482655171 (Radiated Measurements) 3482795511 (Conducted Measurements)	
Operating Band	2400 – 2483.5 MHz
Device Type	⊠ GMSK ⊠ GFSK □ BT BR □ BT EDR 2MB □ BT EDR 3MB □ 802.11x
Power Supply / Voltage	Internal Battery / 5VDC Charger: Garmin (Phi Hong) Model: PSAI05R-050Q GPN: 362-00072-00 (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The operating range of the EUT is dependent on the device type found in section 2.1:

GFSK and GMSK 1MB Transmissions:

Channel	Frequency
Low	2402 MHz
Mid	2440 MHz
High	2480 MHz

GMSK 2MB Transmissions:			
Channel Frequency			
Low	2404 MHz		
Mid	2440 MHz		
High	2478 MHz		

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequencies and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

None

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)					
4740 Discovery Drive					
Lincoln, NE 68521					
A2LA Certificate Number:	1953.01				
FCC Accredited Test Site Designation No:	US1060				
Industry Canada Test Site Registration No:	4294A				
NCC CAB Identification No:	US0177				

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Fox Lane	Test Engineer	Testing and Report
-	T OX Lanc		
2	Blake Winter	Test Engineer	Testing
4	Ethan Schmidt	Test Engineer	Testing and Report

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE		
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2024	July 18, 2026		
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2024	July 18, 2026		
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 18, 2023	July 17, 2025		
SunAR RF Motion	JB1	A082918-1	July 17, 2024	July 17, 2025		
EMCO Horn Antenna	3117	29616	June 12, 2024	June 12, 2025		
EMCO Horn Antenna	3116	2576	July 31, 2023	July 30, 2025		
Com-Power LISN, Single Phase	LI-220C	20070017	July 17, 2023	July 17, 2025		
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026		
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026		
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025		
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027		
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026		
RF Cables (3m Ant. to Control room Bulkhead)	MFR-57500	1E3874	June 5, 2023	June 5, 2025		
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025		
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025		
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025		
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025		
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025		
TDK Emissions Lab Software	V11.25	700307	NA	NA		

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

ncee.	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted 🛛

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

ncee,	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		

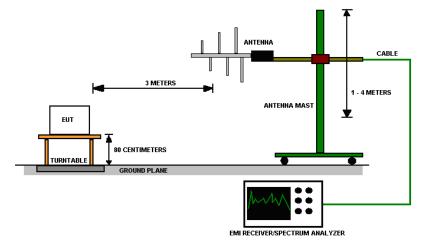
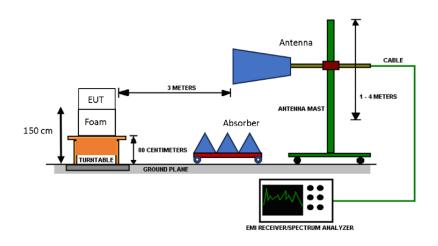



Figure 2 - Radiated Emissions Test Setup

ncee	Report Number:	R20240506-00-E1	Rev	В
	Prepared for:	Garmin International, Inc.		

4.0 RESULTS

	DTS Radio Measurements										
CHANNEL	Mode	Occupied Bandwidth (kHz)	6 dB Bandwidth (kHz)	PSD (dBm)	Peak Output Power (dBm)	Peak Output Power (mW)	RESULT				
Low	GMSK 1MB	1094.10	771.30	-16.11	-0.69	0.85	PASS				
Mid	GMSK 1MB	1091.60	770.10	-16.04	-0.61	0.87	PASS				
High	GMSK 1MB	1088.10	768.20	-15.74	-0.40	0.91	PASS				
Low	GMSK 2MB	2081.80	1097.00	-18.68	-0.62	0.87	PASS				
Mid	GMSK 2MB	2083.30	1082.00	-18.44	-0.52	0.89	PASS				
High	GMSK 2MB	2078.00	1092.00	-18.03	-0.33	0.93	PASS				
Low	GFSK	1083.20	519.70	-9.34	0.62	1.15	PASS				
Mid	GFSK	906.19	510.40	-10.54	0.59	1.14	PASS				
High	GFSK	959.49	510.70	-10.25	1.01	1.26	PASS				
Occupied Ba	Occupied Bandwidth = N/A; 6 dB Bandwidth Limit = N/A PSD Limit = 8dBm										

	Peak Restricted Band-Edge											
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result					
Low	GMSK 1MB	2390.00	55.181	Peak	73.98	18.80	PASS					
Low	GMSK 2MB	2390.00	54.365	Peak	73.98	19.62	PASS					
Low	GFSK	2390.00	53.994	Peak	73.98	19.99	PASS					
High	GMSK 1MB	2483.50	54.349	Peak	73.98	19.63	PASS					
High	GMSK 2MB	2483.50	54.166	Peak	73.98	19.81	PASS					
High	GFSK	2483.50	54.458	Peak	73.98	19.52	PASS					
*Limit shown	is the average li	mit taken from FCC	Part 15.209									

	Average Restricted Band-Edge										
СН.	Mode	Band edge /Measurement Frequency (MHz)	Peak Out of Band Level (dBuV/m @ 3m)	DCCF for Emissions (dB)	Corrected Out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result		
Low	GMSK 1MB	2390.00	55.181	7.670	47.51	Peak	53.98	6.47	PASS		
Low	GMSK 2MB	2390.00	54.365	12.857	41.51	Peak	53.98	12.47	PASS		
High	GMSK 1MB	2483.50	54.349	7.670	46.68	Peak	53.98	7.30	PASS		
High	GMSK 2MB	2483.50	54.166	12.857	41.31	Peak	53.98	12.67	PASS		
*Limit sh	*Limit shown is the average limit taken from FCC Part 15.209 **Detector used was peak, DCCF added to peak level to convert										
to average	je										

Report Number:	R20240506-00-E1	Rev	В
Prepared for:	Garmin International, Inc.		

	Average Restricted Band-Edge											
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result					
Low	GFSK	2390.00	42.47	Average	53.98	11.51	PASS					
High	GFSK	2483.50	43.10	Average	53.98	10.88	PASS					
*Limit showr	*Limit shown is the average limit taken from FCC Part 15.209											

	Unrestricted Band-Edge										
CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	Result				
Low	GMSK 1MB	2400.00	54.153	105.787	51.63	20.00	PASS				
Low	GMSK 2MB	2400.00	47.437	105.518	58.08	20.00	PASS				
Low	GFSK	2400.00	54.647	106.795	52.15	20.00	PASS				
High	GMSK 1MB	2483.50	47.273	106.052	58.78	20.00	PASS				
High	GMSK 2MB	2483.50	45.803	105.844	60.04	20.00	PASS				
High	GFSK	2483.50	47.217	107.151	59.93	20.00	PASS				

4.1 OUTPUT POWER

Test Method:

All measurements were performed using section 11.9.1.1 from ANSI C63.10.

Limits of power measurements:

For FCC Part 15.247 Device: The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

4.2 BANDWIDTH

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational/documentation purposes only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

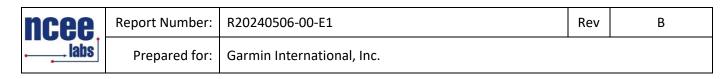
Details can be found in section 3.4 of this report.

Deviations from test standard:

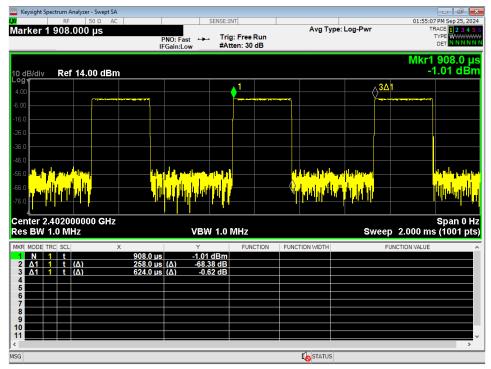
No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.


EUT operating conditions:

Details can be found in section 2.1 of this report.


Test results:

Pass Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

4.3 DUTY CYCLE

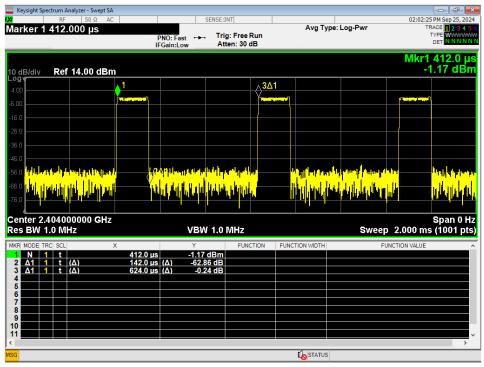


Figure 5 – Duty Cycle, GMSK 2MB

ncee.	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		

The following duty cycle and duty cycle correction factors (DCCF) were used where applicable.

Duty Cycle correction factor (for emissions) = $20 * \log(1 / \text{Duty cycle})$ Duty Cycle correction factor (for power) = $10*\log(1 / \text{Duty Cycle})$

Duty cycle for GMSK 1MB: 0.414 Duty cycle correction factor (for emissions) for GMSK 1MB: Duty Cycle correction factor (for power) for GMSK 1MB:	7.670dB 3.835dB
Duty cycle for GMSK 2MB: 0.228 Duty cycle correction factor (for emissions) for GMSK 2MB: Duty Cycle correction factor (for power) for GMSK 2MB:	12.857dB 6.428dB

GFSK Modulation has a duty cycle of >98%. No DCCF used.

4.4 RADIATED EMISSIONS

Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

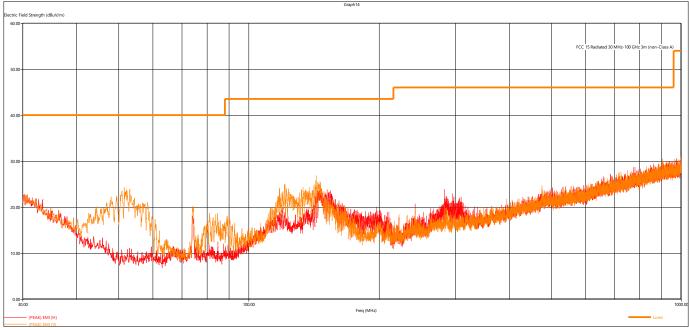
e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

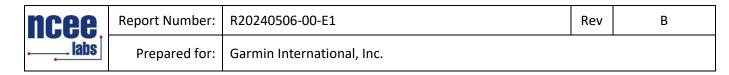
NOTE:

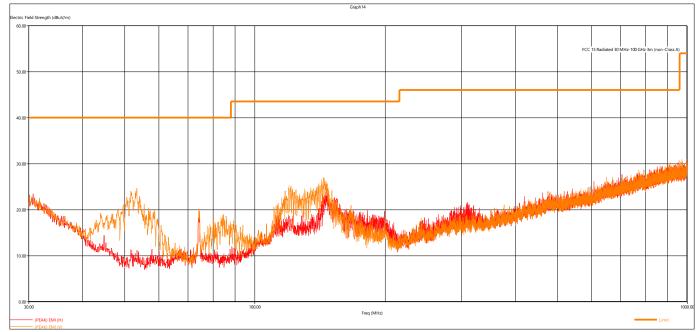
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.


2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.


EUT operating conditions


Details can be found in section 2.1 of this report.

Test results:

Figure 6 - Radiated Emissions Plot, Receive

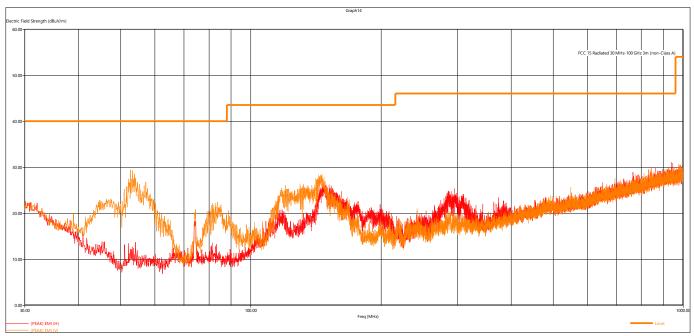
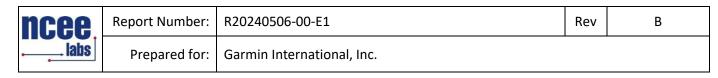



Figure 8 - Radiated Emissions Plot, GMSK 1MB

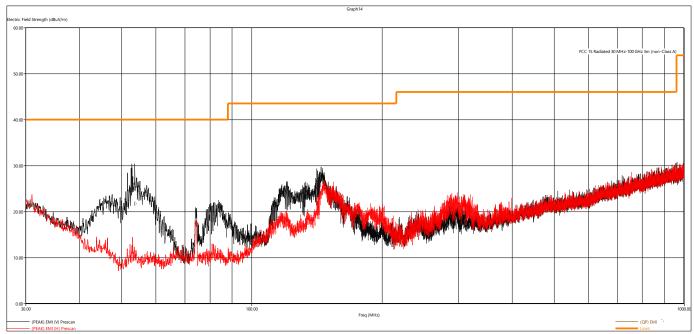


Figure 9 - Radiated Emissions Plot, GMSK 2MB

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

ncee.	Report Number:	R20240506-00-E1	Rev	В
labs	Prepared for:	Garmin International, Inc.		

Quasi-Peak Measurements, 30MHz – 1GHz								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBµV/m	dBµV/m	dB	cm.	deg.			
53.446320	21.63	40.00	18.37	124.47	260.00	V	Low	GMSK 2MB

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above.

Peak Radiated Emissions, > 1GHz									
Freq (Max)	PEAK EMI	Limit	Margin	Twr Ht	Ttbl Ang	Pol	Channel	Modulation	
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg)				
4880.034000	51.07	73.98	22.91	342.77	322.75	V	Mid	ANT	
4960.346000	52.90	73.98	21.08	284.26	319.25	V	High	ANT	
4804.236000	49.93	73.98	24.05	282.11	310.75	V	Low	ANT	

All other measurements up to 25GHz were investigated and found to be at least 10dB below the applicable limit line

	Average Radiated Emissions, > 1GHz									
Fre	eq (Max)	AVG EMI	Limit	Margin	Twr Ht	Ttbl Ang	Pol	Channel	Modulation	
((MHz)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg)				
4880	0.034000	47.69	53.98	6.29	342.77	322.75	V	Mid	ANT	
496	0.346000	47.42	53.98	6.56	284.26	319.25	V	High	ANT	
4804	4.236000	44.58	53.98	9.40	282.11	310.75	V	Low	ANT	

All other measurements up to 25GHz were investigated and found to be at least 10dB below the applicable limit line

Test Method: ANSI C63.10-2013, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Rev

В

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 30dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None.

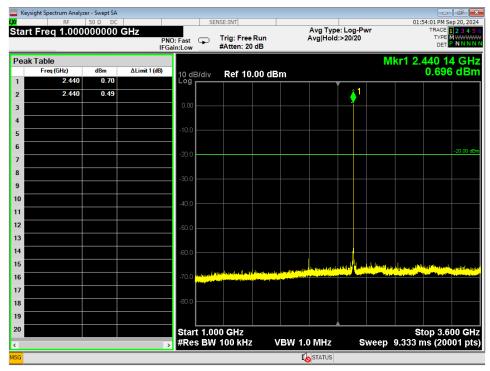
Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:


Note that the limit shown on the plots does not apply. It is a line for reference.

Prepared for: Garmin International, Inc.

Keysight Spectrum Anal RF	50 Ω DC			SEI	NSE:INT						01:	44:31 PM S	
tart Freq 30.0	00000 M	PNC): Fast in:Low	Ţ	Trig: Free #Atten: 20	Run dB		Avg Typ Avg Hold	e: Log-P\ :>100/10	wr 0			12345 MWWW PSNN
eak Table											Mkr1	910.0	з мн
Freq (GHz)	dBm	ΔLimit1(dB)	10 dB	/div	Ref 0.0	0 dBn	n				-(67.352	2 dBr
2													
			-10.0										
			-20.0										-20.00 d
			-30.0										
			-40.0										
0			-50.0 -										
1			-30.0 -										
2			-60.0										
3													≜ 1
4			-70.0	and the base	मा स्तुप्त जिल्ला संग का तराव	utilize pristana	n - a that had do.	where the state	<mark>didadaada</mark>	la dan dan d	di Theore William	u televetteret	- Hotesohi
5			1	a na sana ana ana ana ana ana ana ana an	l a character a character a la	and the system of the sec	and the second	1999 - 1999 -	and the state of the state of the	(Inspirit di base	a luit bisht		
6			-80.0										
7													
8			-90.0										
9													
D			Start	0.03	00 GHz		_				Sto 4.000 r	op 1.00	00 GI
_		>	#Res	BW	100 kHz	/	/BW 1.0		s	weep	4.000 r	ns (200	001 pt
G							Ū.	STATUS					

Figure 10 - Conducted Emissions Plot, GFSK, 30MHz – 1GHz, Mid

Prepared for: Garmin International, Inc.

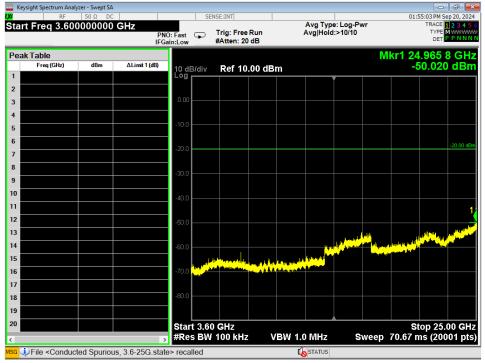


Figure 12 - Conducted Emissions Plot, GFSK, 3.6GHz – 25GHz, Mid

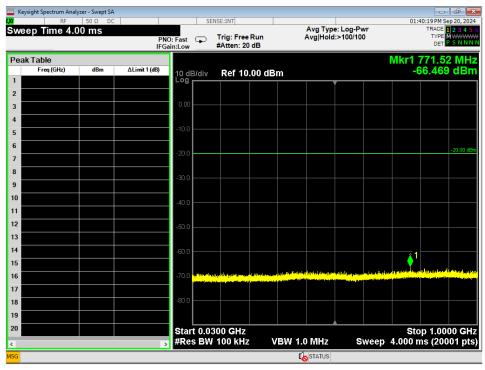


Figure 13 - Conducted Emissions Plot, GMSK 1MB, 30MHz - 1GHz, Mid

В

Rev

Prepared for: Garmin International, Inc.

				D:Fast ⊂ ain:Low		Frig: Free Atten: 20			Avg Hold				,	PNNN
eak Ta	ble reg (GHz)	dBm	ΔLimit 1 (dB)								N	lkr1 2.	439 7	5 GI
	2.440	-0.33		10 dB/	div	Ref 10	.00 dB	m					-0.325	ав
	2.440	-0.67								Í <u>* 1</u>				
	2.440	-1.51		0.00										
				-10.0										
				-20.0										-20.00 d
-				-30.0										
				-40.0										
				-50.0										
8				-30.0										
				-60.0										
5													والمراجع المتعادية	
5				-70.0 -74	a and a lot	lilland il mile.	able <mark>pitter</mark>	a dila mandali da			and the second secon	and the second secon	Land and the second second	hob to a fit
,				ľ	ing and a state of the second seco	and all the second	a Baarlanda an							
				-80.0										
,				Start	4								top 3.6	

Figure 14 - Conducted Emissions Plot, GMSK 1MB, 1GHz – 3.6GHz, Mid

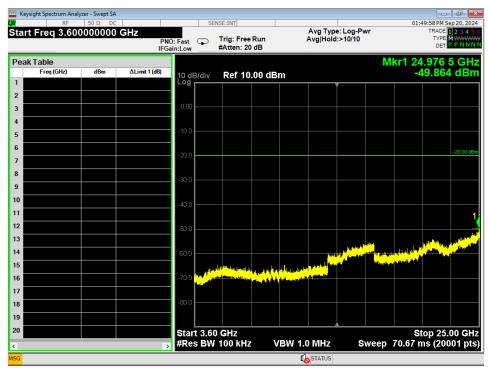


Figure 15 - Conducted Emissions Plot, GMSK 1MB, 3.6GHz – 25GHz, Mid

12345

TYP DE

Keysight Spectrum Analyzer - Swept SA 01:43:05 PM Sep 20, 2 TRACE 1 2 3 4 SENSE:INT Start Freq 30.000000 MHz Avg Type: Log-Pwr Avg|Hold:>100/100 PNO: Fast IFGain:Low Trig: Free Run #Atten: 20 dB Peak Table Mkr1 898.83 MH Eren (GHz ΔLimit 1 (dB) -67.192 dBm Ref 0.00 dBm I0 dB/div 2 3 4 5 6 7 8

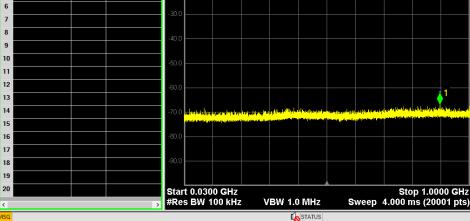


Figure 16 - Conducted Emissions Plot, GMSK 2MB, 30MHz – 1GHz, Mid

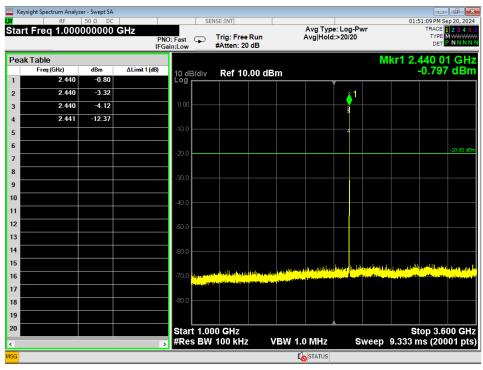


Figure 17 - Conducted Emissions Plot, GMSK 2MB, 1GHz – 3.6GHz, Mid

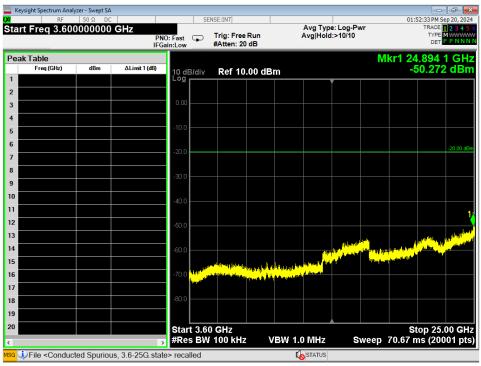


Figure 18 - Conducted Emissions Plot, GMSK 2MB, 3.6GHz – 25GHz, Mid

Garmin International, Inc.

В

Prepared for:

4.6 BAND EDGES

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209.
- 4. Tabulated data is listed in section 4.0.

4.7 POWER SPECTRAL DENSITY

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

4.8 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56	56 to 46			
0.5-5	56	46			
5-30	60	50			

Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test Results:

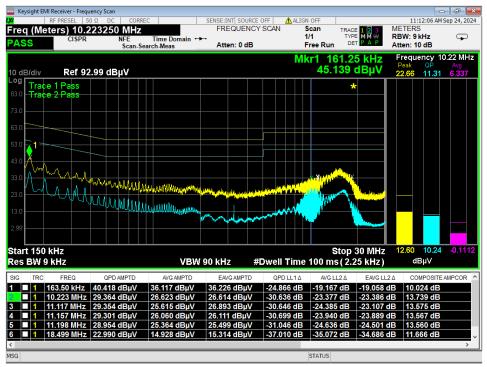


Figure 20 - Conducted Emissions Plot, Neutral, TX

Figure 21 - Conducted Emissions Plot, Line, IDLE

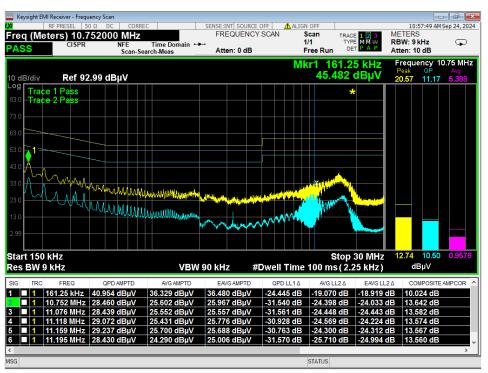
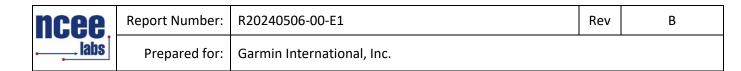



Figure 22 - Conducted Emissions Plot, Neutral, IDLE

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

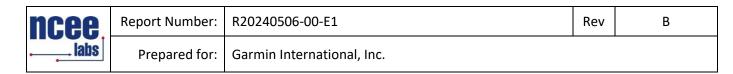
AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

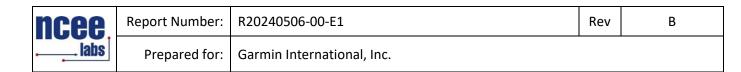

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by the taking the $20*\log(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

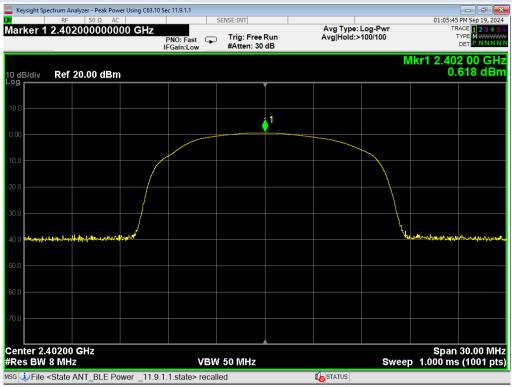
EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

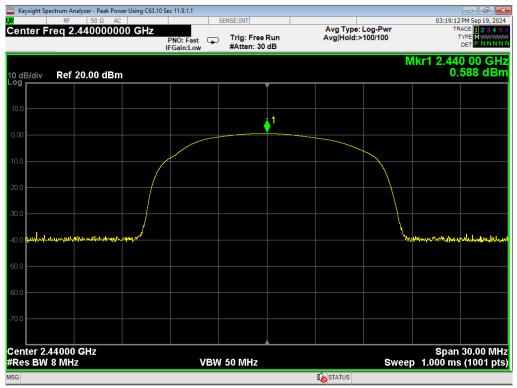
EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000 Voltage (dBµV) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dBµV/m) / 20] / 10^{6} Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3): EIRP = [FS(V/m) x d^2]/30 = FS [0.3] for d = 3 EIRP(dBm) = FS(dBµV/m) - $10(\log 10^{9})$ + $10\log[0.3]$ = FS(dBµV/m) - 95.23 $10\log(10^{9})$ is the conversion from micro to milli

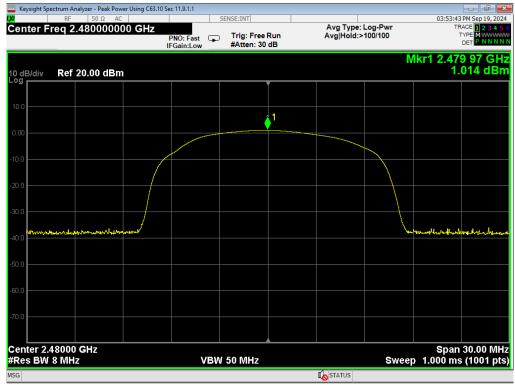


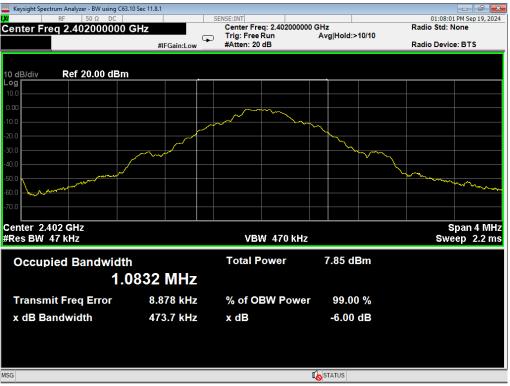
APPENDIX B – MEASUREMENT UNCERTAINTY


NCEE Labs does not add uncertainty levels to measurement levels Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03

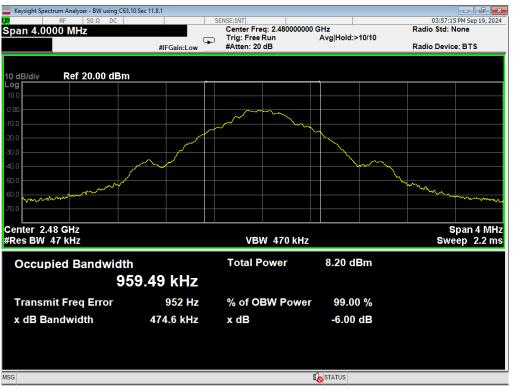

Expanded uncertainty values are calculated to a confidence level of 95%.

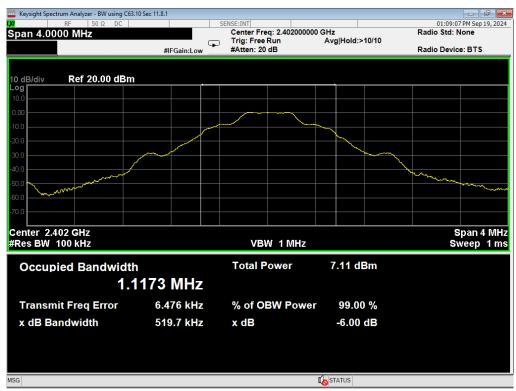

01, Peak Power, ANT GFSK, Low

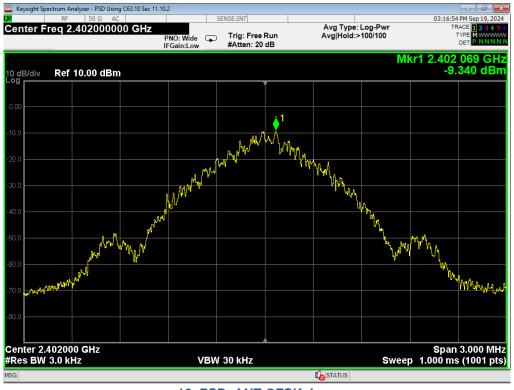

02, Peak Power, ANT GFSK, Mid

Page 35 of 59

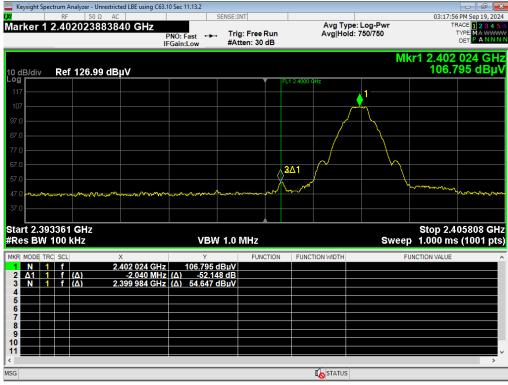
03, Peak Power, ANT GFSK, High



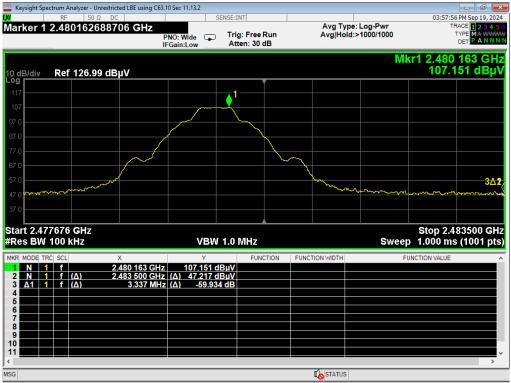




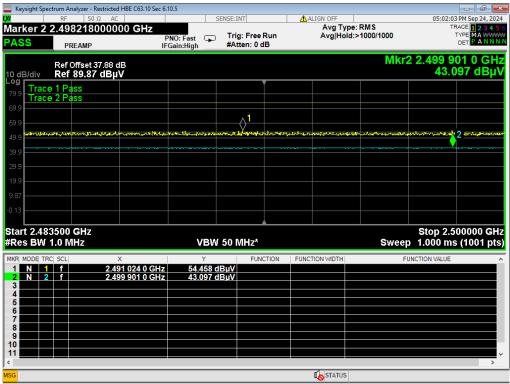
10, PSD, ANT GFSK, Low



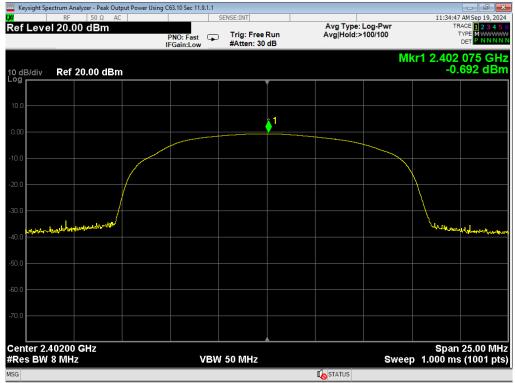
11, PSD, ANT GFSK, Mid



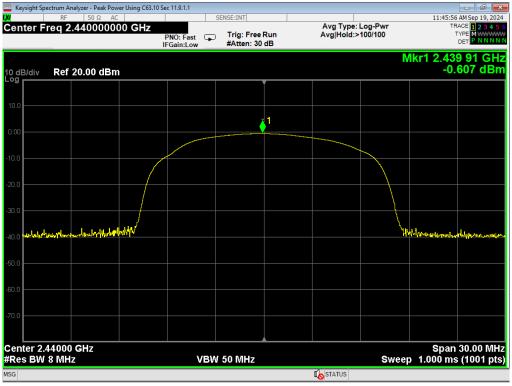
12, PSD, ANT GFSK, High



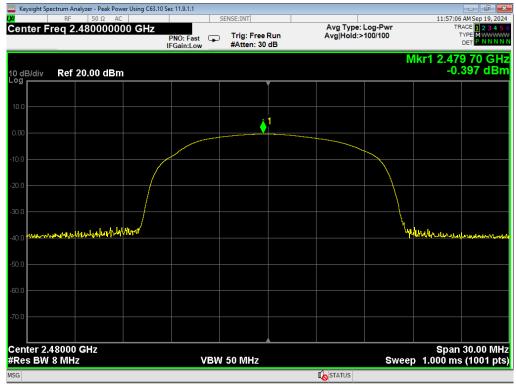
14, HBE Unrestricted, ANT GFSK


🔤 Keysight Sp	pectrum Analyzer - Restrict	ted LBE using C63.10 Sec	c 6.10.5					
<mark>.x</mark> Marker 2	RF 50 Ω 2 2.385320000		SENSE:I	NT	ALIGN OFF			PM Sep 24, 2024 ACE 1 2 3 4 5 6
PASS	PREAMP	PN		g: Free Run ten: 0 dB	Avg Hold	i:>1000/1000	т	
	Ref Offset 37.51	1 dB				Ν	Akr2 2.384	l 88 GHz 71 dBµV
10 dB/div	Ref 89.50 dB	μV					42.4	πασμν
79.5 Trac	ce 1 Pass ce 2 Pass							
69.5								
59.5								
49.5 49.5	handerson and and an and an and and and and an	and the second	and for the stand of the ford and	and the second second	ut In manner	withorwoodwood		uller of the second
39.5			· · ·	. <u> </u>	· · · ·	<u>.</u>	·	
29.5								
19.5								
9.50								
-0.50								
Start 2.3	80000 GHz / 1.0 MHz		#VBW 50	MHz*		Swee	Stop 2.39 p 1.000 ms	00000 GHz (1001 pts)
Start 2.3		X	Y	MHz*	FUNCTION WIDTH		Stop 2.39 p 1.000 ms	00000 GHz (1001 pts)
Start 2.33 #Res BW	/ 1.0 MHz	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.3: #Res BW	1.0 MHz TRC SCL f		Y		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.3: #Res BW	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.3 #Res BW	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.3: #Res BW MKR MODE T 1 N 2 N 3 4 5 5 6 7 7 8	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.33 #Res BW MKR MODE T 1 N 2 N 3 4 5 6 6 6 7 8 9 9 9 10	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.3: #Res BW MKR MODE T 1 N 2 N 3 4 5 6 6 7 8 8 9	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV		FUNCTION WIDTH		p 1.000 ms	00000 GHz (1001 pts)
Start 2.33 #Res BW MKR MODE T 1 N 2 N 3 4 5 6 6 7 7 8 9 9 10 11	1.0 MHz TRC SCL f	2.385 81 GHz	∨ 53.994 dBµV				p 1.000 ms	(1001 pts)

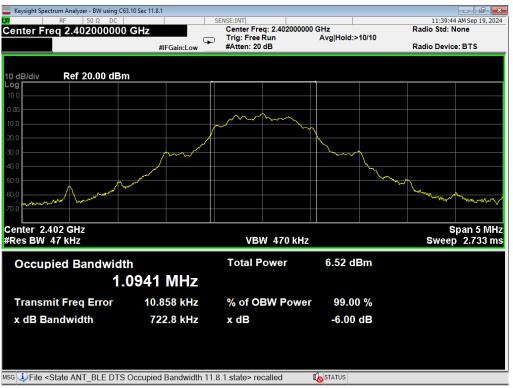
15, LBE Restricted, ANT GFSK



16, HBE Restricted, ANT GFSK

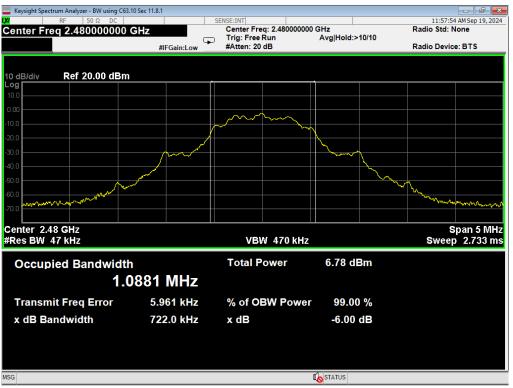


17, Peak Power, BLE 1MB, Low

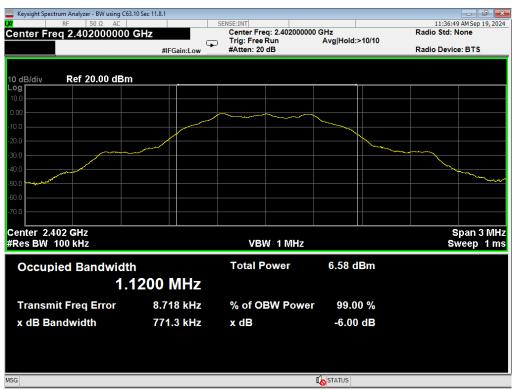


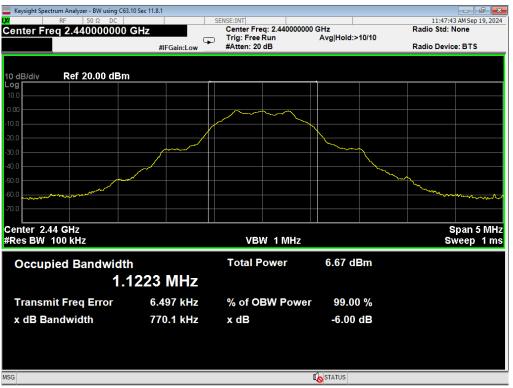
18, Peak Power, BLE 1MB, Mid

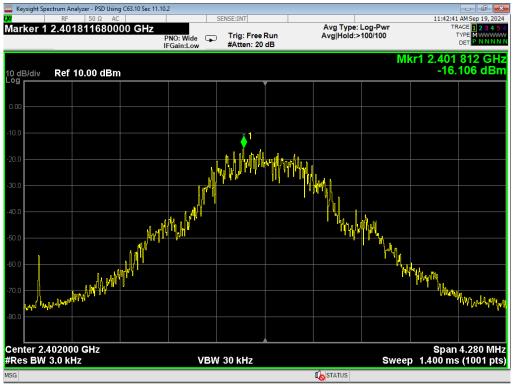
19, Peak Power, BLE 1MB, High

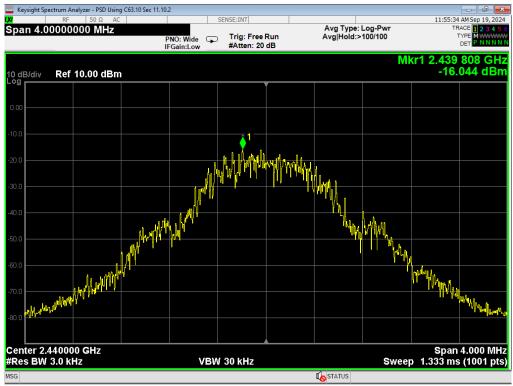


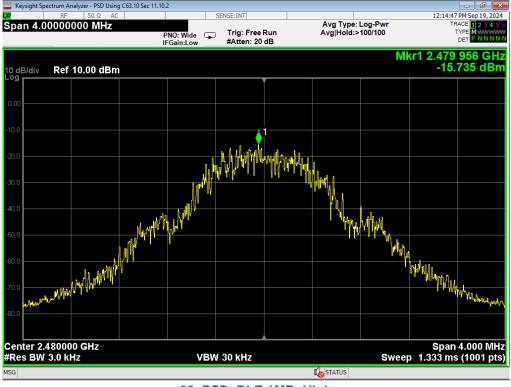
20, Occupied Bandwidth, BLE 1MB, Low



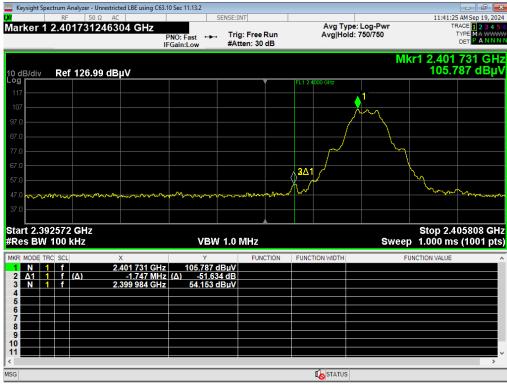




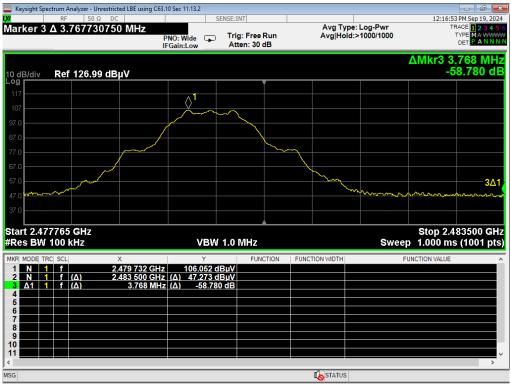




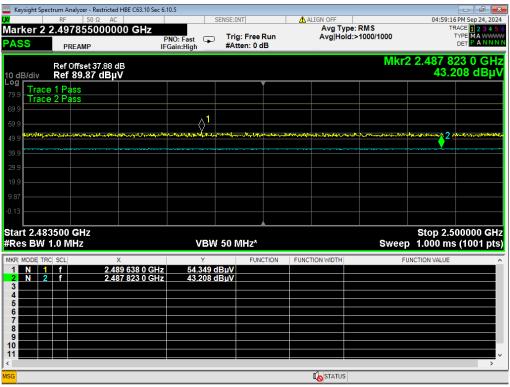
26, PSD, BLE 1MB, Low



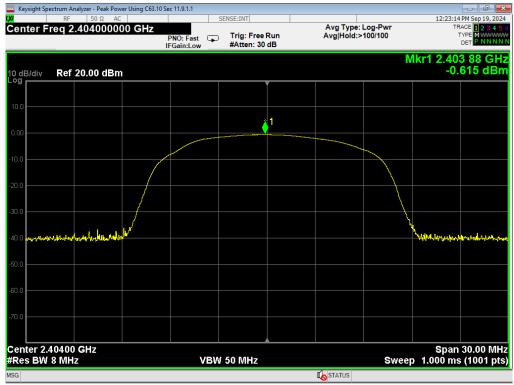
27, PSD, BLE 1MB, Mid



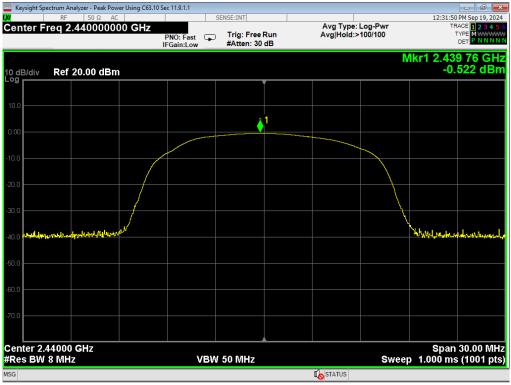
28, PSD, BLE 1MB, High



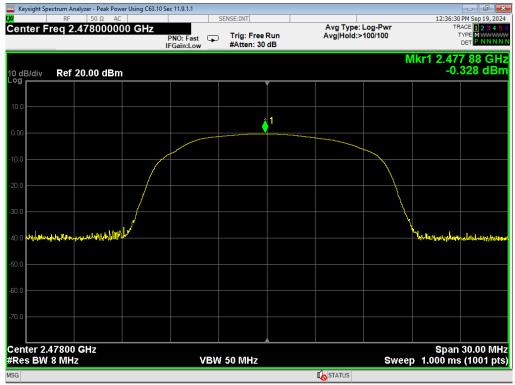
30, HBE Unrestricted, BLE 1MB


Kowight Sp	ectrum Analyzer - Restricte	d I PE using C62 10 Se	c 6 10 5						
	RF 50 Ω A			ENSE:INT		ALIGN OFF		04:38:5	0 PM Sep 24, 2024
	2.3828800000		5	ENGENIN			RMS		RACE 1 2 3 4 5 6
	2.302000000		IO: Fast	Trig: Free F		Avg Hold:	>1000/1000		
PASS	PREAMP		ain:High	#Atten: 0 dl	в				DET PANNN
							N	kr2 2 38	8 09 GHz
	Ref Offset 37.51								57 dBµV
10 dB/div Log	Ref 89.50 dBµ	IV						42.4	οι αρμν
₇₀ Trac	e 1 Pass			Ĭ					
^{78.6} Trac	e 2 Pass								
69.5									
59.5									
- to the	المراجع والمحافظ والمحال المحافظ والمحافظ والمحاف	Mr. Maring May and Maring a	males and and and the offer	والمادية والمراجع الألاسة معالي	mand		Warderle Terring allow 🤈 w	www.www.www.	
49.5									
39.5	· · · · · · · · · · · · · · · · · · ·		·					· · · · · · · · · · · · · · · · · · ·	·
29.5									
19.5									
9.50									
-0.50									
-0.50									
Start 2.39	30000 GHz							Stop 2.2	90000 GHz
#Res BW			#\/B\/	V 50 MHz*			Swoor	510p 2.3	s (1001 pts)
#Res BW			#VDV	V JU WINZ			Swee	1.000 ms	s (1001 pts)
MKR MODE T		X	Y	FUNC	TION	FUNCTION WIDTH	FU	JNCTION VALUE	^
1 N *		2.388 60 GHz	55.181 d	BµV					
2 N 2 3	2 f	2.388 09 GHz	42.456 d	ВиV					
4									
5									
6									
7 8									
9									
10									
11									~
<									>
MSG						I STATUS			

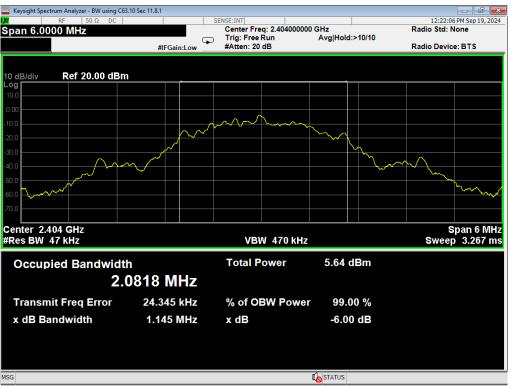
31, LBE Restricted, BLE 1MB



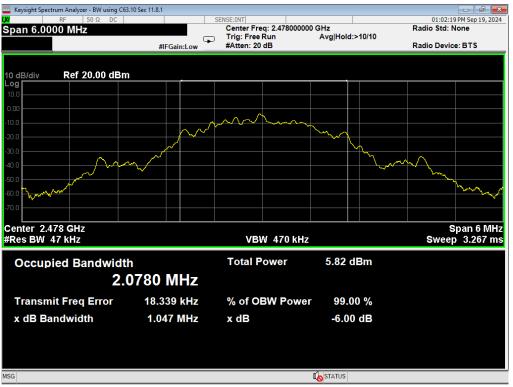
32, HBE Restricted, BLE 1MB

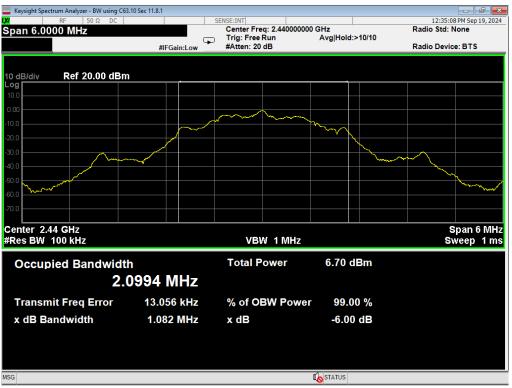


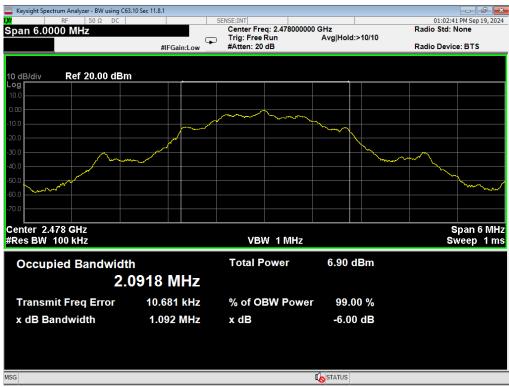
33, Peak Power, BLE 2MB, Low

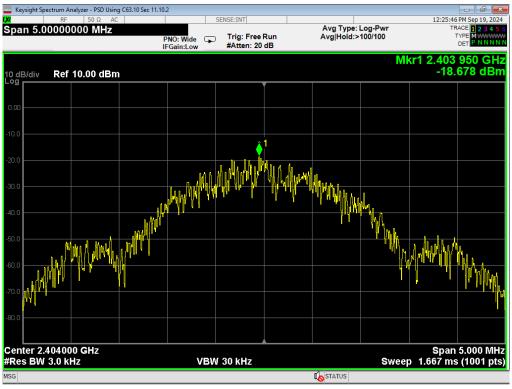


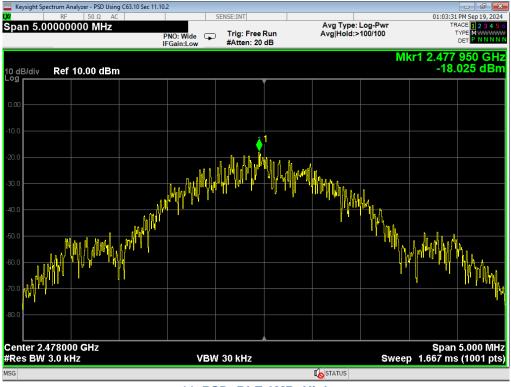
34, Peak Power, BLE 2MB, Mid



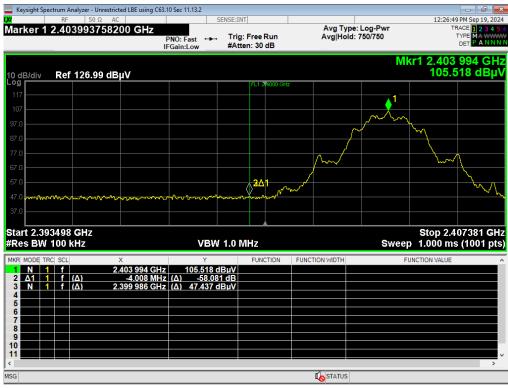






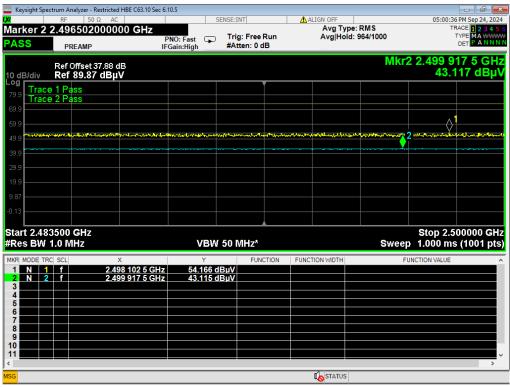


42, PSD, BLE 2MB, Low



43, PSD, BLE 2MB, Mid

44, PSD, BLE 2MB, High



46, HBE Unrestricted, BLE 2MB

Keysight Spectrum Analyzer - Restricted LBE using C63	.10 Sec 6.10.5					×
LXI RF 50 Ω AC	SENSE:I	NT	ALIGN OFF			PM Sep 24, 2024
Marker 2 2.386330000000 GHz PASS PREAMP		g: Free Run ten: 0 dB	Avg Type: Avg Hold:>		Т	ACE 1 2 3 4 5 6 YPE MA DET PANNN
Ref Offset 37.51 dB 10 dB/div Ref 89.50 dBµV				Μ	kr2 2.380 42.4	6 09 GHz 48 dBµV
Log 79.5 Trace 1 Pass Trace 2 Pass						
69.5						
49.5 Hardmannhalana lanan mahanlan katharang kathar	กระสารสารสารสาร	ม <i>าก</i> รุกปฏ	-//	พพงหาสถาราจาก	n hhaiteann	mound
39.5						
19.5						
9.50						
Start 2.380000 GHz #Res BW 1.0 MHz	#VBW 50	MHz*		Sweep	Stop 2.39 1.000 ms	90000 GHz (1001 pts)
MKR MODE TRC SCL X	Y	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE	^
1 N 1 f 2.386 26 G 2 N 2 f 2.386 09 G 3 4 5 5						
						×
MSG						

47, LBE Restricted, BLE 2MB

48, HBE Restricted, BLE 2MB

ncee.	Report Number:	R20240506-00-E1		В
labs	Prepared for:	Garmin International, Inc.		

REPORT END