

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. 2) Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{0}^{a} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos \phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures Description: Aqueous solution with surfactants and inhibitors Declarable, or hazardous components:

beclarable, of hazardous components.								
CAS: 107-21-1	Ethanediol	>1.0-4.9%						
EINECS: 203-473-3	STOT RE 2, H373;							
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302							
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%						
EINECS: 271-781-5	Eye Irrit. 2, H319							
Reg.nr.: 01-2119527859-22-0000								
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%						
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319							
Reg.nr.: 01-2119539582-35-0000								
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%						
NLP: 500-236-9	Aquatic Chronic 2, H411;							
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319							

Additional information: For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID A3LSMF721U	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 1 of 3

e <u>a g</u> S Ø Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 210621-3)
Manufacturer	SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.

Test Condition Ambient Condition 22°C ; 30% humidity TSL Temperature 22°C Test Date 23-Jun-21 Operator WM Additional Information

TSL Density TSL Heat-capacity

Results

Hesun				-		D'II I. T.									
	Measu			Targe		Diff.to Targ		15.0		N LUID		100	- 4		
f [MHz]	e'	e"	sigma		sigma	1	∆-sigma	10.0			112				
600	55.7	26.7	0.89	56.1	0.95	-0.7	-6.3								1.00
750	55.3	22.5	0.94	55.5	0.96	-0.4	-2.1	0.0				_	-	- Andi-	
800	55.1	21.5	0.96	55.3	0.97	-0.4	-1.0	Permittivity 0.0 2.5							-
825	55.1	21.1	0.97	55.2	0.98	-0.3	-1.0	-10.0	1.00		15		in the		
835	55.1	20.8	0.97	55.1	0.99	0.0	-1.5	10000							
850	55.0	20.6	0.97	55.2	0.99	-0.3	-2.0	-15.0	500	1500	2500	3500 ancy MHz	4500	550	0
900	54.9	19.9	0.99	55.0	1.05	-0.2	-5.7				Freque	ency MHz			
1400	54.1	15.9	1.24	54.1	1.28	0.0	-3.1	15.0	1		1112			2 1 2 1	
1450	54.0	15.7	1.27	54.0	1.30	0.0	-2.3	10.0	-				-	-	-
1600	53.8	15.3	1.36	53.8	1.39	0.0	-2.2	≈ 5.0	-	1	6				-
1625	53.8	15.2	1.38	53.8	1.41	0.1	-2.1	Conductivity Conductivity -2:0		1	1				
1640	53.8	15.2	1.39	53.7	1.42	0.1	-2.1	npuo -5.0	Λ.	~	1				-
1650	53.7	15.1	1.39	53.7	1.43	0.0	-2.8		10			-			
1700	53.7	15.0	1.42	53.6	1.46	0.3	-2.7	2-10.0 0		1988	11.401	0.000		n et l	
1750	53.6	14.9	1.45	53.4	1.49	0.3	-2.7	-15.0	500	1500	2500	3500	4500	550	0
1800	53.5	14.9	1.49	53.3	1.52	0.4	-2.0			1000	Freque	3500 mcy MHz			
1810	53.5	14.9	1.50	53.3	1.52	0.4	-1.3	3500	50.9	15.9	3.10	51.3	3.31	-0.9	-6.3
1825	53.5	14.8	1.51	53.3	1.52	0.4	-0.7	3700	50.6	16.2	3.33	51.1	3.55	-1.0	-6.2
1850	53.5	14.8	1.52	53.3	1.52	0.4	0.0	5200	47.7	18.6	5.39	49.0	5.30	-2.6	1.7
1900	53.4	14.8	1.56	53.3	1.52	0.2	2.6	5250	47.6	18.7	5.46	49.0	5.36	-2.7	1.9
1950	53.4	14.7	1.60	53.3	1.52	0.2	5.3	5300	47.5	18.8	5.54	48.9	5.42	-2.8	2.2
2000	53.3	14.7	1.63	53.3	1.52	0.0	7.2	5500	47.1	19.1	5.83	48.6	5.65	-3.0	3.2
2050	53.3	14.7	1.67	53.2	1.57	0.1	6.4	5600	46.9	19.2	5.98	48.5	5.77	-3.2	3.6
2100	53.2	14.7	1.71	53.2	1.62	0.1	5.6	5700	46.7	19.3	6.13	48.3	5.88	-3.3	4.2
2150	53.1	14.7	1.75	53.1	1.66	0.0	5.4	5800	46.5	19.4	6.27	48.2	6.00	-3.5	4.6
2200	53.1	14.7	1.80	53.0	1.71	0.1	5.3	6000	46.1	19.7	6.57	47.9	6.23	-3.7	5.5
2250	53.0	14.7	1.84	53.0		0.1	4.5	6500	1-6						
2300	52.9	14.7	1.88	52.9		0.0	3.9	7000							
2350	52.9	14.8	1.93	52.8		0.1	4.3	7500	-24						
2400	52.8	14.8	1.98	52.8		0.1	4.2	8000	172.1			5			
2450	52.7	14.8	2.02	52.7			3.6	8500							
2500	52.6	14.9	2.02	52.6		1298352	2.5	9000							
2550	52.5	14.9	2.12	52.6		1	1.4	9500							
2000	32.5	1 14.9	6.16	1 32.0	2.03	-0.1	1.4	10000							

Figure C-2 600 – 6000 MHz Body Tissue Equivalent Matter

FCC ID A3LSMF721U	SAR EVALUATION REPORT	Approved by: Technical Manager
DUT Type: Portable Handset		APPENDIX C: Page 2 of 3

Schmid & Partner Engineering AG S D C a G

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)	
Product No.	SL AAH U16 BC (Batch: 210629-3)	
Manufacturer	SPEAG	

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

root oonantion		
Ambient Condition	22°C ; 30% humidity	
TSL Temperature	22°C	
Test Date	1-Jul-21	
Operator	WM	
Additional Inform	ation	
TSL Density		

TSL Heat-capacity

	Measu	ured		Targe	rt	Diff.to Targ	get [%]	15.0		_					_
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	10.0	alle			2011		in de	
600	44.7	25.5	0.85	42.7	0.88	4.6	-3.6	* 5.0	-						
750	44.1	21.6	0.90	41.9	0.89	5.1	0.7					-			
800	44.0	20.6	0.92	41.7	0.90	5.6	2.5	Permittivity -5.0				-			
825	44.0	20.2	0.93	41.6	0.91	5.8	2.6	La -5.0	1000						-
835	44.0	20.0	0.93	41.5	0.91	5.9	2.0	à 10.0 □ -15.0	-			BU-ST LA	4		
850	43.9	19.8	0.93	41.5	0.92	5.8	1.5								
900	43.8	19.0	0.95	41.5	0.97	5.5	-2.1		500 150	0 2500	Frequer		500 7500	8500 9	500
1400	42.8	15.1	1.18	40.6	1.18	5.4	0.0	45.0				-			_
1450	42.7	14.9	1.20	40.5	1.20	5.4	0.0	15.0		1	10 2	1	IN STATE	517	
1600	42.4	14.4	1.28	40.3	1.28	5.2	-0.3	10.0	Carls	A		1.		145	13
1625	42.4	14.3	1.30	40.3	1.30	5.3	0.1	\$ 5.0	A	1		-			
1640	42.4	14.3	1.31	40.3	1.31	5.3	0.3	0.0	N	1	_				
1650	42.3	14.3	1.31	40.2	1.31	5.1	-0.2	5.0 0.0 conductivity 5.0 0.0 0.0 0.0			~				
1700	42.3	14.2	1.34	40.2	1.34	5.3	-0.2	Q10.0	200		i a	1. The second	1000	110	1
1750	42.2	14.1	1.37	40.1	1.37	5.3	-0.1		00 150	0 2500 3	8500 450	0 5500 6	500 7500	8500 95	00
1800	42.1	14.0	1.40	40.0	1.40	5.3	0.0			0 2000 0		ncy MHz	000 1000	0000 00	
1810	42.1	13.9	1.41	40.0	1.40	5.3	0.7	3500	39.4	14.2	2.77	37.9	2.91	3.8	-4.
1825	42.1	13.9	1.42	40.0	1.40	5.3	1.4	3700	39.0	14.4	2.96	37.7	3.12	3.6	-5.
1850	42.0	13.9	1.43	40.0	1.40	5.0	2.1	5200	36.4	16.0	4.62	36.0	4.66	1.2	-0.
1900	42.0	13.8	1.46	40.0	1.40	5.0	4.3	5250	36.3	16.0	4.68	35.9	4.71	1.1	-0.
1950	41.9	13.8	1.49	40.0	1.40	4.7	6.4	5300	36.2	16.1	4.73	35.9	4.76	1.0	-0.
2000	41.8	13.7	1.53	40.0	1.40	4.5	9.3	5500	35.9	16.2	4.96	35.6	4.96	0.6	0.
2050	41.8	13.7	1.56	39.9	1.44	4.7	8.0	5600	35.7	16.3	5.08	35.5	5.07	0.4	0.3
2100	41.7	13.7	1.59	39.8	1.49	4.7	6.8	5700	35.5	16.4	5.20	35.4	5.17	0.2	0.
2150	41.6	13.6	1.63	39.7	1.53	4.7	6.3	5800	35.3	16.5	5.31	35.3	5.27	0.0	0.8
2200	41.6	13.6	1.67	39.6	1.58	4.9	5.8	6000	34.9	16.6	5.55	35.1	5.48	-0.4	1.4
2250	41.5	13.6	1.70	39.6	1.62	4.9	4.8	6500	34.0	17.1	6.17	34.5	6.07	-1.3	1.0
2300	41.4	13.6	1.74	39.5	1.67	4.9	4.4	7000	33.1	17.4	6.78	33.9	6.65	-2.2	2.0
2350	41.3	13.6	1.78	39.4	1.71	4.9	4.0	7500	32.3	17.7	7.40	33.3	7.24	-3.1	2.
2400	41.3	13.6	1.82	39.3	1.76	5.1	3.7	8000	31.4	18.0	8.01	32.7	7.84	-4.1	2.
2400	41.2	13.6	1.86	39.2	1.80	5.1	3.3	8500	30.5	18.2	8.62	32.1	8.45	-5.0	2.
2450		bourses.	1 00	39.1	1.85	5.0	2.5	9000	29.7	18.4	9.22	31.5	9.08	-5.9	1.4
	41.1	13.6	1.90	39.1	1.05										
2450	41.1 41.0	13.6 13.7	1.90	39.1	1.91	4.9	1.6	9500	28.9	18.6	9.82	31.0	9.71	-6.7	1.3

Figure C-3 600 – 10000 MHz Head Tissue Equivalent Matter

FCC ID A3LSMF721U	ID A3LSMF721U SAR EVALUATION REPORT	
DUT Type: Portable Handset		APPENDIX C: Page 3 of 3