

TEST REPORT

Report No.:	BCTC2310106798-4E
Applicant:	NINGBO AUDITORYWORKS CO., LTD.
Product Name:	Nearhub Tail
Model/Type reference:	AW-NT10
Tested Date:	2024-03-06 to 2024-03-08
Issued Date:	2024-04-03
She	enzhen BCTC Testing Co., Ltd.
No.: BCTC/RF-EMC-005	Page 1 of 115 Edition / B.0

FCC ID: 2BAHR-NT10

Product Name:	Nearhub Tail
Trademark:	N/A
Model/Type Ref.:	AW-NT10 AW-NT***** ("*" can be 0-9, A-Z, a-z or blank, indicate different enclosure color, performance, sales area or customer)
Applicant:	NINGBO AUDITORYWORKS CO., LTD.
Address:	3-314 Lingqiao Road 229, Haishu District, Ningbo City, Zhejiang Province, China
Manufacturer:	NINGBO AUDITORYWORKS CO., LTD.
Address:	3-314 Lingqiao Road 229, Haishu District, Ningbo City, Zhejiang Province, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-03-06
Sample tested Date:	2024-03-06 to 2024-03-08
Issue Date:	2024-04-03
SAR Max. Values is:	0.978 W/kg (1g) for Body
Test Standards:	IEEE Std C95.1, 2019/ IEEE Std 1528™-2013/FCC Part 2.1093
Test Results:	PASS
Remark:	This is SAR test report

Tested by: Min zhi Cheng

Min Zhi Cheng/ Project Handler

Approved by:

Zero Zhou/ Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page 2 of 115

Table Of Content

Test Report Declaration	Page
1. Version	5
2. Test Standards	6
3. Test Summary	7
4. SAR Limits	8
5. Measurement Uncertainty	9
6. Product Information and Test Setup	10
6.1 Product Information	
6.2 Test Setup Configuration	11
6.3 Support Equipment	
6.4 Test Environment	11
7. Test Facility and Test Instrument Used	12
7.1 Test Facility	
7.2 Test Instrument Used	
8. Specific Absorption Rate (SAR)	
8.1 Introduction	
8.2 SAR Definition	
9. SAR Measurement System	
9.1 The Measurement System	
9.2 Probe	
9.3 Probe Calibration Process	
9.4 Phantom	
9.5 Device Holder	
10. Tissue Simulating Liquids	
10.1 Composition of Tissue Simulating Liquid	
10.2 Limit	
10.3 Tissue Calibration Result	
11. System Check	
11.1 Purpose of System Performance Check	
11.2 System Setup	
11.3 Validation Results	
12. EUT Testing Position	24
13. SAR Measurement Procedures	25
13.1 Measurement Procedures	
13.2 Spatial Peak SAR Evaluation	25
13.3 Area & Zoom Scan Procedures	
13.4 Volume Scan Procedures	
13.5 SAR Averaged Methods	
 13.2 Spatial Peak SAR Evaluation 13.3 Area & Zoom Scan Procedures 13.4 Volume Scan Procedures 13.5 SAR Averaged Methods 13.6 Power Drift Monitoring 14. SAR Test Result 14.1 Conducted RF Output Power 14.2 Massured and Departed (Scaled) SAR Departs 	21
14. SAK LESI KESUIT	
14.1 Conducted RF Output Power.	
 14.2 Measured and Reported (Scaled) SAR Results 14.3 SAR Measurement Variability 14.4 Simultaneous Transmission Evaluation 	
14.3 SAK Measurement Variability	
14.4 Simultaneous Transmission Evaluation	40

15.	l est Plots	41
15.1	1 System Performance Check	41
15.2	2 SAR Test Graph Results	51
	CALIBRATION CERTIFICATES	
17.	EUT Photographs	110
	Photographs Of The Liquid	
	EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

Page 4 of 115

1. Version

Report No.	Issue Date	Description	Approved	
BCTC2310106798-4E	2024-04-03	Original	Valid	

Page 5 of 115

2. Test Standards

IEEE Std C95.1-2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

IEEE Std 1528[™]-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

Page 6 of 115

3. Test Summary

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Freewoney Dend	Report SAR _{1g} (W/kg)	SAR _{1g} Limit (W/kg)	
Frequency Band	Body (0mm Gap)		
WIFI 2.4G ANT A	0.543	1.6	
WIFI 2.4G ANT B	0.273	1.6	
WIFI 5G ANT A	0.978	1.6	
WIFI 5G ANT B	0.964	1.6	
Simultaneous Transmission	1.337	1.6	

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2019, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013.

Page 7 of 115

4. SAR Limits

FCC Limit (1g Tissue)					
	SAR (W/kg)				
EXPOSURE LIMITS	(General Population /	(Occupational /			
EXFOSORE LIMITS	Uncontrolled Exposure	Controlled Exposure			
	Environment)	Environment)			
Spatial Average(averaged over the whole body)	0.08	0.4			
Spatial Peak(averaged over any 1 g of tissue)	1.6	8.0			
Spatial Peak(hands/wrists/ feet/anklesaveraged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Page 8 of 115

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is <3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k=2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

Therefore, the measurement uncertainty is not required.

Page 9 of 115

6. Product Information and Test Setup

6.1 Product Information

Model/Type reference:	AW-NT10 AW-NT***** ("*" can be 0-9, A-Z, a-z or blank, indicate different enclosure color, performance, sales area or customer)
Model differences:	All models are the same circuit and RF modules, with differences in model name, housing color, performance, sales region, or customer. The test model is AW-NT10.
Hardware Version:	N/A
Software Version:	N/A
Ratings:	DC 5V
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.
WIFI 2.4G	
Operation Frequency:	802.11b/g/n20MHz:2412~2462 MHz 802.11n40MHz:2422~2452 MHz
Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 150Mbps
Type of Modulation:	OFDM/DSSS
Number Of Channel:	802.11b/g/n20MHz:11 CH 802.11n40MHz: 7 CH
Antenna installation:	FPC antenna*2
Antenna Gain: WIFI 5G	Antenna A & B: 1.82 dBi
IEEE 802.11 WLAN Mode Supported	802.11a/n (20MHz channel bandwidth) 802.11n (40MHz channel bandwidth) 802.11ac(80MHz channel bandwidth) 5180-5240MHz for 802.11a/n/ac(HT20); 5190-5230MHz for 802.11n/ac(HT40); 5210MHz for 802.11 ac80; 5260-5320MHz for 802.11a/n/ac(HT20); 5270-5310MHz for 802.11n/ac(HT40); 5290MHz for 802.11 ac80; 5500-5700MHz for 802.11a/n/ac(HT20); 5410-5670MHz for 802.11n/ac(HT40); 5530-5610MHz for 802.11 ac80; 5745-5825 MHz for 802.11a/n/ac(HT20); 5755-5795 MHz for 802.11 ac80;
Data Rate	802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; 802.11ac(VHT20): NSS1, MCS0-MCS8 802.11ac(VHT40/VHT80):NSS1, MCS0-MCS9
Type of Modulation:	OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n/ac
Antenna installation:	FPC antenna*2
Antenna Gain:	5.1G: Antenna A & B: 3.21 dBi 5.3G: Antenna A & B: 3.21 dBi 5.6G: Antenna A & B: 3.39 dBi 5.8G: Antenna A & B: 3.39 dBi

No.: BCTC/RF-EMC-005

Page 10 of 115

6.2 Test Setup Configuration

See test photographs attached in EUT TEST SETUP PHOTOGRAPHS for the actual connections between Product and support equipment.

6.3 Support Equipment

Cable of Product

No.	Cable Type	Quantity	Provider	Length (m)	Shielded	Note
1			Applicant		Yes/No	
2			BCTC		Yes/No	

No.	Device Type	Brand	Model	Series No.	Note
1.					
2.					

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

6.4 Test Environment

1. Normal Test Conditions:

Humidity(%):	35-75
Atmospheric Pressure(kPa):	95-105
Temperature(°C):	18-25
2. Extreme Test Conditions: N/A	
No.: BCTC/RF-EMC-005	Page 11 of 115

7. Test Facility and Test Instrument Used

7.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

Page 12 of 115

7.2 Test Instrument Used

Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
PC	DELL	/	/	N/A	N/A
SAR Measurement system	SATIMO	/	/	N/A	N/A
Signal Generator	Keysight	83711B	US37100131	Aug. 29, 2023	Aug. 28, 2024
Multimeter	Keithley	1160271	١	Nov. 10, 2023	Nov 09, 2024
S-parameter Network Analyzer	R&S	ZVB 8	101353	Dec. 07, 2023	Dec. 06, 2024
Wideband Radio Communication Tester	R&S	CMW500	١	Nov. 10, 2023	Nov 09, 2024
E SAR PROBE 6GHz	MVG	SSE2	2623-EPGO-420	July 18, 2023	July 17, 2024
DIPOLE 2450	SATIMO	SID 2450	SN 47/21 DIP 2G450-627	Nov. 25, 2021	Nov. 24, 2024
DIPOLE 5000	SATIMO	SID5000	SN 47/21 DIP 2G450-629	Nov. 25, 2021	Nov. 24, 2024
COMOSAR OPENCoaxial Probe	SATIMO	/	/	Nov. 18, 2023	Nov. 17, 2024
SAR Locator	SATIMO	/	/	Nov. 18, 2023	Nov. 17, 2024
Communication Antenna	SATIMO	/	\	Nov. 18, 2023	Nov. 17, 2024
FEATURE PHONEPOSITIONING DEVICE	SATIMO	١	١	N/A	N/A
DUMMY PROBE	SATIMO	١	١	N/A	N/A
SAM Phantom	MVG	١	SN 13/09 SAM68	N/A	N/A
Liquid measurement Kit	HP	85033D	3423A08186	N/A	N/A
Power meter	Agilent	E4419	١	May 15, 2023	May 14, 2024
Power meter	Agilent	E4419	١	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	١	May 15, 2023	May 14, 2024
Power sensor	Agilent	E9300A	١	May 15, 2023	May 14, 2024
Directional Coupler	Krytar 158020	131467	١	Nov. 10, 2023	Nov 09, 2024
Thermometer	BTE	\	\	Dec. 02, 2023	Dec. 01, 2024
Broad Band Tissue Simulation Liquid	Schmid	١	1	N/A	N/A

Note:

Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted three year extended calibration interval. Each measured dipole is expected to evalute with following criteria at least on annual interval.

- There is no physical damage on the dipole;
 System check with specific dipole is within 10% of calibrated values;
- 3. The most recent return-loss results, measued at least annually, deviates by no more than 20% from the previous measurement;
- 4. The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the provious measurement.

Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

8. Specific Absorption Rate (SAR)

8.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

8.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, $\,\delta\,{\rm T}$ is the temperature rise and $\,\delta\,{\rm t}$ is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Page 14 of 115

9. SAR Measurement System

9.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

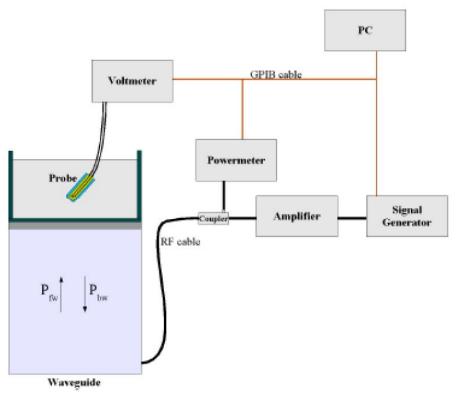
- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

9.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 46/21 EPGO362 with following specifications is used


- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 5 mm
- Distance between probe tip and sensor center: 2.10mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB
- Calibration range: 835 to 2500MHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: 1ess than 30°.

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annex technique using reference guide at the five frequencies.

No.: BCTC/RF-EMC-005

Page 15 of 115

$$SAR = \frac{4(p_{\int w} - p_{Pbw})}{ab\delta} \cos^2 (\pi \frac{y}{a}) c^{(2\pi/\delta)}$$

Where : Pfw = Forward Power Pbw = Backward Power a and b =Waveguide dimensions I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are

CF(N)=SAR(N)/Vlin(N) (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

Vlin(N)=V(N)*(1+V(N)/DCP(N)) (N=1,2,3)

where DCP is the diode compression point in mV.

No.: BCTC/RF-EMC-005

Page 16 of 115

9.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

Where:

SAR = $C\frac{\Delta T}{\Delta t}$

 Δ t = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

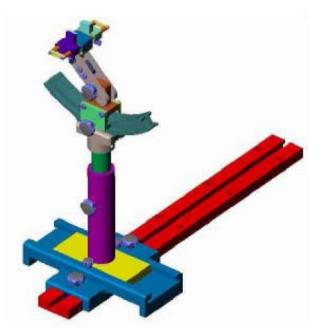
SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

$$SAR = \frac{|E|^2 \cdot \sigma}{\rho}$$

Where:

- $\sigma =$ simulated tissue conductivity,
- ρ = Tissue density (1.25 g/cm3 for brain tissue)

Page 17 of 115



9.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

9.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005
	5.5.5 5.5.5.5 5.5.	
	······· ········	
No.: BCTC/RF-EMC-005	Page 18 of 115	Edition B.0

10. Tissue Simulating Liquids

10.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Body SAR

Frequency (MHz)	Water (%)	Salt (%)	1,2-Propane diol (%)	HEC (%)	Preventol (%)	DGBE (%)	
	Head/Body						
835	40.3	1.4	57.9	0.2	0.2	0	
900	40.3	1.4	57.9	0.2	0.2	0	
1800-2000	55.2	0.3	0	0 5.0	0	44.5	
2450	55.0	0.1	0	0	0	44.9	
2600	54.9	0.1	0	0	0	45.0	

Frequency (MHz)	Water (%)	Hexyl Carbitol (%)	Triton X-100 (%)	
		Head/Body		
5000-6000	65.52	17.24	17.24	

10.2 Limit

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters

computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

	He	ead
Target Frequency (MHz)	Conductivity (σ)	Permittivity (<i>E</i> r)
150	0.76	52.3
300	0.87	45.3
450	0.87	43.5
750	0.89	41.9
835	0.90	41.5
900	0.97	41.5
915	0.98	41.5
1450	1.20	40.5
1610	1.29	40.3
1800-2000	1.40	40.0
2450	1.80	39.2
2600	1.96	39.0
3000	2.40	38.5
5200	4.66	36.0
5400	4.86	35.8
5600	5.07	35.5
5800	5.27	35.3

Page 20 of 115

10.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an R&S ZVB 8. Dielectric Probe Kit and an Agilent Network Analyzer.

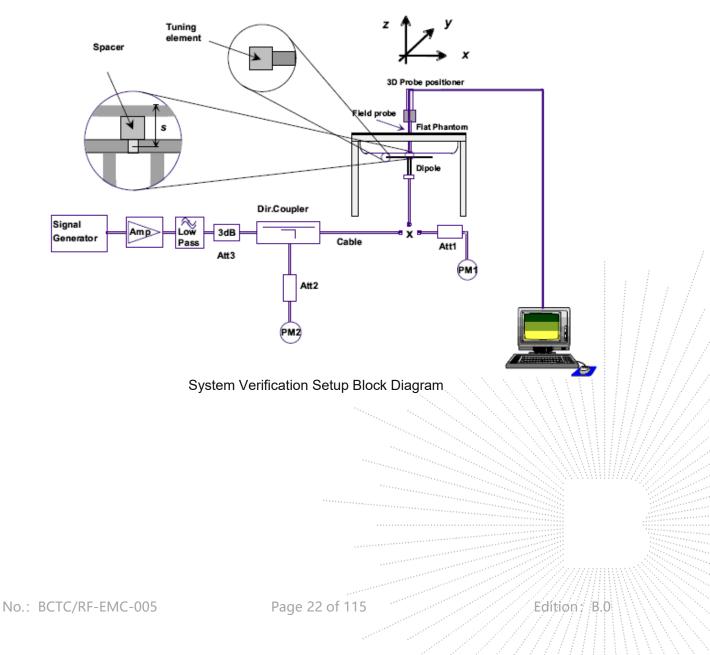
Frequency (MHz)	Liquid	Target (σ)	Target (<i>E</i> ,)	Measured (σ)	Measured (${\mathcal E}$,)	Delta (σ)%	Delta (<i>ɛ</i> ,)%	Limit (%)	Temp TSL (°C)	Date
2450	Head	1.80	39.20	1.765	38.310	-1.94	-2.27	ţł	22.8	06/03/2024
5200	Head	4.66	36.00	4.550	35.915	-2.36	-0.24	ħ	23.0	07/03/2024
5400	Head	4.86	35.80	4.875	37.071	0.31	3.55	ħ	23.0	07/03/2024
5600	Head	5.07	35.50	5.148	34.944	1.54	-1.57	ħ	23.0	07/03/2024
5800	Head	5.27	35.30	5.144	34.011	-2.39	-3.65	Ę	23.0	07/03/2024

Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

Remark:

- 1. The temperature of the tissue-equivalent medium used during measurement must also be within 18°C to 25°C and within ± 2°C of the temperature when the tissue parameters are characterized.
- 2. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Page 21 of 115


11. System Check

11.1 Purpose of System Performance Check

At the device test frequencies. System check verifies the measurement repeatability of a SAR system before compliance testing and is not a validation of all system specifications. The latter is not required for testing a device but is mandatory before the system is deployed. The system check detects possible short-term drift and unacceptable measurement errors or uncertainties in the system.

11.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 600MHz-6000MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The output power on dipole port must be calibrated to 20 dBm (100 mW) before dipole is connected.

Setup Photo of Dipole Antenna

11.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. The following table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency (MHz)	Power	Measured SAR _{1g} (W/Kg)	Normalize to 1 Watt	Drift (%)	1W Target SAR _{1g} (W/Kg)	Difference Percentage (%)	Limit (%)	Liquid Temp	Date
2450	250mW	13.955	55.821	-2.565	55.16	1.198	±10	22.8	06/03/2024
5200	250mW	19.154	76.617	-0.751	76.41	0.271	±10	23.0	07/03/2024
5400	250mW	20.589	82.354	2.040	80.52	2.278	±10	23.0	07/03/2024
5600	250mW	19.566	78.264	3.569	79.08	-1.032	±10	23.0	07/03/2024
5800	250mW	18.366	73.465	1.250	76.49	-3.955	±10	23.0	07/03/2024

12. EUT Testing Position

- Power is supplied to the EUT through the USB port.Adjust the distance between the EUT surface and the plane module to 0mm to test all directions of the EUT [see figure below:(A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, (D) Vertical-Back]

(A) Horizontal-Up

(B) Horizontal-Down

(C) Vertical-Front

(D) Vertical-Back

Page 24 of 115

13. SAR Measurement Procedures

13.1 Measurement Procedures

The measurement procedures are as follows:

(a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.

(b) Keep EUT to radiate maximum output power or 100% factor (if applicable)

(c) Measure output power through RF cable and power meter.

(d) Place the EUT in the positions as Annex D demonstrates.

(e) Set scan area, grid size and other setting on the SATIMO software.

(f) Measure SAR results for the highest power channel on each testing position.

(g) Find out the largest SAR result on these testing positions of each band

(h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

(a) Power reference measurement

- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

13.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

(a) Extraction of the measured data (grid and values) from the Zoom Scan

(b) Calculation of the SAR value at every measurement point based on all stored data

(c) Generation of a high-resolution mesh within the measured volume

(d) Interpolation of all measured values form the measurement grid to the high-resolution grid

(e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface

(f) Calculation of the averaged SAR within masses of 1g and 10g

Page 25 of 115

13.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

			\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \mathrm{mm} \pm 0.5 \mathrm{mm}$	
Maximum probe angle surface normal at the r	from probe axis to phantom neasurement location		30° ± 1°	20° ± 1°
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan sj	patial resol	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in t measurement plane orientation, is smaller than th above, the measurement resolution must be \leq the corresponding x or y dimension of the test device at least one measurement point on the test device	
Maximum zoom scan	Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) mm$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 26 of 115

13.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

13.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

13.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Page 27 of 115

14. SAR Test Result

14.1 Conducted RF Output Power

WIFI 2.4G							
Mode	Frequency (MHz) Conducted Power (dBm) (dBm) ANT A ANT B		Total Conducted Power (dBm)				
	2412	12.02	12.46	/			
802.11b	2437	11.95	12.58	/			
	2462	11.37	12.26	1			
	2412	10.39	10.98	1			
802.11g	2437	10.94	11.56	/			
	2462	10.87	11.77	/			
	2412	10.17	11.10	13.67			
802.11n20	2437	10.21	11.54	13.94			
	2462	10.41	11.68	14.10			
	2422	7.73	9.86	11.93			
802.11n40	2437	7.59	10.54	12.32			
	2452	7.88	10.76	12.56			

Page 28 of 115

WIFI 5.1G								
Mode	Frequency (MHz)	Conducted Power (dBm) ANT A	Conducted Power (dBm) ANT B	Total Conducted Power (dBm)				
	5180	10.45	10.95	/				
802.11a	5200	10.54	10.48	/				
	5240	9.96	11.05	/				
	5180	8.41	9.02	11.74				
802.11n20	5200	8.57	9.09	11.85				
	5240	9.13	9.60	12.38				
802.11n40	5190	7.49	8.31	10.93				
002.111140	5230	7.52	8.44	11.01				
	5180	8.60	9.20	11.92				
802.11ac20	5200	8.12	8.96	11.57				
	5240	8.97	9.77	12.40				
802.11ac40	5190	7.18	8.09	10.67				
802.11ac40	5230	7.83	8.35	11.11				
802.11ac80	5210	6.83	7.31	10.09				

Page 29 of 115

WIFI 5.3G							
Mode	Frequency (MHz)	Conducted Power (dBm) ANT A	Conducted Power (dBm) ANT B	Total Conducted Power (dBm)			
	5260	10.40	11.02	/			
802.11a	5280	10.69	11.09	/			
	5320	11.82	12.54	/			
	5260	9.84	9.73	12.80			
802.11n20	5280	9.79	9.98	12.90			
	5320	11.18	11.47	14.34			
802.11n40	5270	8.47	8.70	11.60			
002.111140	5310	9.15	9.63	12.41			
	5260	9.54	10.31	12.95			
802.11ac20	5280	10.07	10.15	13.12			
	5320	10.92	11.66	14.32			
902 11 2010	5270	8.26	9.03	11.67			
802.11ac40	5310	9.12	8.88	12.01			
802.11ac80	5290	7.12	7.29	10.22			

Page 30 of 115

WIFI 5.6G								
Mode	Frequency (MHz)	Conducted Power (dBm) ANT A	Conducted Power (dBm) ANT B	Total Conducted Power (dBm)				
	5500	11.32	11.75	/				
802.11a	5580	11.51	11.57	/				
	5700	10.43	10.37	/				
	5500	9.92	10.39	13.17				
802.11n20	5580	10.13	10.61	13.39				
	5700	9.58	9.06	12.34				
	5510	8.24	8.90	11.59				
802.11n40	5550	7.70	9.13	11.48				
	5670	8.04	8.06	11.06				
	5500	9.89	10.24	13.08				
802.11ac20	5580	9.79	10.74	13.30				
	5700	10.76	8.89	12.94				
	5510	8.26	9.01	11.66				
802.11ac40	5550	8.22	8.89	11.58				
	5670	9.94	8.07	12.12				
802.11ac80	5530	6.77	7.75	10.30				

No.: BCTC/RF-EMC-005

Page 31 of 115

	WIFI 5.8G									
Mode	Frequency (MHz)	Conducted Power (dBm) ANT A	Conducted Power (dBm) ANT B	Total Conducted Power (dBm)						
	5745	8.82	8.48	/						
802.11a	5785	8.98	9.53	/						
	5825	8.87	8.49	/						
	5745	7.30	6.95	10.14						
802.11n20	5785	7.50	7.45	12.23						
	5825	8.06	6.96	10.56						
802.11n40	5755	7.79	7.05	10.45						
002.111140	5795	7.66	6.22	10.01						
	5745	7.92	6.95	10.47						
802.11ac20	5785	8.20	7.14	10.71						
	5825	8.01	7.21	10.64						
802.11ac40	5755	6.93	6.42	9.69						
002.118040	5795	7.70	6.49	10.15						
802.11ac80	5775	6.80	6.30	9.57						

Page 32 of 115

14.2 Measured and Reported (Scaled) SAR Results

The calculated SAR is obtained by the following formula:

- 1. Reported SAR for WWAN=Measured SAR * Tune-up Scaling factor
- 2. Reported SAR for WLAN and Bluetooth=Measured SAR * Tune-up Scaling factor * Duty Cycle Scaling factor
- 3. Duty Cycle Scaling factor=1/ Duty Cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- \leq 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

KDB 248227 D01 802.11 Wi-Fi SAR

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements.

For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions.

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.16 The initial test position procedure is described in the following:

- a) When the *reported* SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- b) When the *reported* SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the *reported* SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- c) For all positions/configurations tested using the initial test position and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is \leq 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.

When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR

	WIFI 2.4G ANT A												
RF	Marila			Freq.	Output	Turn	Turn-up	SAR1g	g (W/kg)	Plot			
Exposure Conditions	Mode	Test Position	CH.	. (MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.			
		Horizontal-Up	1	2412	12.02	12.5	1.117	0.486	0.543	1			
	802.11b	Horizontal-Down	1	2412	12.02	12.5	1.117	0.160	0.179				
Body		Vertical-Front	1	2412	12.02	12.5	1.117	0.071	0.079				
(0mm)		Vertical-Back	1	2412	12.02	12.5	1.117	0.060	0.067				
		Horizontal-Up	6	2437	11.95	12.5	1.135	0.471	0.535				
		Horizontal-Up	11	2462	11.37	12.5	1.297	0.418	0.542				

	WIFI 2.4G ANT B												
RF				Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	Plot			
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.			
		Horizontal-Up	6	2437	12.58	13.0	1.102	0.065	0.072				
	802.11b	Horizontal-Down	6	2437	12.58	13.0	1.102	0.235	0.259				
Body		Vertical-Front	6	2437	12.58	13.0	1.102	0.064	0.070				
(0mm)		Vertical-Back	6	2437	12.58	13.0	1.102	0.061	0.067				
		Horizontal-Down	1	2412	12.46	13.0	1.132	0.215	0.243				
		Horizontal-Down	11	2462	12.26	13.0	1.186	0.230	0.273	2			

Page 34 of 115

	WIFI 5.1G ANT A												
RF				Freq.	Output	Turn	Turn-up	SAR1g	g (W/kg)	Plot			
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.			
		Horizontal-Up	40	5200	10.54	11.0	1.112	0.471	0.524				
	802.11a	Horizontal-Down	40	5200	10.54	11.0	1.112	0.297	0.330				
Body		Vertical-Front	40	5200	10.54	11.0	1.112	0.056	0.062				
(0mm)		Vertical-Back	40	5200	10.54	11.0	1.112	0.079	0.088				
		Horizontal-Up	36	5180	10.45	11.0	1.135	0.488	0.554				
		Horizontal-Up	48	5240	9.96	11.0	1.271	0.437	0.555	3			

	WIFI 5.1G ANT B												
RF				Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	Plot No.			
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled				
		Horizontal-Up	48	5240	11.05	11.5	1.109	0.136	0.151				
	802.11a	Horizontal-Down	48	5240	11.05	11.5	1.109	0.498	0.552				
Body		Vertical-Front	48	5240	11.05	11.5	1.109	0.033	0.037				
(0mm)		Vertical-Back	48	5240	11.05	11.5	1.109	0.083	0.092				
		Horizontal-Down	36	5180	10.95	11.5	1.135	0.475	0.539				
		Horizontal-Down	40	5200	10.48	11.5	1.265	0.430	0.544	4			

Page 35 of 115

	WIFI 5.3G ANT A												
RF	Marila			Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	Plot			
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.			
		Horizontal-Up	64	5320	11.82	12.5	1.169	0.670	0.784				
	802.11a	Horizontal-Down	64	5320	11.82	12.5	1.169	0.319	0.373				
Body		Vertical-Front	64	5320	11.82	12.5	1.169	0.108	0.126				
(0mm)		Vertical-Back	64	5320	11.82	12.5	1.169	0.110	0.129				
		Horizontal-Up	52	5260	10.40	12.5	1.622	0.603	0.978	5			
		Horizontal-Up	56	5280	10.69	12.5	1.517	0.610	0.925				

	WIFI 5.3G ANT B												
RF				Freq.	Output	Turn	Turn-up	SAR1	g (W/kg)	Plot			
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.			
		Horizontal-Up	64	5320	12.54	13.0	1.112	0.297	0.330				
	802.11a	Horizontal-Down	64	5320	12.54	13.0	1.112	0.637	0.708				
Body		Vertical-Front	64	5320	12.54	13.0	1.112	0.115	0.128				
(0mm)		Vertical-Back	64	5320	12.54	13.0	1.112	0.107	0.119				
		Horizontal-Down	52	5260	11.02	13.0	1.578	0.611	0.964	6			
		Horizontal-Down	56	5280	11.09	13.0	1.552	0.606	0.941				

Page 36 of 115

	WIFI 5.6G ANT A										
RF				Freq.	Output	Turn	Turn-up	SAR1g	g (W/kg)	Plot No.	
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.	
		Horizontal-Up	120	5580	11.51	12.0	1.119	0.590	0.660		
		Horizontal-Down	120	5580	11.51	12.0	1.119	0.306	0.343		
Body	802.11a	Vertical-Front	120	5580	11.51	12.0	1.119	0.094	0.105		
(0mm)	ouz.11a	Vertical-Back	120	5580	11.51	12.0	1.119	0.136	0.152		
		Horizontal-Up	100	5500	11.32	12.0	1.169	0.533	0.623		
		Horizontal-Up	140	5700	10.43	12.0	1.435	0.502	0.721	7	

	WIFI 5.6G ANT B										
RF		T (D)//		Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	Plot No.	
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled		
		Horizontal-Up	100	5500	11.75	12.0	1.059	0.190	0.201		
		Horizontal-Down	100	5500	11.75	12.0	1.059	0.364	0.386		
Body	802.11a	Vertical-Front	100	5500	11.75	12.0	1.059	0.084	0.089		
(0mm)	002.11a	Vertical-Back	100	5500	11.75	12.0	1.059	0.092	0.097		
		Horizontal-Down	120	5580	11.57	12.0	1.104	0.384	0.424		
		Horizontal-Down	140	5700	10.37	12.0	1.455	0.301	0.438	8	

Page 37 of 115

	WIFI 5.8G ANT A										
RF				Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	9	
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.	
		Horizontal-Up	157	5785	8.98	9.5	1.127	0.498	0.561	No.	
		Horizontal-Down	157	5785	8.98	9.5	1.127	0.206	0.232		
Body	802.11a	Vertical-Front	157	5785	8.98	9.5	1.127	0.076	0.086		
(0mm)	ouz.11a	Vertical-Back	157	5785	8.98	9.5	1.127	0.059	0.067		
		Horizontal-Up	149	5745	8.82	9.5	1.169	0.464	0.543		
		Horizontal-Up	165	5825	8.87	9.5	1.156	0.419	0.484		

	WIFI 5.8G ANT B										
RF		T (D)//		Freq.	Output	Turn	Turn-up	SAR1g	(W/kg)	Plot	
Exposure Conditions	Mode	Test Position	CH.	(MHz)	Power (dBm)	up (dBm)	Scaling Factor	Meas.	Scaled	No.	
		Horizontal-Up	157	5785	9.53	10.0	1.114	0.187	0.208		
		Horizontal-Down	157	5785	9.53	10.0	1.114	0.362	0.403		
Body	802.11a	Vertical-Front	157	5785	9.53	10.0	1.114	0.055	0.061		
(0mm)	002.11a	Vertical-Back	157	5785	9.53	10.0	1.114	0.078	0.087		
		Horizontal-Down	149	5745	8.48	10.0	1.419	0.370	0.525	10	
		Horizontal-Down	165	5825	8.49	10.0	1.416	0.309	0.437		

Page 38 of 115

14.3 SAR Measurement Variability

According to KDB865664, Repeated measurements are required only when the measured SAR is \geq 0.80 W/kg. If the measured SAR value of the initial repeated measurement is < 1.45 W/kg with \leq 20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. A second repeated measurement is required only if the measured result for the initial repeated measurement is within 10% of the SAR limit and vary by more than 20%, which are often related to device and measurement setup difficulties. The following procedures are applied to determine if repeated measurements are required. The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.19 The repeated measurement results must be clearly identified in the SAR report. All measured SAR, including the repeated results, must be considered to determine compliance and for reporting according to KDB 690783.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

- 1) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 3) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20

Test	Frequency	RF		Repeated	Highest	First F	Repeated
Test Mode	Band (MHz)	Exposure Configuration	Test Position	SAR (yes/no)	Measured SAR1-g (W/Kg)	Measured SAR1-g (W/Kg)	Largest to Smallest SAR Ratio
/	/	Body	/	yes	1	1	/

Page 39 of 115

14.4 Simultaneous Transmission Evaluation

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmiting antenna.

Application Simultaneous Transmission information:

No.	Configurations	Body SAR
1	WIFI (ANT A) + WIFI (ANT B)	YES
2	WIFI 2.4G + WIFI 5G	NO

Remark:

1. WIFI 2.4G and WIFI 5G cannot transmit simultaneously

2. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

Estimated stand alone SAR									
Communication system	Frequency (MHz)	Maximum Power (dBm)	Maximum Power (mW)	Separation Distance (mm)	x	Estimated SAR1-g (W/kg)			
/	/	/	/	5	3	/			
/	/	/	/	10	7.5	/			

3. Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is \leq 1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(\text{peak location separation,mm})} < 0.04$$

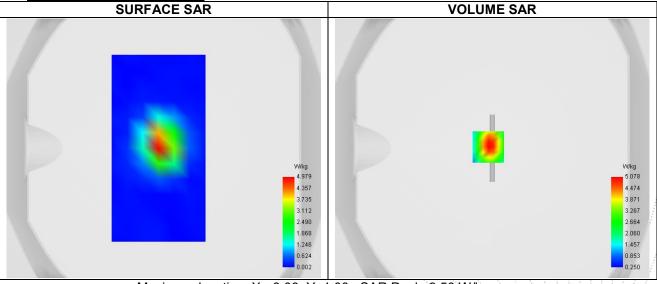
4. Simultaneous transmission of maximum SAR sum calculation.

RF	Test	ANT A	ANT B	Summed SAR	SAR1-g Limit
Exposure Conditions	Position	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)	(W/kg)
	Horizontal-Up	0.978	0.330	1.308	1.6
Bedy	Horizontal-Down	0.373	0.964	1.337	1.6
Body	Vertical-Front	0.126	0.128	0.254	1.6
	Vertical-Back	0.152	0.118	0.270	1.6

15. Test Plots

15.1 System Performance Check

System check at 2450 MHz


A. Experimental conditions.

Probe	SN 26/23 EPGO420				
ConvF	1.32				
Area Scan	surf_sam_plan.txt				
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=5mm				
Phantom	Validation plane				
Device Position	Dipole				
Band	CW2450				
Channels	Middle				
Signal	CW				

B. Permitivity

Biternaty	
Frequency (MHz)	2450.000
Relative permitivity (real part)	38.310
Relative permitivity (imaginary part)	14.330
Conductivity (S/m)	1.765

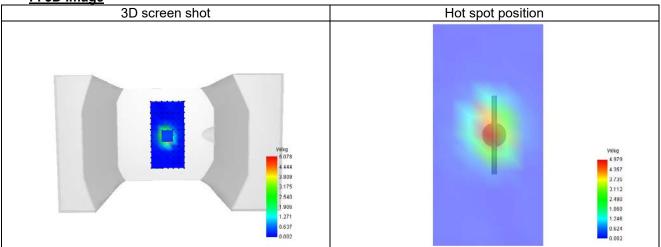
C. SAR Surface and Volume

Maximum location: X=-3.00, Y=1.00 ; SAR Peak: 9.50 W/kg

<u>D. SAR 1g & 10g</u>

	그는 것이 아이들은 것이 있는 것이 아이들은 것이 있는 것이 없는 것이 없
SAR 10g (W/Kg)	6.112
SAR 1g (W/Kg)	13.955
Variation (%)	-2.565
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

E. Z Axis Scan


	oun								
Z (mm)	0.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00
SAR (W/Kg)	9.380	5.078	3.712	2.709	2.001	1.499	1.138	0.871	0.667

No.: BCTC/RF-EMC-005

<u>F. 3D Image</u>

Page 42 of 115

System check at 5200 MHz

A. Experimental conditions.

Probe	SN 26/23 EPGO420		
ConvF	0.97		
Area Scan	surf_sam_plan.txt		
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW5200		
Channels	Middle		
Signal	CW		

B. Permitivity

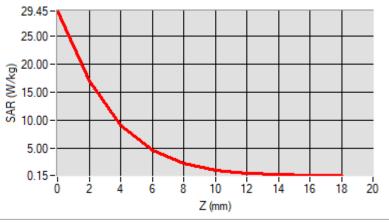
Frequency (MHz)	5200.000
Relative permitivity (real part)	35.915
Relative permitivity (imaginary part)	18.140
Conductivity (S/m)	4.550

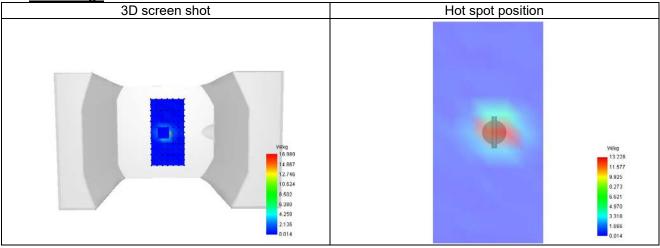
C. SAR Surface and Volume SURFACE SAR VOLUME SAR VV/kg ₩kg 13.228 16.989 11.577 14.877 9.925 12.765 8.273 10.652 6.621 8.540 4.970 6.428 3.318 4.316 1.666 2.203 0.014 0.091

Maximum location: X=5.00, Y=0.00 ; SAR Peak: 30.79 W/kg

D. SAR 1g & 10g

5.312
19.154
-0.751
0.000000
0.000000

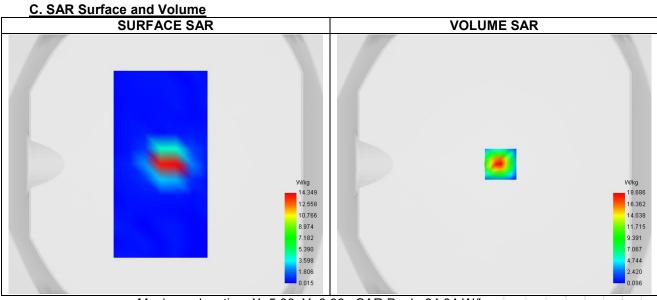

E. Z Axis Scan


vortiour vuite				/0/	5 L L L L L L L L L L L L L L L L L L L	0.00		とうふととこことと	
<u>E. Z Axis S</u>	can								
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	29.452	16.989	9.130	4.585	2.232	1.083	0.552	0.315	0.209

Page 43 of 115

Report No: BCTC2310106798-4E

Page 44 of 115


System check at 5400 MHz

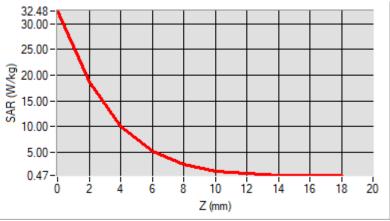
A. Experimental conditions.

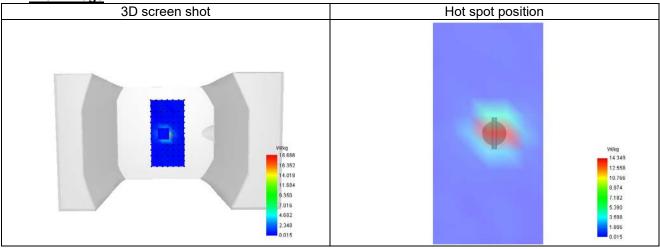
SN 26/23 EPGO420
1.00
surf_sam_plan.txt
7x7x12,dx=4mm dy=4mm dz=2mm
Validation plane
Dipole
CW5400
Middle
CW

B. Permitivity

Frequency (MHz)	5400.000
Relative permitivity (real part)	37.071
Relative permitivity (imaginary part)	18.300
Conductivity (S/m)	4.875

Maximum location: X=5.00, Y=0.00 ; SAR Peak: 34.04 W/kg


5.597
20.589
2.040
0.000000
0.000000

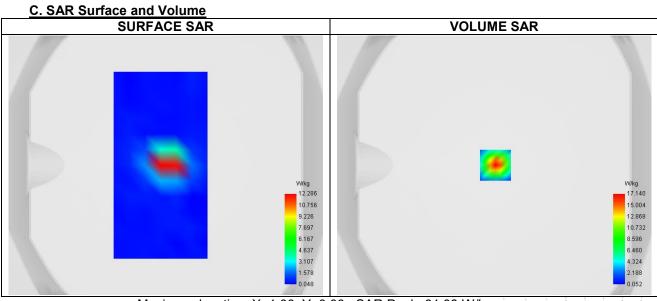

E. Z Axis Scan

	<u>E. Z Axis S</u>	<u>can</u>					
	Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00 12.00 14.00 16.0)0
S	SAR (W/Kg)	32.476	18.686	10.034	5.088	2.563 1.347 0.796 0.566 0.48	37
					********	a second s	- V * * *

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005

Page 46 of 115


System check at 5600 MHz

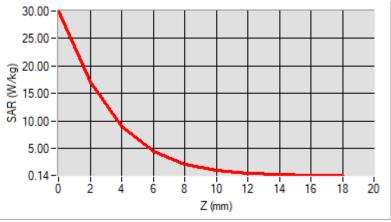
A. Experimental conditions.

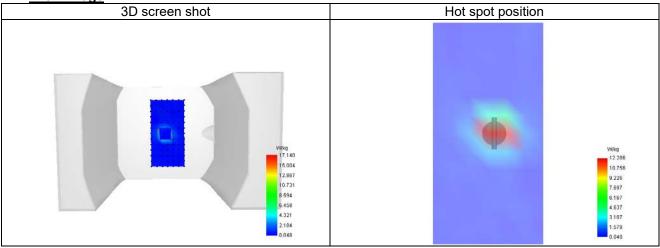
SN 26/23 EPGO420
0.95
surf_sam_plan.txt
7x7x12,dx=4mm dy=4mm dz=2mm
Validation plane
Dipole
CW5600
Middle
CW

B. Permitivity

Frequency (MHz)	5600.000
Relative permitivity (real part)	34.944
Relative permitivity (imaginary part)	18.460
Conductivity (S/m)	5.148

Maximum location: X=1.00, Y=0.00 ; SAR Peak: 31.08 W/kg

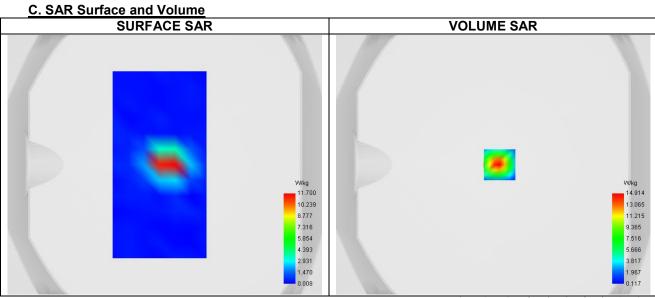

D: OAIC 19 & 109	
SAR 10g (W/Kg)	5.884
SAR 1g (W/Kg)	19.566
Variation (%)	3.569
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
E. Z Axis Scan	


E. Z Axis Scan

<u>E. Z Axis S</u>	<u>ican</u>				
Z (mm)	0.00	2.00	4.00	6.00	8.00 10.00 12.00 14.00 16.00
SAR (W/Kg)	30.005	17.140	9.077	4.467	2.119 0.999 0.495 0.280 0.189
				£3.5.4.4	

Report No: BCTC2310106798-4E

Page 48 of 115



System check at 5800 MHz

A. Experimental conditions. Probe SN 26/23 EPGO420 ConvF 1.05 Area Scan surf_sam_plan.txt 7x7x12,dx=4mm dy=4mm dz=2mm Zoom Scan Validation plane Phantom **Device Position** Dipole Band CW5800 Middle Channels CW Signal

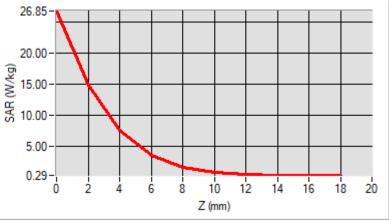
B. Permitivity

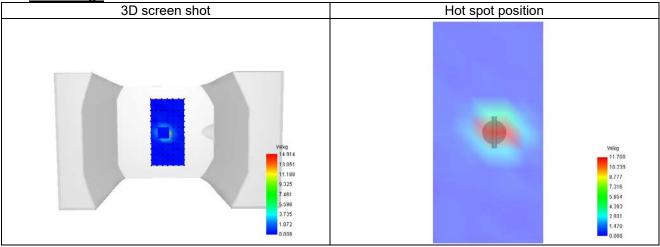
Frequency (MHz)	5800.000
Relative permitivity (real part)	34.011
Relative permitivity (imaginary part)	18.620
Conductivity (S/m)	5.144

Maximum location: X=5.00, Y=0.00 ; SAR Peak: 28.22 W/kg

D. SAR 1a & 10a

SAR 10g (W/Kg)	5.337
SAR 1g (W/Kg)	18.366
Variation (%)	1.250
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
E. Z Axis Scan	


E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	26.852	14.914	7.581	3.559	1.627	0.770	0.423	0.303	0.288

Page 49 of 115

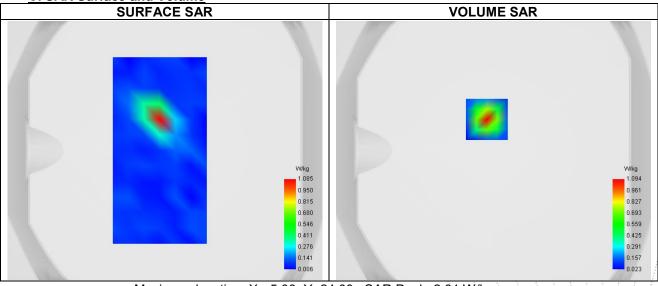
Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005

Page 50 of 115

15.2 SAR Test Graph Results

Plot 1


A. Experimental conditions.

Probe	SN 26/23 EPGO420		
ConvF	1.32		
Area Scan	surf_sam_plan.txt		
Zoom Scan	5x5x7,dx=8mm dy=8mm dz=5mm		
Phantom	Validation plane		
Device Position	Body		
Band	ISM		
Channels	Lower (1)		
Signal	IEEE 802.11 b		

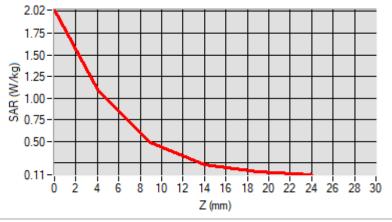
B. Permitivity

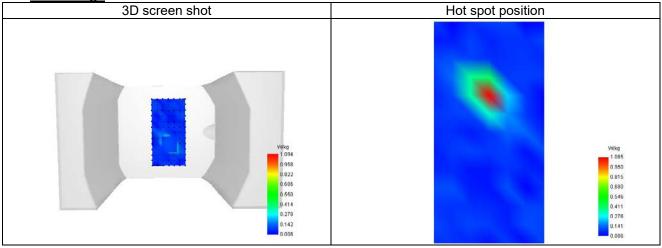
Frequency (MHz)	2412.000	
Relative permitivity (real part)	38.310	
Relative permitivity (imaginary part)	14.275	
Conductivity (S/m)	1.765	

C. SAR Surface and Volume

Maximum location: X=-5.00, Y=24.00 ; SAR Peak: 2.01 W/kg

D. SAR 1a & 10a


<u>D. OAK IG & IUg</u>	
SAR 10g (W/Kg)	0.309
SAR 1g (W/Kg)	0.486
Variation (%)	2.870
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
<u>E. Z Axis Scan</u>	


E. Z Axis Scan

<u>E. Z Axis S</u>	<u>ican</u>		*********		
Z (mm)	0.00	4.00	9.00	14.00 19.00	
SAR (W/Kg)	2.016	1.094	0.484	0.231 0.145	4, 7 4, 7 4, 7 4, 7 4, 7 4, 7 4, 7 4, 7

Report No: BCTC2310106798-4E

Page 52 of 115

A. Experimental conditions. Probe SN 26/23 EPGO420 ConvF 1.11 Area Scan surf_sam_plan.txt Zoom Scan 5x5x7,dx=8mm dy=8mm dz=5mm Phantom Validation plane **Device Position** Body Band ISM Higher (11) Channels IEEE 802.11 b Signal

B. Permitivity

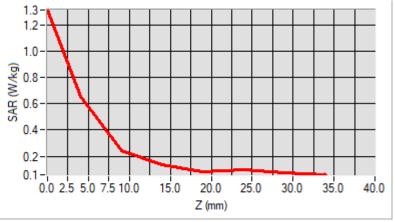
Frequency (MHz)	2462.000
Relative permitivity (real part)	38.310
Relative permitivity (imaginary part)	13.182
Conductivity (S/m)	1.765

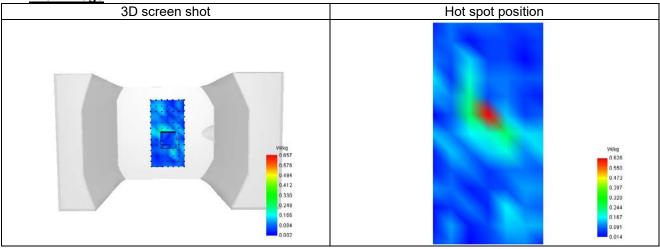
C. SAR Surface and Volume SURFACE SAR VOLUME SAR Wikg Wka 0.626 0.657 0.550 0.576 0.473 0.494 0.397 0.412 0.320 0.330 0.244 0.248 0.167 0.166 0.091 0.084 0.014 0.002

Maximum location: X=-5.00, Y=12.00 ; SAR Peak: 1.28 W/kg

D. SAR 1g & 10g

D. OAR IG & IUg	
SAR 10g (W/Kg)	0.180
SAR 1g (W/Kg)	0.230
Variation (%)	2.760
Horizontal validation criteria: minimum distance (mm)	
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000


E. Z Axis Scan


							しゃちちりちち もずば ボーボーボール
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	1.312	0.657	0.243	0.136	0.079	0.097	0.072
					A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A	

Page 53 of 115

Report No: BCTC2310106798-4E

Page 54 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	0.97
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	5200
Channels	Higher (2)
Signal	

B. Permitivity

Frequency (MHz)	5240.000
Relative permitivity (real part)	35.915
Relative permitivity (imaginary part)	18.172
Conductivity (S/m)	4.550

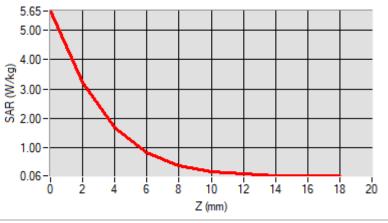
C. SAR Surface and Volume

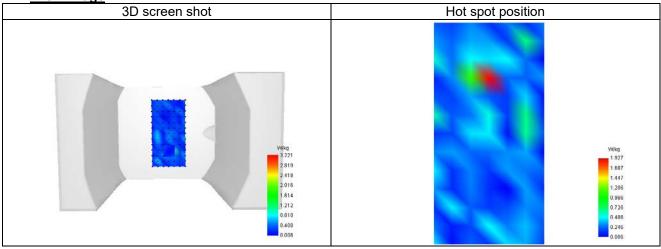
SURFACE SAR	VOLUME SAR
VVKg 1.927 1.687 1.447 1.206 0.966	Wkg 3.221 2.820 2.419 2.018 1.617
0.726 0.486 0.246 0.006	1.216 0.815 0.414 0.013

Maximum location: X=-5.00, Y=36.00 ; SAR Peak: 5.96 W/kg

D. SAR 1g & 10g

<u></u>	
SAR 10g (W/Kg)	0.291
SAR 1g (W/Kg)	0.437
Variation (%)	2.005
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
E. Z Axis Scan	


E. Z Axis Scan


<u>E. Z Axis S</u>	can					د د ۲۰ د د د مدینه در در د د د د د د د د د د د د د د د د د			
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	5.652	3.221	1.704	0.843	0.410	0.205	0.114	0.077	0.064

Page 55 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005

Page 56 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.18
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5200
Channels	Middle (1)
Signal	

B. Permitivity

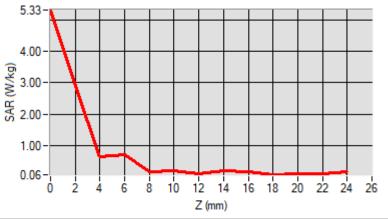
Frequency (MHz)	5200.000
Relative permitivity (real part)	35.915
Relative permitivity (imaginary part)	16.144
Conductivity (S/m)	4.550

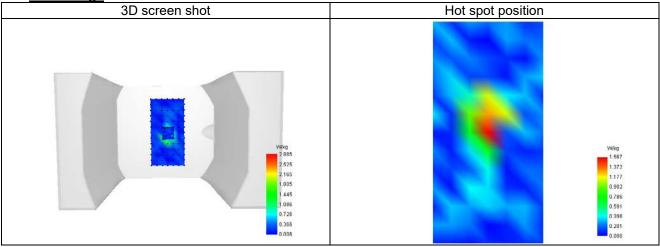
C. SAR Surface and Volume

SUI	RFACE SAR		VOLUME SAR	
		W/Rg 1.567 1.372		VV/kg 2.885 2.525
		1.177 0.982 0.786 0.591 0.396		2.166 1.806 1.446 1.086 0.726
		0.201		0.366

Maximum location: X=-5.00, Y=1.00 ; SAR Peak: 5.29 W/kg

D. SAR 1a & 10a

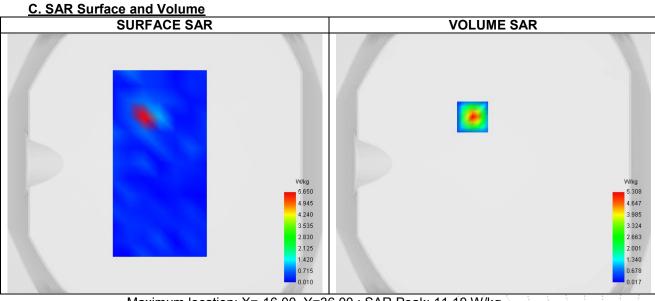

E. Z Axis Scan	
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
Horizontal validation criteria: minimum distance (mm)	0.000000
Variation (%)	0.430
SAR 1g (W/Kg)	0.430
SAR 10g (W/Kg)	0.244
<u>D: OAK IG & IUg</u>	


E. Z Axis Scan

vortiour van)			0.000	000	5 5 5 9 8 5		6 6 8 6 A
E. Z Axis S	<u>Scan</u>					****	· · · · · · · · · · · · · · · · · · ·					
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	5.326	2.885	0.625	0.687	0.157	0.193	0.085	0.173	0.149	0.057	0.104	0.091
							****************				4 10 10 10 10 10	

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005


Page 58 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	0.97
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5300
Channels	Lower (0)
Signal	

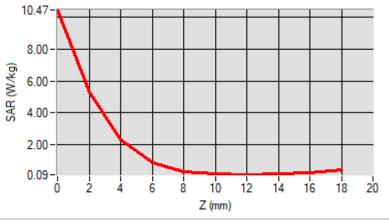
B. Permitivity

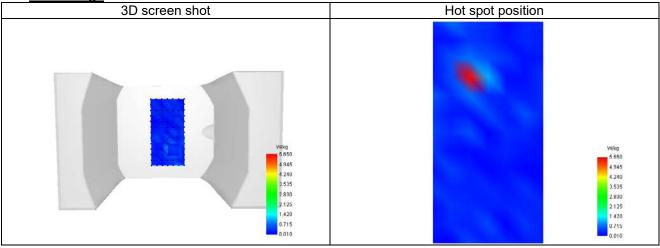
Frequency (MHz)	5260.000
Relative permitivity (real part)	37.071
Relative permitivity (imaginary part)	18.204
Conductivity (S/m)	4.875

Maximum location: X=-16.00, Y=36.00 ; SAR Peak: 11.10 W/kg

D. SAR 1g & 10g

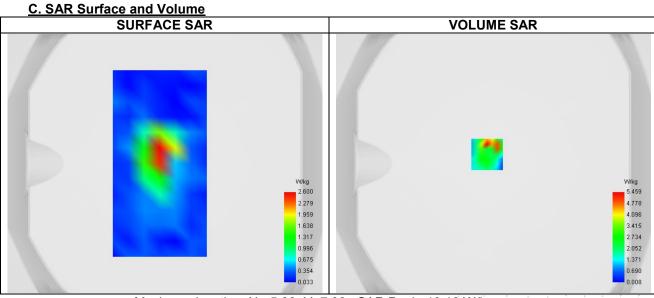
SAR 10g (W/Kg)	0.381
SAR 1g (W/Kg)	0.603
Variation (%)	2.970
Horizontal validation criteria: minimum distance (mm)	
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000


E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	10.468	5.308	2.309	0.874	0.315	0.132	0.094	0.126	0.224

Page 59 of 115

Report No: BCTC2310106798-4E


Page 60 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.18
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5300
Channels	Lower (0)
Signal	

B. Permitivity

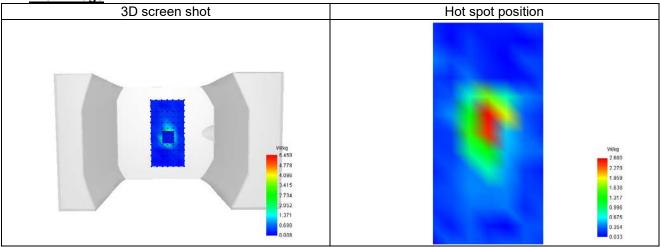
Frequency (MHz)	5260.000
Relative permitivity (real part)	37.071
Relative permitivity (imaginary part)	16.158
Conductivity (S/m)	4.875

Maximum location: X=-5.00, Y=7.00 ; SAR Peak: 10.16 W/kg

D. SAR 1a & 10a

SAR 10g (W/Kg)	0.390
SAR 1g (W/Kg)	0.611 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Variation (%)	-1.839
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000

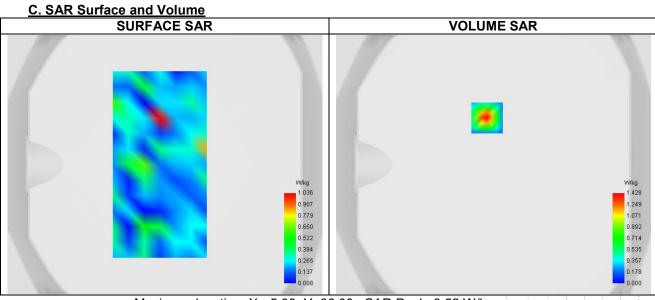
E. Z Axis Scan


<u>E. Z Axis S</u>	<u>Scan</u>					***********		*****				
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	9.673	5.459	1.353	1.331	0.660	0.627	0.328	0.299	0.186	0.159	0.205	0.126

Page 61 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005


Page 62 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.05
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	5600
Channels	Higher (2)
Signal	

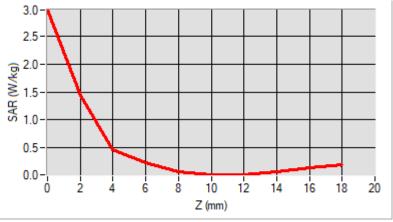
B. Permitivity

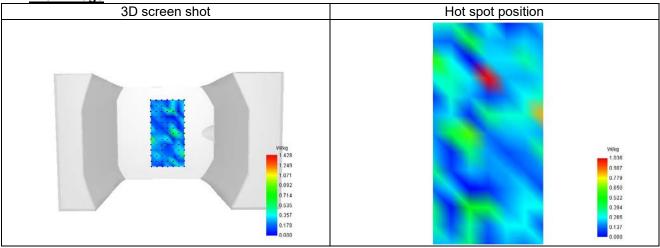
Frequency (MHz)	5700.000
Relative permitivity (real part)	34.944
Relative permitivity (imaginary part)	18.608
Conductivity (S/m)	5.148

Maximum location: X=-5.00, Y=36.00 ; SAR Peak: 3.52 W/kg

D. SAR 1g & 10g

0.317
0.502
-2.870
0.000000
0.000000

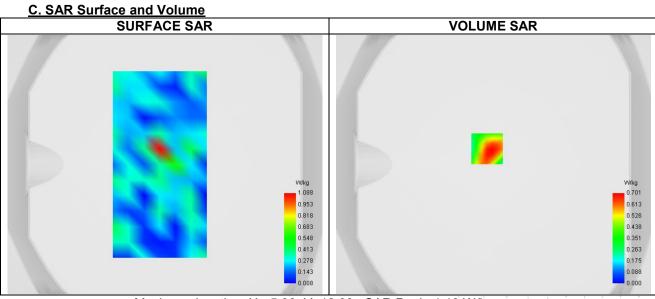

E. Z Axis Scan


<u>E. Z Axis S</u>	can				*****************	*****			
Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	2.981	1.428	0.460	0.214	0.048	0.001	0.001	0.049	0.125

Page 63 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005


Page 64 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.05
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5600
Channels	Higher (2)
Signal	

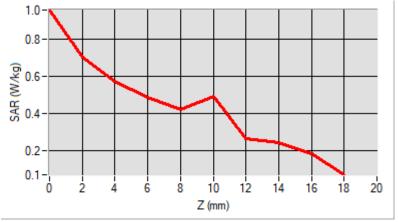
B. Permitivity

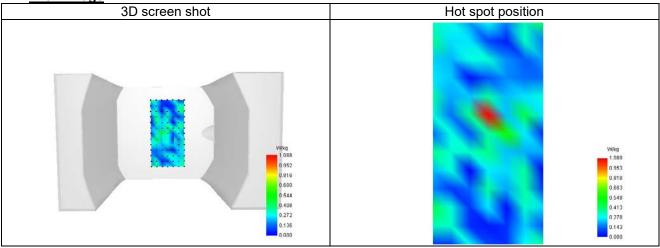
Frequency (MHz)	5700.000
Relative permitivity (real part)	34.944
Relative permitivity (imaginary part)	18.655
Conductivity (S/m)	5.148

Maximum location: X=-5.00, Y=12.00 ; SAR Peak: 1.13 W/kg

D. SAR 1a & 10a

SAR 10g (W/Kg)	0.280
SAR 1g (W/Kg)	0.301
Variation (%)	-3.070
Horizontal validation criteria: minimum distance (mm)	
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
<u>E. Z Axis Scan</u>	

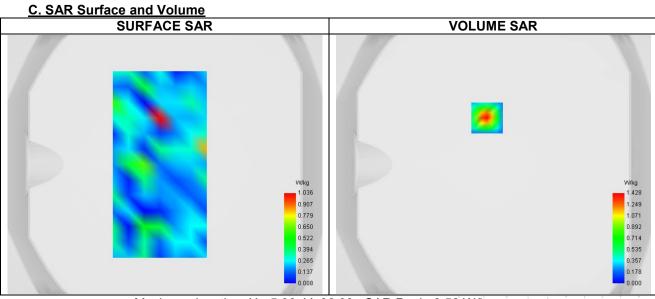

E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	0.957	0.701	0.573	0.485	0.423	0.490	0.264	0.242	0.183
								1	

Page 65 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005


Page 66 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.05
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5800
Channels	Middle (1)
Signal	

B. Permitivity

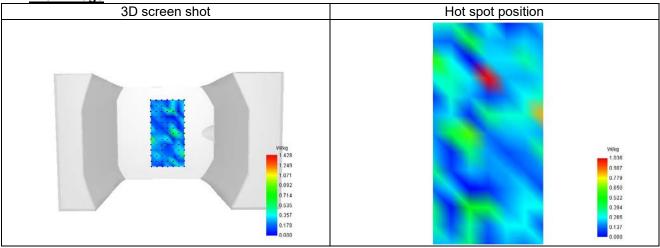
Frequency (MHz)	5785.000
Relative permitivity (real part)	34.011
Relative permitivity (imaginary part)	18.608
Conductivity (S/m)	5.144

Maximum location: X=-5.00, Y=36.00 ; SAR Peak: 3.52 W/kg

D. SAR 1a & 10a

D: OAK IG & IUg	- 「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」」「」」」「」」
SAR 10g (W/Kg)	0.230
SAR 1g (W/Kg)	0.498
Variation (%)	3.620
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000
<u>E. Z Axis Scan</u>	

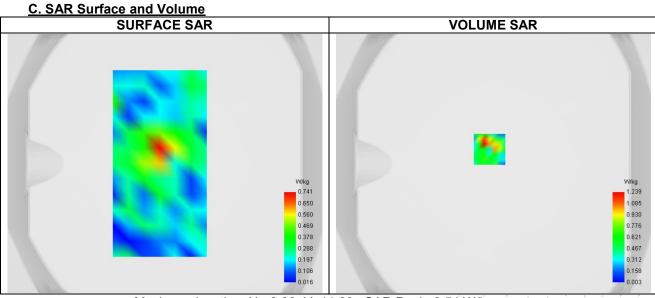

E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00
SAR (W/Kg)	2.981	1.428	0.460	0.214	0.048	0.001	0.001	0.049	0.125
								1.	

Page 67 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005


Page 68 of 115

A. Experimental conditions.	
Probe	SN 26/23 EPGO420
ConvF	1.15
Area Scan	surf_sam_plan.txt
Zoom Scan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	5800
Channels	Lower (0)
Signal	

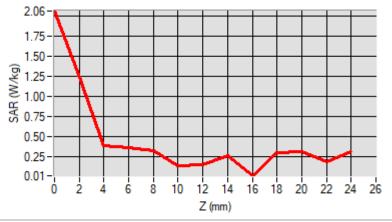
B. Permitivity

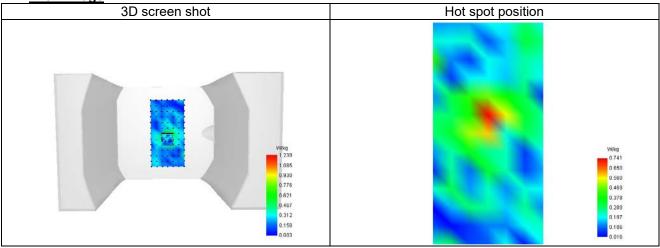
Frequency (MHz)	5745.000
Relative permitivity (real part)	34.011
Relative permitivity (imaginary part)	16.344
Conductivity (S/m)	5.144

Maximum location: X=-3.00, Y=11.00 ; SAR Peak: 2.54 W/kg

D. SAR 1g & 10g

SAR 10g (W/Kg)	0.264
SAR 1g (W/Kg)	0.370
Variation (%)	-2.910
Horizontal validation criteria: minimum distance (mm)	0.000000
Vertical validation criteria: SAR ratio M2/M1 (%)	0.000000


E. Z Axis Scan


Z (mm)	0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00	22.00
SAR (W/Kg)	2.059	1.239	0.384	0.357	0.314	0.136	0.141	0.251	0.007	0.298	0.307	0.183
								*************	*****			

Page 69 of 115

Report No: BCTC2310106798-4E

No.: BCTC/RF-EMC-005

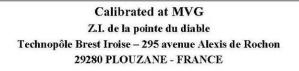
Page 70 of 115

16 CALIBRATION CERTIFICATES

Probe-EPGO420 Calibration Certificate SID2450Dipole Calibration Ceriticate SID5000Dipole Calibration Ceriticate

No.: BCTC/RF-EMC-005

Page 71 of 115



COMOSAR E-Field Probe Calibration Report

Ref : ACR.199.1.23.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD. 1~2/F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 2623-EPGO-420

Calibration date: 7/18/2023

Accreditations #2-6789 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

Page 72 of 115

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

	Name	ame Function		Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	7/18/2023	ES-
Checked & approved by:	Jérôme Luc	Technical Manager	7/18/2023	JES
Authorized by:	Yann Toutain	Laboratory Director	7/18/2023	Yann TOUTAAN

Yann Toutain ID ^{Date : 2023.07.18} 10:38:49 +02'00'

	Customer Name		
	Shenzhen BCTC		
Distribution :	Technology Co.,		
	Ltd.		

Issue	Name	Date	Modifications
А	Cyrille ONNEE	7/18/2023	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005

Page 73 of 115

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23 BES A

TABLE OF CONTENTS

1	De	vice Under Test	
2	Pro	duct Description	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Sensitivity	4
	3.2	Linearity	
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Ver	ification Results	
7	Lis	t of Equipment	

		Page: 3/11
	Template_ACK This document shall not be reproduced, except in full only for the purpose for which it is subj	R.DDD.N.YY.MVGBJSSUE_COMOSAR Probe vL I or in part, without the written approval of MVG. The information contained herein is to be used mitted and is not to be released in whole or part without written approval of MVG.
No ·	BCTC/RF-EMC-005	Page 74 of 115 Edition / B.0
110	DCTC/RF-EIVIC-005	Page 74 01 115 Edition 7 b.0

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

DEVICE UNDER TEST 1

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	2623-EPGO-420	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-7.5GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.228 MΩ	
	Dipole 2: R2=0.238 MΩ	
	Dipole 3: R3=0.230 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	24.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.55 mm
Distance between dipoles / probe extremity	12.7 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/11

Template ACR.DDD.N.YYMVGB.ISSUE COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 75 of 115

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23 BES.A

3.2 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01 W/kg to 100 W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

$SAR_{uncertainly} [\%] = \delta$	$\operatorname{SCAR}_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{ef}(\delta \beta)}\right)}{\delta/2} \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$
where	
SARuncertainty	is the uncertainty in percent of the probe boundary effect
dbe	is the distance between the surface and the closest <i>zoom-scan</i> measurement point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that
- ¹ /2383 ▲ 0	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N. YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 76 of 115

COMOSAR E-FIELD PROBE CALIBRATION REPORT

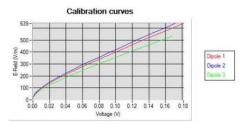
Ref: ACR 199.1.23.BES.A

Edition: B.0

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition		
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} (1 + \frac{V_{i}}{DCP_{i}})}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/11

Template ACR.DDD.N. YY.MVGB.ISSUE COMOSAR Probe v1. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 77 of 115

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR 199.1.23.BES.A

Edition: B.0

Normx dipole 1 $(\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole 3 $(\mu V/(V/m)^2)$
1.21	1.09	1.56

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
106	109	103

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho \, SAR}{\sigma}$$

where

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

 ${\rm SAR}{=}{\rm the}~{\rm SAR}$ measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ab\delta}e^{\frac{-2s}{\delta}}$$

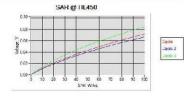
where

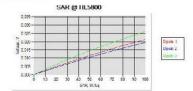
a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ=the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

Page: 7/11

Template ACR.DDD.N. YY.MVGB.ISSUE COMOSAR Probe v1. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 78 of 115


COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR 199.1.23 BES A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

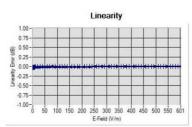
Liquid	Frequency (MHz*)	ConvF
HL450	450	0.86
BL450	450	0.78
HL750	750	0.80
BL750	750	0.87
HL850	835	0.81
BL850	835	0.80
HL900	900	0.76
BL900	900	0.87
HL1800	1800	0.96
BL1800	1800	1.01
HL1900	1900	1.04
BL1900	1900	1.11
HL2100	2100	1.00
BL2100	2100	1.16
HL2300	2300	1.11
BL2300	2300	1.23
HL2450	2450	1.11
BL2450	2450	1.32
HL2600	2600	1.03
BL2600	2600	1.19
HL5200	5200	1.18
BL5200	5200	0.97
HL5400	5400	1.17
BL5400	5400	1.00
HL5600	5600	1.20
BL5600	5600	0.95
HL5800	5800	1.15
BL5800	5800	1.05

(*) Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

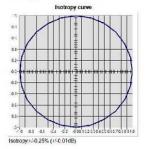
Page: 8/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOS.AR Probe vL. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 79 of 115



COMOSAR E-FIELD PROBE CALIBRATION REPORT


Ref: ACR 199.1.23 BES A

6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

Linearity:+/-1.48% (+/-0.06dB)

Page: 9/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOS.AR Probe vL. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-EMC-005

Page 80 of 115