

TEST REPORT

Product Name : OWS Bluetooth headset

Brand Mark : N/A

Model No. : HE-062

HE-062A, HE-062B, HE-062C, HE-062D, Extension model HE-056, Z80 Pro, S27, OWNY OE99

Report Number : BLA-EMC-202309-A8502

FCC ID : 2A2BYHE-062

Date of Sample Receipt : 2023/9/27

: 2023/9/27 to 2023/10/20 **Date of Test**

Date of Issue : 2023/10/20

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Dongguan Huien Electronic Technology Co., Ltd Room 301, Building of 1, No. 429, Changdong Road, Changping Town, Dongguan city, Guangdong Province, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Review by:

Approved by:

Josu 13 lue Theng

Date:

Page 2 of 89

REPORT REVISE RECORD

Version No.	Date	Description
00	2023/10/20	Original

TABLE OF CONTENTS

1 TEST SUMMARY	5
2 GENERAL INFORMATION	6
3 GENERAL DESCRIPTION OF E.U.T.	6
4 TEST ENVIRONMENT	8
5 TEST MODE	8
6 MEASUREMENT UNCERTAINTY	8
7 DESCRIPTION OF SUPPORT UNIT	
8 LABORATORY LOCATION	
9 TEST INSTRUMENTS LIST	
10 ANTENNA REQUIREMENT	
10.1 CONCLUSION	12
11 CONDUCTED SPURIOUS EMISSIONS	13
11.1 LIMITS	13
11.2 BLOCK DIAGRAM OF TEST SETUP	
11.3 TEST DATA	
12 20DB BANDWIDTH	15
12.1 BLOCK DIAGRAM OF TEST SETUP	15
12.2 TEST DATA	
13 CONDUCTED PEAK OUTPUT POWER	16
13.1 LIMITS	16
13.2 BLOCK DIAGRAM OF TEST SETUP	
13.3 TEST DATA	17
14 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	18
14.1 LIMITS	18
14.2 BLOCK DIAGRAM OF TEST SETUP	18
14.3 PROCEDURE	18
14.4 TEST DATA	20
15 RADIATED SPURIOUS EMISSIONS	23
15.1 LIMITS	23

•	Page 4 of 89

15.2 BLOCK DIAGRAM OF TEST SETUP	24
15.3 PROCEDURE	24
15.4 TEST DATA	26
16 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS.	35
16.1 LIMITS	35
16.2 BLOCK DIAGRAM OF TEST SETUP	36
16.3 PROCEDURE	36
16.4 TEST DATA	38
17 CONDUCTED BAND EDGES MEASUREMENT	43
17.1 LIMITS	43
17.2 BLOCK DIAGRAM OF TEST SETUP	43
17.3 TEST DATA	
18 DWELL TIME	
18.1 LIMITS	
18.2 BLOCK DIAGRAM OF TEST SETUP	45
18.3 TEST DATA	
19 HOPPING CHANNEL NUMBER	
19.1 LIMITS	47
19.2 BLOCK DIAGRAM OF TEST SETUP	47
19.3 TEST DATA	47
20 CARRIER FREQUENCIES SEPARATION	
20.1 LIMITS	48
20.2 BLOCK DIAGRAM OF TEST SETUP	48
20.3 TEST DATA	48
21 APPENDIX	49
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	87
APPENDIX B: PHOTOGRAPHS OF EUT	89

Page 5 of 89

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
20dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.7	47 CFR Part 15, Subpart C 15.247(a)(1)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Dwell Time	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.4	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Hopping Channel Number	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.3	47 CFR Part 15, Subpart C 15.247a(1)(iii)	Pass
Carrier Frequencies Separation	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.2	47 CFR Part 15, Subpart C 15.247a(1)	Pass

2 GENERAL INFORMATION

Applicant	Dongguan Huien Electronic Technology Co., Ltd	
Address	Room 301, Building of 1, No. 429, Changdong Road, Changping Town,Dongguan city, Guangdong Province , China	
Manufacturer	Dongguan Huien Electronic Technology Co., Ltd	
Address	Room 301, Building of 1, No. 429, Changdong Road, Changping Town,Dongguan city, Guangdong Province , China	
Factory	Dongguan Huien Electronic Technology Co., Ltd	
Address	Room 301, Building of 1, No. 429, Changdong Road, Changping Town,Dongguan city, Guangdong Province , China	
Product Name	OWS Bluetooth headset	
Test Model No.	HE-062	
Extension model	HE-062A, HE-062B, HE-062C, HE-062D, HE-056, Z80 Pro, S27, OWNY OE99	
Note	All models are electrically identical, only model no. and color is different. The product have left and right earbuds, left and right earbuds are electrically identical.	

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	02	
Software Version	V133	
Operation Frequency:	2402MHz-2480MHz	
Modulation Type:	GFSK, pi/4DQPSK	
Channel Spacing:	1MHz	
Number of Channels:	79	
Antenna Type:	Chip Antenna	
Antenna Gain:	3dBi (Provided by the applicant)	

Page 7 of 89

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Page 8 of 89

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	3.7Vdc

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION	
Transmitting	Keep the EUT in continuously transmitting mode with modulation. (hopping and non	
mode	hopping mode all have been tested, non hopping mode is worse case for RE)	
Remark: Full battery is used during all test except ac conducted emission, DH1,DH3, DH5 all have been		
tested, during the test, GFSK, Pi/4QPSK modulation were all pre-scanned only Pi/4QPSK worse case is reported.		

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

Page 9 of 89

DESCRIPTION OF SUPPORT UNIT

Device Type	Device Type Manufacturer		Serial No.	Remark	
AC Adapter	UGREEN	CD112	N/A	From lab	
PC	lenovo	E46OC	N/A	From lab (No.BLA-ZC-BS-2022005)	

LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

Page 10 of 89

9 TEST INSTRUMENTS LIST

Test Equipm	Test Equipment Of Radiated Spurious Emissions							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Chamber 1	SKET	966	N/A	2020/11/10	2023/11/9			
Chamber 2	SKET	966	N/A	2021/07/20	2023/11/9			
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29			
Receiver	R&S	ESR7	101199	2023/08/30	2024/08/29			
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06			
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/10/12	2025/10/11			
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12			
Horn Antenna	Schwarzbeck	BBHA 9170	1106	2022/04/24	2024/04/23			
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06			
Amplifier	SKET	PA-000318G-45	N/A	2023/08/30	2024/08/29			
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/14	2024/07/13			
Filter group	SKET	2.4G/5G Filter group r	N/A	2023/07/07	2024/07/06			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			
Loop antenna	SCHNARZBE CK	FMZB1519B	00102	2022/09/14	2025/09/13			
1kHZ calibration audio source	SKET	MCS-ABT-C35	N/A	2023/09/04	2024/09/03			
Free Field Microphone	SKET	MGS MP 663	0414	2023/09/04	2024/09/03			
Audio shielding box	SKET	SB-ABT-C35	N/A	2023/03/30	2024/03/29			
Controller	SKET	N/A	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A			
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A			
Signal Generator DTV	ECREDIX	DSG-1000	N/A	N/A	N/A			

Page 11 of 89

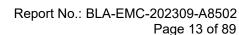
Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Shield room	SKET	833	N/A	2020/11/25	2023/11/24			
Receiver	R&S	ESPI3	101082	2023/08/30	2024/08/29			
LISN	R&S	ENV216	3560.6550.15	2023/08/30	2024/08/29			
LISN	AT	AT166-2	AKK1806000003	2023/08/30	2024/08/29			
ISN	TESEQ	ISNT8-cat6	53580	2023/08/30	2024/08/29			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2023/07/07	2024/07/06			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2023/07/07	2024/07/06			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			

Test Equipment Of RF Conducted Test								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29			
Spectrum	Agilent	N9020A	MY49100060	2023/08/30	2024/08/29			
Spectrum	Agilent	N9020A	MY54420161	2023/08/30	2024/08/29			
Signal Generator	Agilent	N5182A	MY47420955	2023/08/30	2024/08/29			
Signal Generator	Agilent	N5181A	MY46240904	2023/07/07	2024/07/06			
Signal Generator	R&S	CMW500	132429	2023/08/30	2024/08/29			
BluetoothTester	Anritsu	MT8852B	06262047872	2023/08/30	2024/08/29			
Power probe	DARE	RPR3006W	14I00889SN042	2023/09/01	2024/08/31			
Power detection box	CDKMV	MW100-PSB	MW201020JYT	2023/07/07	2024/07/06			
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2023/08/30	2024/08/29			
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2023/08/30	2024/08/29			
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A			
Audio Analyzer	Audio Precision	ATS-1	ATS141094	2023/07/07	2024/07/06			

Page 12 of 89

10 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	N/A				


10.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

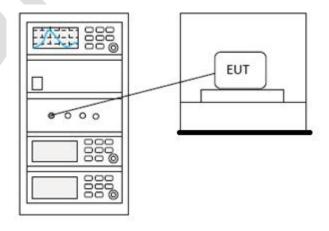
The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.72dBi.

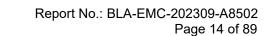
11 CONDUCTED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

11.1 LIMITS

Limit:


frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in


emission limits specified in §15.209(a) (see §15.205(c)).

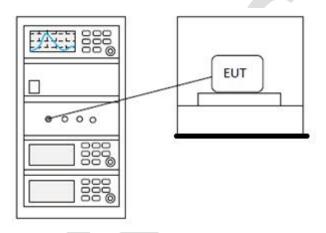
§15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio

11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details



Page 15 of 89

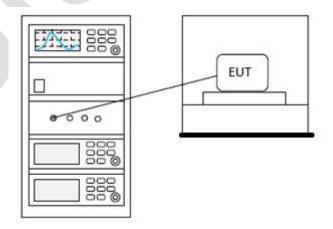
12 20DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.7
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

12.1 BLOCK DIAGRAM OF TEST SETUP

12.2 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


13 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%

13.1 LIMITS

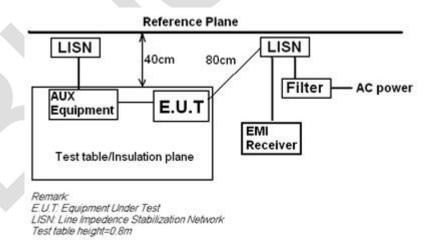
Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5505 5050	1 for frequency hopping systems and digital				
5725-5850	modulation				

13.2 BLOCK DIAGRAM OF TEST SETUP

Page 17 of 89

13.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


14 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	BT mode
Test Mode (Final Test)	BT mode
Tester	Jozu
Temperature	25℃
Humidity	60%

14.1 LIMITS

Frequency of	Conducted limit(dBμV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm	of the frequency.					

14.2 BLOCK DIAGRAM OF TEST SETUP

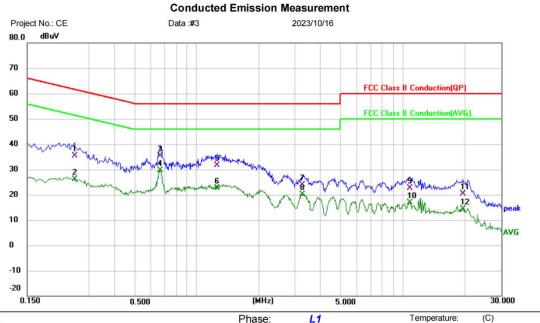
14.3 PROCEDURE

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 19 of 89

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

14.4 TEST DATA

[TestMode: TX mode]; [Line: Line] ;[Power:AC120V/60Hz]

Site Limit: FCC Class B Conduction(QP)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX mode

Phase: L1 Power:

Distance:

RBW: 9 KHz

VBW: 30 KHz

Sweep Time: 10 ms

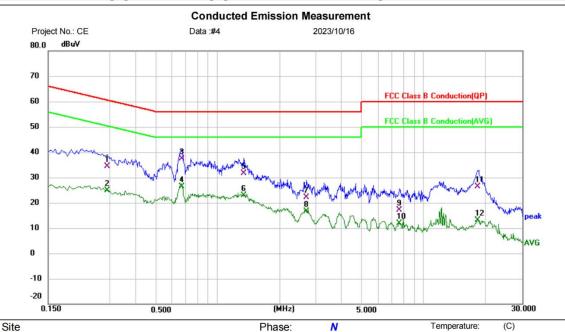
%RH

Humidity:

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2540	24.87	10.60	35.47	61.63	-26.16	QP			
2		0.2540	15.50	10.60	26.10	51.63	-25.53	AVG			
3		0.6620	25.30	10.09	35.39	56.00	-20.61	QP			
4	*	0.6620	19.58	10.09	29.67	46.00	-16.33	AVG			
5		1.2500	21.59	10.16	31.75	56.00	-24.25	QP			
6		1.2500	12.50	10.16	22.66	46.00	-23.34	AVG			
7		3.2620	13.61	10.18	23.79	56.00	-32.21	QP			
8		3.2620	9.92	10.18	20.10	46.00	-25.90	AVG			
9		10.8060	12.50	10.11	22.61	60.00	-37.39	QP			
10		10.8060	6.71	10.11	16.82	50.00	-33.18	AVG			
11		19.5660	10.30	10.01	20.31	60.00	-39.69	QP			
12		19.5660	4.26	10.01	14.27	50.00	-35.73	AVG			

*:Maximum data x:Over limit !:over margin Reference Only Receiver: Spectrum Analyzer: **ESPI** L.I.S.N: Engineer Signature


Humidity:

Sweep Time: 10 ms

RBW: 9 KHz VBW: 30 KHz %RH

[TestMode: TX mode]; [Line: Nutral] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX mode

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1		0.2900	24.37	10.07	34.44	60.52	-26.08	QP			
2		0.2900	14.83	10.07	24.90	50.52	-25.62	AVG			
3	*	0.6700	27.31	10.04	37.35	56.00	-18.65	QP			
4		0.6700	16.26	10.04	26.30	46.00	-19.70	AVG			
5		1.3380	21.48	10.04	31.52	56.00	-24.48	QP			
6		1.3380	12.93	10.04	22.97	46.00	-23.03	AVG			
7		2.7060	11.96	10.05	22.01	56.00	-33.99	QP			
8		2.7060	6.64	10.05	16.69	46.00	-29.31	AVG			
9		7.6220	7.25	9.87	17.12	60.00	-42.88	QP			
10		7.6220	2.03	9.87	11.90	50.00	-38.10	AVG			
11		18.2460	16.37	10.03	26.40	60.00	-33.60	QP			
12		18.2460	3.12	10.03	13.15	50.00	-36.85	AVG			

Power:

Distance:

L.I.S.N: Engineer Signature:

Page 22 of 89

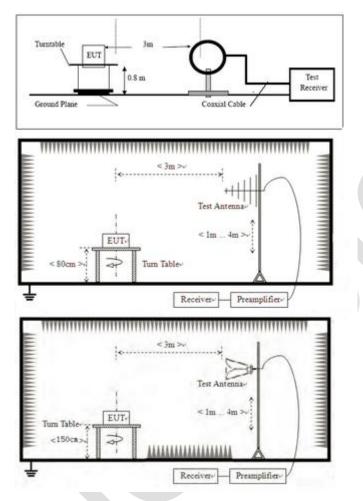
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Page 23 of 89

15 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					


15.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

15.2 BLOCK DIAGRAM OF TEST SETUP

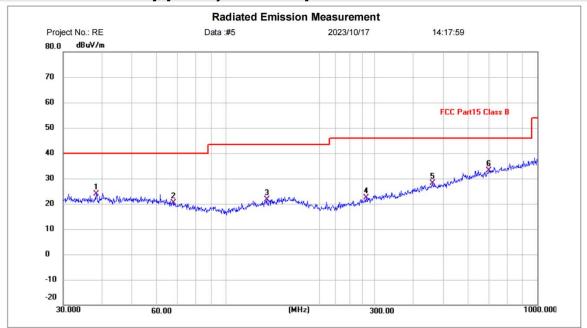
15.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 25 of 89

- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:


- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
- Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

15.4 TEST DATA

[TestMode: TX below 1G]; [Polarity: Horizontal]

Polarization: Horizontal

Temperature:

%RH

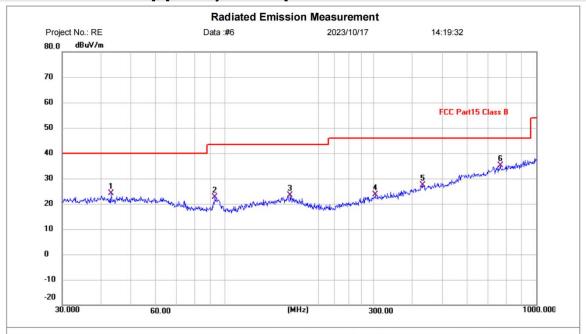
Humidity:

Limit: FCC Part15 Class B

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX mode

Note:


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	38.3462	0.72	23.11	23.83	40.00	-16.17	QP	Р	
2	67.9128	-0.81	21.19	20.38	40.00	-19.62	QP	Р	
3	135.5061	-0.61	22.27	21.66	43.50	-21.84	QP	Р	
4	281.9945	0.03	22.46	22.49	46.00	-23.51	QP	Р	
5	460.7271	0.76	27.49	28.25	46.00	-17.75	QP	Р	
6 *	699.3045	1.29	31.94	33.23	46.00	-12.77	QP	Р	

Power:

^{*:}Maximum data x:Over limit !:over margin

[TestMode: TX below 1G]; [Polarity: Vertical]

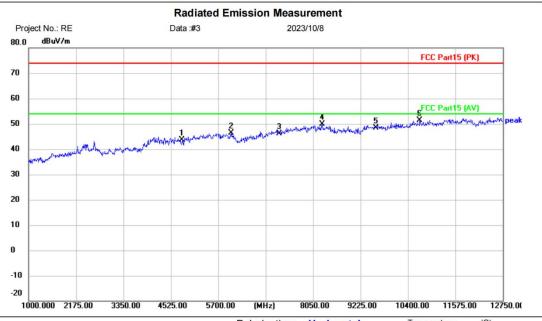
Site Limit: FCC Part15 Class B EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX mode

Note:

Polarization: Vertical Temperature: (C)
Power: Humidity: %RH

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	43.0505	1.38	22.77	24.15	40.00	-15.85	QP	Р	
2	92.7871	3.71	18.99	22.70	43.50	-20.80	QP	Р	
3	162.0414	0.57	22.84	23.41	43.50	-20.09	QP	Р	
4	303.5437	0.17	23.52	23.69	46.00	-22.31	QP	Р	
5	432.5457	0.56	26.79	27.35	46.00	-18.65	QP	Р	
6 *	766.0571	1.73	33.30	35.03	46.00	-10.97	QP	Р	


^{*:}Maximum data x:Over limit !:over margin

Page 28 of 89

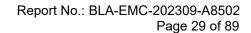
Above 1GHz:

[TestMode: TX low channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-L Note:

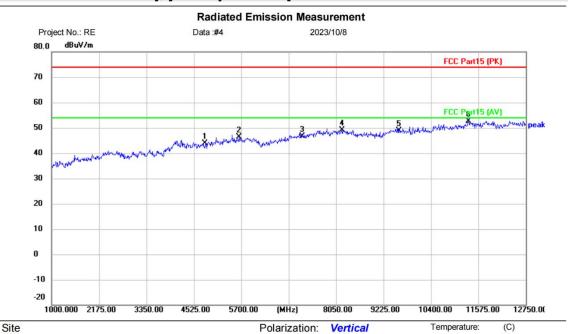

Polarization:	Horizontal	l'emperature:	(C)
Power		Humidity:	%RH

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	39.64	4.05	43.69	74.00	-30.31	peak	
2		6017.250	42.43	3.97	46.40	74.00	-27.60	peak	
3		7206.000	38.21	7.93	46.14	74.00	-27.86	peak	
4		8273.250	40.73	9.03	49.76	74.00	-24.24	peak	
5		9608.000	37.49	10.90	48.39	74.00	-25.61	peak	
6	*	10693.75	38.31	12.97	51.28	74.00	-22.72	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Receiver: ESR_1 Spectrum Analyzer: FSP40

Antenna: EZ 9120D 1G-18G Engineer Signature:



%RH

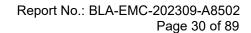
Humidity:

[TestMode: TX low channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

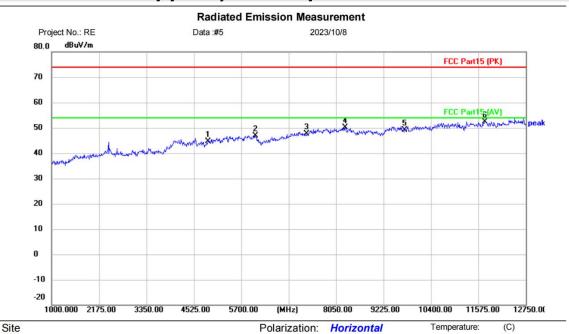
EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-L Note:


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	39.90	4.05	43.95	74.00	-30.05	peak	
2		5641.250	39.62	6.74	46.36	74.00	-27.64	peak	
3		7206.000	38.80	7.93	46.73	74.00	-27.27	peak	
4		8191.000	40.24	8.99	49.23	74.00	-24.77	peak	
5		9608.000	38.00	10.90	48.90	74.00	-25.10	peak	
6	*	11328.25	39.02	13.59	52.61	74.00	-21.39	peak	

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Receiver: ESR_1 Spectrum Analyzer: FSP40

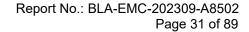
Antenna: EZ 9120D 1G-18G Engineer Signature:

[TestMode: TX mid channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK)

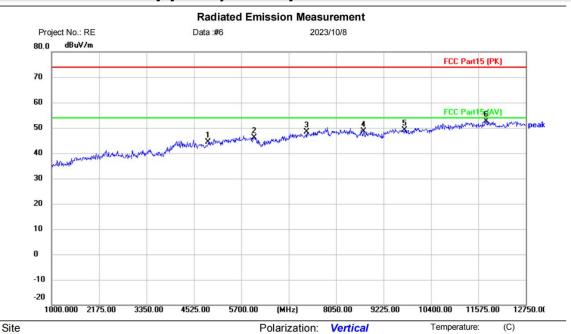
EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-M Note:


Power:	Humidity:	%RH

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	40.17	4.37	44.54	74.00	-29.46	peak	
2		6052.500	42.85	4.12	46.97	74.00	-27.03	peak	
3		7323.000	39.41	8.21	47.62	74.00	-26.38	peak	
4		8273.250	40.99	9.03	50.02	74.00	-23.98	peak	
5		9764.000	37.94	11.30	49.24	74.00	-24.76	peak	
6	*	11739.50	38.65	13.78	52.43	74.00	-21.57	peak	

*:Maximum data Reference Only x:Over limit !:over margin


Engineer Signature

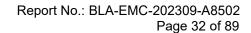
ESR_1 FSP40 Receiver: Spectrum Analyzer: Antenna: EZ 9120D 1G-18G

[TestMode: TX mid channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

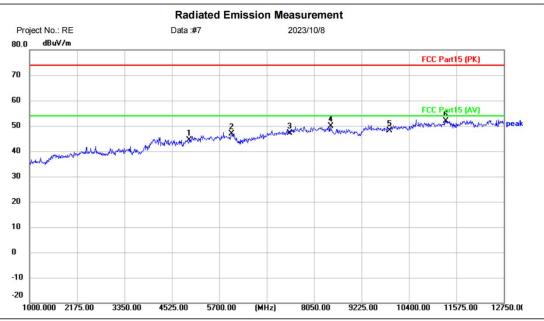
EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-M Note:


Humidity:	%RH
	Humidity:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	40.08	4.37	44.45	74.00	-29.55	peak	
2		6017.250	42.10	3.97	46.07	74.00	-27.93	peak	
3		7323.000	40.16	8.21	48.37	74.00	-25.63	peak	
4		8731.500	39.51	9.23	48.74	74.00	-25.26	peak	
5		9764.000	37.72	11.30	49.02	74.00	-24.98	peak	
6	*	11763.00	38.78	13.80	52.58	74.00	-21.42	peak	

*:Maximum data Reference Only x:Over limit !:over margin FSP40

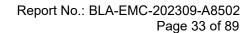

Engineer Signature

ESR_1 Receiver: Spectrum Analyzer: Antenna: EZ 9120D 1G-18G

[TestMode: TX high channel]; [Polarity: Horizontal]

Site Limit: FCC Part15 (PK)

EUT: OWS Bluetooth headset

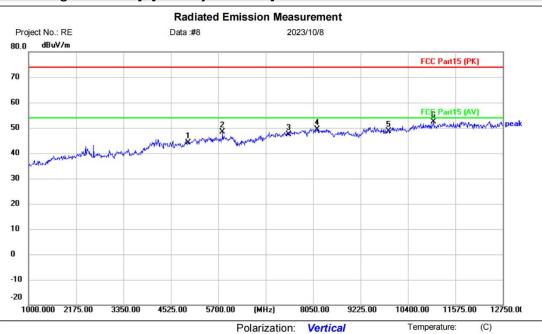

M/N: HE-062 Mode: TX-H Note: Polarization: *Horizontal* Temperature: (C)
Power: Humidity: %RH

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	38.84	5.42	44.26	74.00	-29.74	peak	
2		6005.500	42.90	3.92	46.82	74.00	-27.18	peak	
3		7440.000	38.59	8.48	47.07	74.00	-26.93	peak	
4		8461.250	40.66	9.11	49.77	74.00	-24.23	peak	
5		9920.000	36.45	11.69	48.14	74.00	-25.86	peak	
6	*	11316.50	38.21	13.59	51.80	74.00	-22.20	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

 Receiver:
 ESR_1
 Spectrum Analyzer:
 FSP40

 Antenna:
 EZ 9120D 1G-18G
 Englineer Signature:



Humidity:

%RH

[TestMode: TX high channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-H Note:

Site

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		4960.000	38.64	5.42	44.06	74.00	-29.94	peak		
2		5805.750	41.67	6.76	48.43	74.00	-25.57	peak		
3		7440.000	38.94	8.48	47.42	74.00	-26.58	peak		
4		8144.000	40.54	8.96	49.50	74.00	-24.50	peak		
5		9920.000	36.89	11.69	48.58	74.00	-25.42	peak		
6	*	11034 50	38.86	13 46	52 32	74 00	-21 68	neak		

Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Receiver: ESR_1 Spectrum Analyzer: FSP40

Antenna: EZ 9120D 1G-18G Engineer Signature:

Page 34 of 89

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 35 of 89

16 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

16.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Page 37 of 89

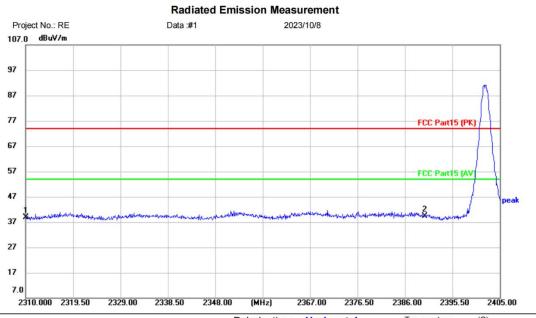
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.



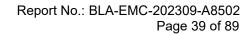
Page 38 of 89

16.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Site

Limit: FCC Part15 (PK)

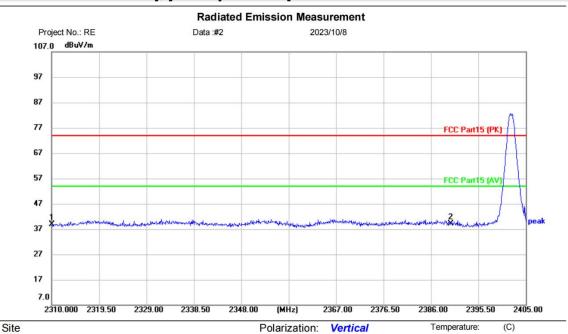

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-L Note: Polarization: *Horizontal* Temperature: (C)
Power: Humidity: %RH

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	43.14	-4.27	38.87	74.00	-35.13	peak	
2	*	2390.000	43.09	-3.82	39.27	74.00	-34.73	peak	

Antenna: EZ 9120D 1G-18G Engineer Signature:

Test Result: Pass



Humidity:

%RH

[TestMode: TX low channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

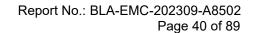
EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-L Note:

No.	Mk	ĸ.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		23	10.000	43.18	-4.27	38.91	74.00	-35.09	peak	
2	*	23	90.000	43.07	-3.82	39.25	74.00	-34.75	peak	

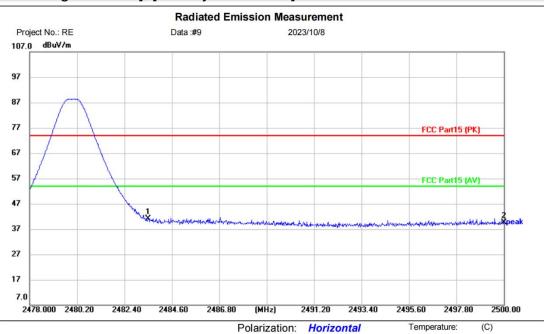
Power:

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass


EZ 9120D 1G-18G

Antenna:

[TestMode: TX high channel]; [Polarity: Horizontal]

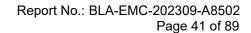
Site Limit: FCC Part15 (PK)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-H Note: Power: Humidity: %RH

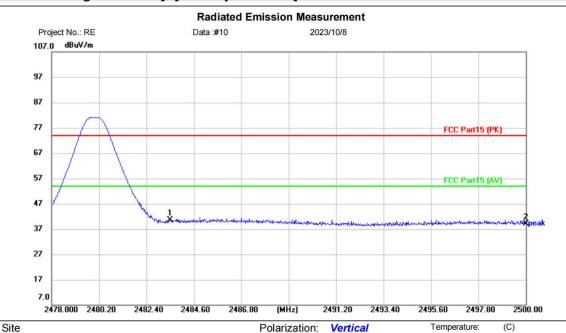
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	44.97	-3.96	41.01	74.00	-32.99	peak	
2		2500.000	43.51	-4.00	39.51	74.00	-34.49	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}


Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

EZ 9120D 1G-18G


Test Result: Pass

Antenna:

[TestMode: TX high channel]; [Polarity: Vertical]

Limit: FCC Part15 (PK)

EUT: OWS Bluetooth headset

M/N: HE-062 Mode: TX-H Note: Polarization: Vertical Temperature: (C)
Power: Humidity: %RH

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
3-		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	44.47	-3.96	40.51	74.00	-33.49	peak	
2		2500.000	43.10	-4.00	39.10	74.00	-34.90	peak	

*:Maximum data x:Over limit !:over margin \(\text{Reference Only}

Engineer Signature

Receiver: ESR_1 Spectrum Analyzer: FSP40

Test Result: Pass

EZ 9120D 1G-18G

Antenna:

Page 42 of 89

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

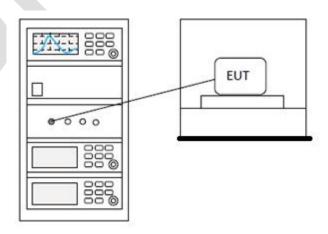
Page 43 of 89

17 CONDUCTED BAND EDGES MEASUREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

17.1 LIMITS

Limit:


spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the

restricted bands, as defined in §15.205(a), must also comply with the radiated

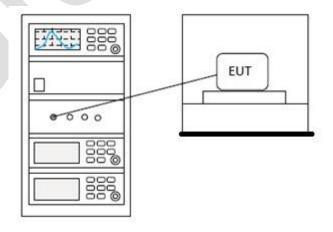
emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread

17.2 BLOCK DIAGRAM OF TEST SETUP

Page 44 of 89

17.3 TEST DATA


18 DWELL TIME

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.4					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

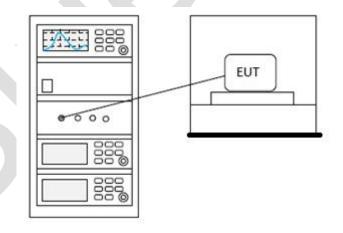
18.1 LIMITS

Frequency(MHz)	Limit			
	0.4S within a 20S period(20dB			
002.020	bandwidth<250kHz)			
902-928	0.4S within a 10S period(20dB			
	bandwidth≥250kHz)			
	0.4S within a period of 0.4S multiplied by the			
2400-2483.5	number			
	of hopping channels			
5725-5850	0.4S within a 30S period			

18.2 BLOCK DIAGRAM OF TEST SETUP

Page 46 of 89

18.3 TEST DATA


19 HOPPING CHANNEL NUMBER

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.3					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

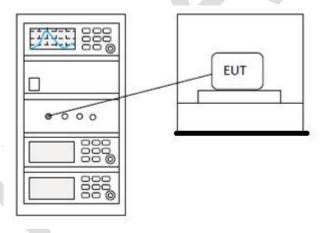
19.1 LIMITS

Frequency range(MHz)	Number of hopping channels (minimum)
002.020	50 for 20dB bandwidth <250kHz
902-928	25 for 20dB bandwidth ≥250kHz
2400-2483.5	15
5725-5850	75

19.2 BLOCK DIAGRAM OF TEST SETUP

19.3 TEST DATA

Page 48 of 89


20 CARRIER FREQUENCIES SEPARATION

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.2					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

20.1 LIMITS

Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W

20.2 BLOCK DIAGRAM OF TEST SETUP

20.3 TEST DATA

21 APPENDIX

Report No.: BLA-EMC-202309-A8502

Page 49 of 89

Appendix1

Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	1-DH1	2402	Ant1	-0.043	21	Pass
NVNT	1-DH1	2441	Ant1	-0.528	21	Pass
NVNT	1-DH1	2480	Ant1	0.06	21	Pass
NVNT	2-DH1	2402	Ant1	0.73	21	Pass
NVNT	2-DH1	2441	Ant1	0.267	21	Pass
NVNT	2-DH1	2480	Ant1	0.906	21	Pass

Power NVNT 1-DH1 2402MHz Ant1

Power NVNT 1-DH1 2441MHz Ant1

Power NVNT 1-DH1 2480MHz Ant1

Power NVNT 2-DH1 2402MHz Ant1

Power NVNT 2-DH1 2441MHz Ant1

Power NVNT 2-DH1 2480MHz Ant1

Page 53 of 89

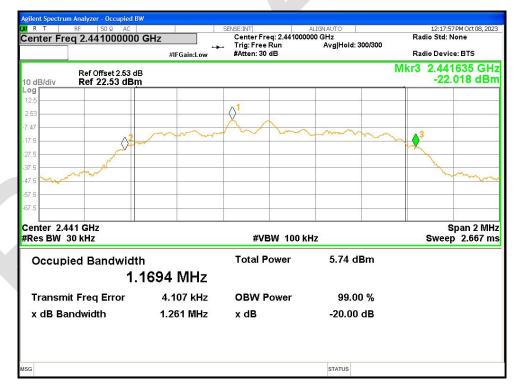
-20dB Bandwidth

Condition	Mode	Frequency	Antenna	-20 dB Bandwidth	Limit -20 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	1-DH1	2402	Antl	0.874	0	Pass
NVNT	1-DH1	2441	Ant1	0.92	0	Pass
NVNT	1-DH1	2480	Antl	0.922	0	Pass
NVNT	2-DH1	2402	Antl	1.26	0	Pass
NVNT	2-DH1	2441	Antl	1.261	0	Pass
NVNT	2-DH1	2480	Antl	1.258	0	Pass

-20dB Bandwidth NVNT 1-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 1-DH1 2480MHz Ant1



-20dB Bandwidth NVNT 2-DH1 2402MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2441MHz Ant1

-20dB Bandwidth NVNT 2-DH1 2480MHz Ant1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH1	2402	Ant1	0.83502
NVNT	1-DH1	2441	Ant1	0.84678
NVNT	1-DH1	2480	Ant1	0.85566
NVNT	2-DH1	2402	Ant1	1.1709
NVNT	2-DH1	2441	Ant1	1.1730
NVNT	2-DH1	2480	Ant1	1.1743

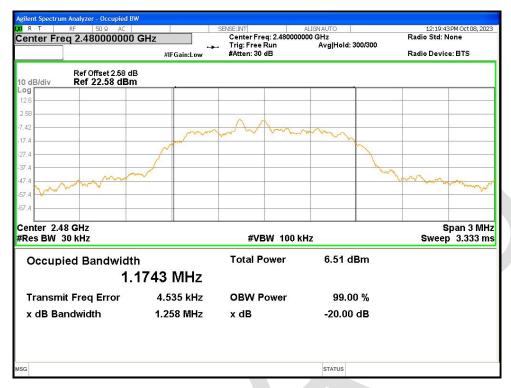
OBW NVNT 1-DH1 2402MHz Ant1

OBW NVNT 1-DH1 2441MHz Ant1

11:50:36 AM Oct 08, 2023 Center Freq: 2.441000000 GHz Trig: Free Run Avg #Atten: 30 dB Center Freq 2.441000000 GHz Radio Std: None Avg|Hold: 300/300 Radio Device: BTS #IFGain:Low Ref Offset 2.53 dB Ref 22.53 dBm 10 dB/div Span 3 MHz Sweep 3.333 ms Center 2.441 GHz #Res BW 30 kHz **#VBW 100 kHz Total Power** 6.22 dBm Occupied Bandwidth 846.78 kHz **Transmit Freq Error** 910 Hz **OBW Power** 99.00 % -20.00 dB x dB Bandwidth 925.4 kHz x dB

OBW NVNT 1-DH1 2480MHz Ant1

OBW NVNT 2-DH1 2402MHz Ant1

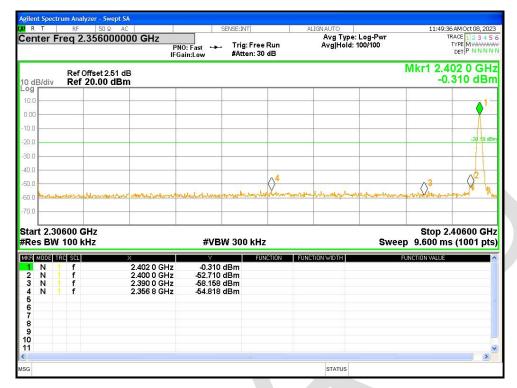


OBW NVNT 2-DH1 2441MHz Ant1

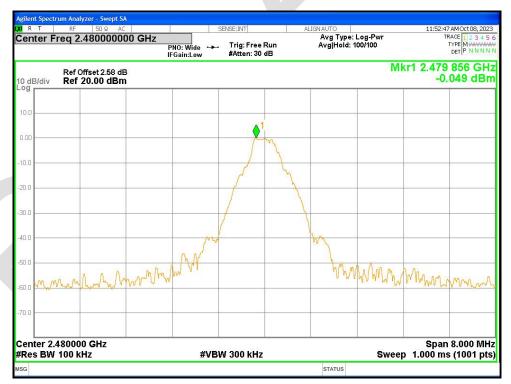
OBW NVNT 2-DH1 2480MHz Ant1

Page 61 of 89

Band Edge


Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	Ant1	No-Hopping	-54.62	-20	Pass
NVNT	1-DH1	2480	Ant1	No-Hopping	-53.95	-20	Pass
NVNT	2-DH1	2402	Ant1	No-Hopping	-54.73	-20	Pass
NVNT	2-DH1	2480	Ant1	No-Hopping	-53.94	-20	Pass

Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Ref



Band Edge NVNT 1-DH1 2402MHz Ant1 No-Hopping Emission

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Ref

Band Edge NVNT 1-DH1 2480MHz Ant1 No-Hopping Emission