

Report No.: EED32Q82147902 Page 1 of 52

Product : Harry Potter Wireless Headset,

DC Batman Series Wireless Headset,

DC Justice League Series Wireless Headset,

DC Superman Series Wireless Headset

Trade mark : MINISO

Model/Type reference : P14
Serial Number : N/A

Report Number : EED32Q82147902

FCC ID : 2A2H6-P14A

Date of Issue : Dec. 27, 2024

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Shenzhen Bao Tianhua Technology Co., Ltd 301, Building Plant No.5 Anliang Road, Xi Keng Community, Longgang District, Shenzhen, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Approved by Report Seal

Zhenxia Wen

Zhenxia Wen

Aaron Ma

anon Ma

Reviewed by:

Frazer Li

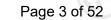
Grazer. Lo

Date:

Dec. 27, 2024

Check No.: 4713251224

Contents			Page
1 CONTENTS			2
2 VERSION		•••••	3
3 TEST SUMMARY			4
4 GENERAL INFORMATION			5
4.1 CLIENT INFORMATION			
5 TEST RESULTS AND MEASUREMENT			
5.1 ANTENNA REQUIREMENT	SEQUENCE		
6 APPENDIX BLUETOOTH CLASSIC			
7 PHOTOGRAPHS OF TEST SETUP			
8 PHOTOGRAPHS OF EUT CONSTRUCT	IONAL DETAILS		52



2 Version

	Date Description		
27, 2024	Original		
	27, 2024	27, 2024 Original	

Page 4 of 52

3 Test Summary

o rest Summary		\"\
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

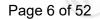
Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified. This report only added Product Name. All test data come from the report of No. EED32Q80761802.

Report No. : EED32Q82147902 Page 5 of 52

4 General Information

4.1 Client Information


Applicant:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Applicant: 301, Building Plant No.5 Anliang Road, Xi Keng Community, Lon District, Shenzhen, Guangdong, China	
Manufacturer:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Manufacturer:	301, Building Plant No.5 Anliang Road, Xi Keng Community, Longgang District, Shenzhen, Guangdong, China
Factory:	Shenzhen Bao Tianhua Technology Co., Ltd
Address of Factory:	301, Building Plant No.5 Anliang Road, Xi Keng Community, Longgang District, Shenzhen, Guangdong, China

4.2 General Description of EUT

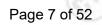
ii z zonorai zozonipaion	0. 20.
Product Name:	Harry Potter Wireless Headset, DC Batman Series Wireless Headset, DC Justice League Series Wireless Headset, DC Superman Series Wireless Headset
Model No.:	P14
Trade Mark:	MINISO
Product Type:	☐ Mobile ☐ Portable ☐ Fixed Location
Operation Frequency:	2402MHz~2480MHz
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Antenna Type:	PCB Antenna
Antenna Gain:	2.499dBi
Power Supply:	Battery: DC 3.7V
Test Voltage:	DC 3.3V
Sample Received Date:	Jun. 04, 2024
Sample tested Date:	Jun. 07, 2024 to Jun. 13, 2024
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
-							
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz



Test Configuration

EUT Test Software Settings	:				
Software:	FCC_assist_1.0.2.2				
EUT Power Grade:	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the lot transmitting of the EUT.	owest frequency, the midd	le frequency and the h	nighest frequency keep		
Mode	Channe	el	Frequency(MHz)		
	CH0		2402		
DH1/DH3/DH5	CH39		2441		
	CH78		2480		
	CH0		2402		
2DH1/2DH3/2DH5	CH39) (2	2441		
	CH78		2480		
	CH0		2402		
3DH1/3DH3/3DH5	CH39	/°>	2441		
(6,57)	CH78	(67)	2480		

Report No. : EED32Q82147902 Page 8 of 52

4.4 Test Environment

t:				
ssions:				
22~25.0 °C				
50~55 % RH		(1)		(3)
1010mbar		(6)		(6)
22~25.0 °C				
50~55 % RH	-05		705	
1010mbar	(2/2)		(47)	
22~25.0 °C				
50~55 % RH		12000		15.86
1010mbar		(20)		(20)
	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

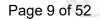
1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Dell	P77F	FCC&CE	CTI
Netbook	Think Book	ThinkBook 14	FCC&CE	СТІ
	(c.5)	C21A3000ICD	(25)	(2)

4.6 Test Location

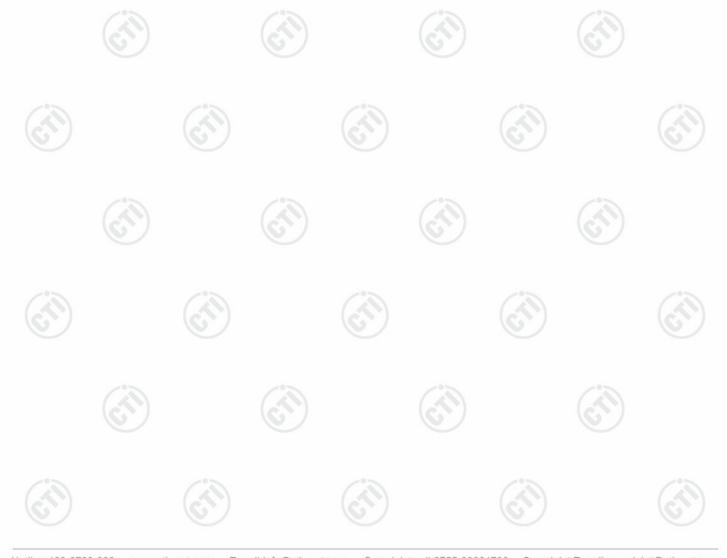
All tests were performed at:

Centre Testing International Group Co., Ltd


Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164



4.7 Measurement Uncertainty (95% confidence levels, k=2)

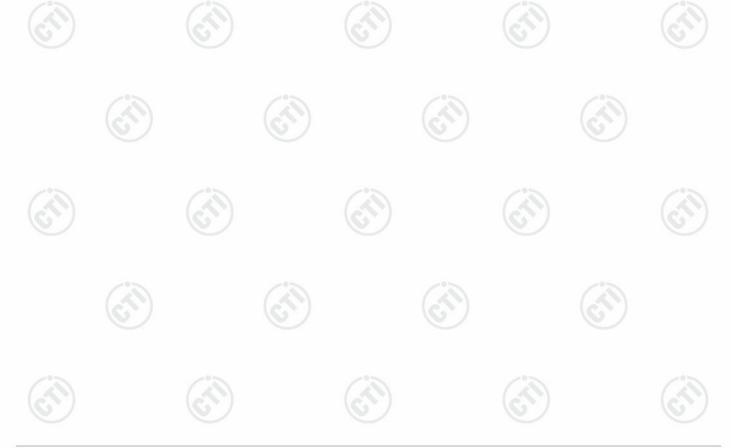
ltem	Measurement Uncertainty	
Radio Frequency	7.9 x 10 ⁻⁸	
DE nower conducted	0.46dB (30MHz-1GHz)	
Kr power, conducted	0.55dB (1GHz-40GHz)	
(80)	3.3dB (9kHz-30MHz)	
Dadiated Spurious emission test	4.3dB (30MHz-1GHz)	
Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
	3.4dB (18GHz-40GHz)	
Conduction emission	3.5dB (9kHz to 150kHz)	
Conduction emission	3.1dB (150kHz to 30MHz)	
Temperature test	0.64°C	
Humidity test	3.8%	
DC power voltages	0.026%	
	Radio Frequency RF power, conducted Radiated Spurious emission test Conduction emission Temperature test Humidity test	

Report No.: EED32Q82147902 Page 10 of 52

4.8 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Communication test set	R&S	CMW500	107929	06-28-2023	06-27-2024		
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-05-2023	09-04-2024		
Spectrum Analyzer	R&S	FSV40	101200	07-25-2023	07-24-2024		
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-28-2023	06-27-2024		
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023	12-10-2024		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025		
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0				
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025		

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date		
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025		
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025		
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024		
Barometer	changchun	DYM3	1188				
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		(;)		



Page 11 of 52

		- Branch	-0.00		and the beautiful trans	
	3M Semi-ar	nechoic Chamber (2)	Radiated disturb	ance Test	1	
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3	<u> </u>	05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025	
Multi device Controller	maturo	NCD/070/10711112	<u> </u>	(1)		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025	
Microwave Preamplifier	Agilent	8449B	3008A02425	06/20/2023 06/13/2024	06/19/2024 06/12/2025	
Test software	Fara	EZ-EMC	EMEC-3A1-Pre			

Page 12 of 52

		3M full-anechoi	c Chamber			
Equipment	Manufacturer Model No. Serial Num		Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		(3	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	(<u>(1)</u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003			
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		(5	
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	((1)	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001			
Cable line	Times	HF160-KMKM-3.00M	393493-0001			

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

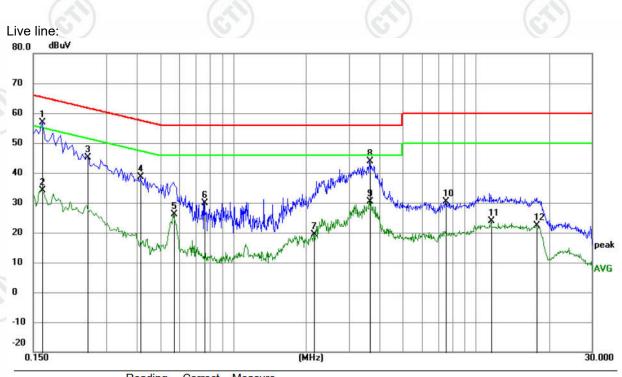
EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 2.499dBi.

Report No. : EED32Q82147902 Page 14 of 52

5.2	AC Power Line Cor	nducted Emissions								
	Test Requirement:	47 CFR Part 15C Section 15.2	207	(6,7)						
	Test Method:	ANSI C63.10: 2013								
	Test Frequency Range:	150kHz to 30MHz								
0.3	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto								
5	Limit:	F(MII-)	Limit (d	BuV)						
2		Frequency range (MHz)	Quasi-peak	Average						
		0.15-0.5	66 to 56*	56 to 46*						
		0.5-5	56	46						
		5-30	60	50						
		* Decreases with the logarithn	n of the frequency.	(0.)						
		Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver						
	Test Procedure:	 The mains terminal disturbroom. The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Libert exceeded. The tabletop EUT was place ground reference plane. All placed on the horizontal ground reference with the EUT shall be 0.4 mit vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points 	o AC power source throetwork) which provides oles of all other units of SN 2, which was bonded be way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metallic and for floor-standing arround reference plane, the a vertical ground reference olane was bonded to the 1 was placed 0.8 m from the a ground reference cand reference plane. The	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were do to the ground or the unit being I to connect multiple of the LISN was not to table 0.8m above the trangement, the EUT was been been been been been been been bee						

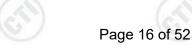
the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of

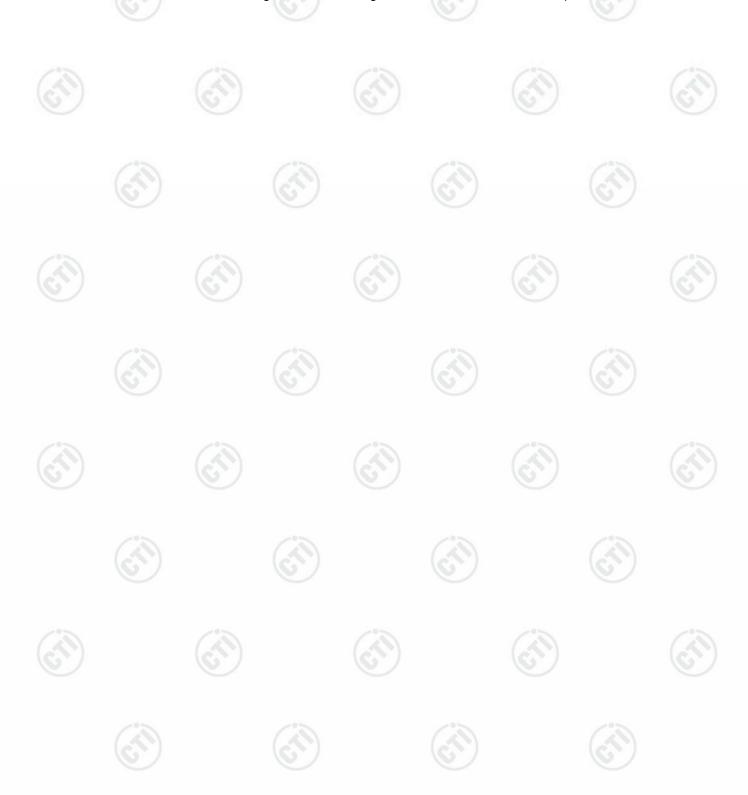
Page 15 of 52	Pag	e 15	of	52
---------------	-----	------	----	----

	equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

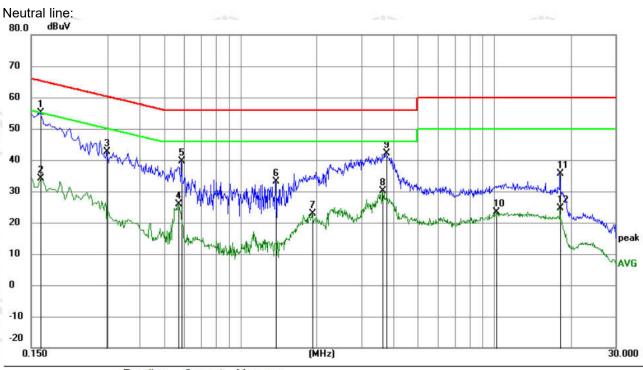


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1635	47.12	9.88	57.00	65.28	-8.28	QP		
2		0.1635	24.32	9.88	34.20	55.28	-21.08	AVG		
3		0.2521	35.43	9.72	45.15	61.69	-16.54	QP		
4		0.4155	28.74	9.79	38.53	57.54	-19.01	QP		
5		0.5685	16.43	9.65	26.08	46.00	-19.92	AVG		
6		0.7620	19.94	9.86	29.80	56.00	-26.20	QP		
7		2.1480	9.58	9.75	19.33	46.00	-26.67	AVG		
8		3.6420	34.14	9.80	43.94	56.00	-12.06	QP		
9		3.6420	20.53	9.80	30.33	46.00	-15.67	AVG		
10		7.5165	20.53	9.85	30.38	60.00	-29.62	QP		
11		11.5575	13.97	9.84	23.81	50.00	-26.19	AVG		
12		17.7630	12.50	9.95	22.45	50.00	-27.55	AVG		


Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:





- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1635	45.14	9.88	55.02	65.28	-10.26	QP	
2		0.1635	24.36	9.88	34.24	55.28	-21.04	AVG	
3		0.2985	33.01	9.55	42.56	60.28	-17.72	QP	
4		0.5685	16.35	9.65	26.00	46.00	-20.00	AVG	
5		0.5865	29.96	9.62	39.58	56.00	-16.42	QP	
6		1.3785	23.29	9.74	33.03	56.00	-22.97	QP	
7		1.9275	13.24	9.75	22.99	46.00	-23.01	AVG	
8		3.6375	20.21	9.80	30.01	46.00	-15.99	AVG	
9		3.7455	32.21	9.80	42.01	56.00	-13.99	QP	
10		10.1400	13.52	9.83	23.35	50.00	-26.65	AVG	
11		18.1950	25.54	9.97	35.51	60.00	-24.49	QP	
12		18.1950	14.58	9.97	24.55	50.00	-25.45	AVG	

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: EED32Q82147902 Page 18 of 52

5.3 Maximum Conducted Output Power

Test Red	quirement:	47 CFR Part 15C Section 15.247 (b)(1)					
Test Met	thod:	ANSI C63.10:2013					
Test Set	up:	RF test Control Control Control System Power Bupply RF test System Instrument Remark: Offset=Cable loss+ attenuation factor.					
Test Pro	cedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.					
Limit:	·						
Explorate	ory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Tes	st Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSI$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
Test Res	sults:	Refer to Appendix Bluetooth Classic					

Report No.: EED32Q82147902 Page 19 of 52

5.4 20dB Emission Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.						
Limit:	NA Non-hopping transmitting with all kind of modulation and all kind of data type						
Exploratory Test Mode:							
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
Test Results:	Refer to Appendix Bluetooth Classic						

Report No.: EED32Q82147902 Page 20 of 52

5.5 Carrier Frequency Separation

	1 10,701	1 (4.7)					
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
	Test Method:	ANSI C63.10:2013					
6.4.5	Test Setup:	Control Computer Power Supply Power Soft Table RF test System System Instrument Table					
		Remark: Offset=Cable loss+ attenuation factor.					
6.2.3	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 					
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.					
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type					
9	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.					
3	Test Results:	Refer to Appendix Bluetooth Classic					

Report No.: EED32Q82147902 Page 21 of 52

5.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	Control Control Control Power Power Pool Pool Pool Power Pool Pool Pool Pool Pool Pool Pool Poo						
	Remark: Offset=Cable loss+ attenuation factor.						
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. 						
	 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel. 						
	6. Record the measurement data in report.						
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.						
Test Mode:	Hopping transmitting with all kind of modulation						
Test Results:	Refer to Appendix Bluetooth Classic						

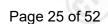
Report No. : EED32Q82147902 Page 22 of 52

5.7 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Power Power Power Attenuator Instrument Table RF test System Attenuator Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix Bluetooth Classic

5.8 Band edge Measurements

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Computer Power Supply Power Supply Table RF test System System Instrument Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
Test Results:	Refer to Appendix Bluetooth Classic
	•


Report No.: EED32Q82147902 Page 24 of 52

5.9 Conducted Spurious Emissions

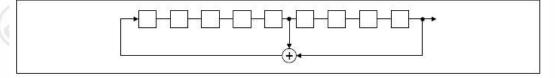
Test Requirement:	47 CFR Part 15C Section 15.247 (d)								
Test Method:	ANSI C63.10:2013								
Test Setup:	Control Control Control Power Power Power Power Power Power Table RF test System System Instrument								
	Remark: Offset=Cable loss+ attenuation factor.								
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 								
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type								
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.								
Test Results:	Refer to Appendix Bluetooth Classic								
I IN A T	1007 1 1007 1 1007 1								

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

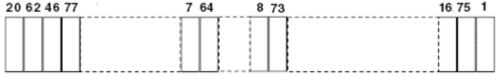
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

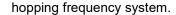

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.


According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

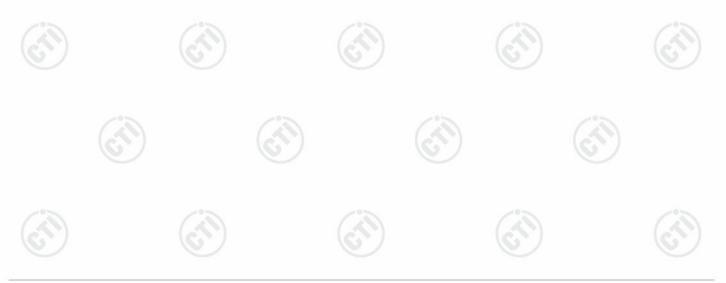
Compliance for section 15.247(g)

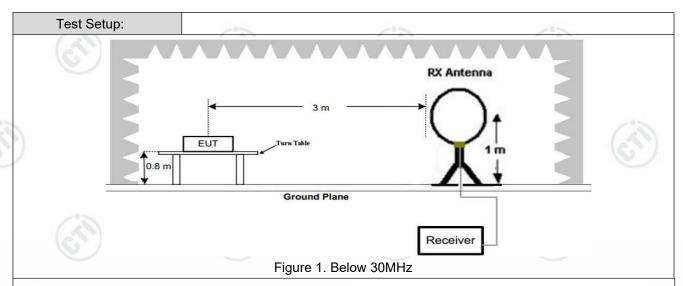
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

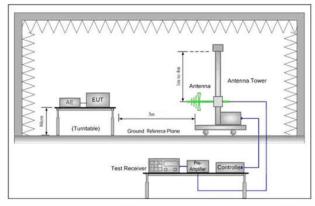
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.




5.11 Radiated Spurious Emission & Restricted bands


Test Requiren	nent: 4	7 CFR Part 15C Secti	on 1	5.209 and 15	.205	(67))
Test Method:	P	ANSI C63.10: 2013					
Test Site:	N	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)	
Receiver Setu	p:	Frequency		Detector	RBW	VBW	Remark
		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
		0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak
		0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak
		Abovo 1CUz		Peak	1MHz	3MHz	Peak
		Above 1GHz	Peak	1MHz	10kHz	Average	
Limit:		Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24	1000/F(kHz)	-	-/3	30
		1.705MHz-30MHz		30	-	(6)	30
		30MHz-88MHz		100	40.0	Quasi-peak	3
		88MHz-216MHz		150	43.5	Quasi-peak	3
		216MHz-960MHz		200	46.0	Quasi-peak	3
		960MHz-1GHz	.)	500	54.0	Quasi-peak	3
		Above 1GHz		500	54.0	Average	3
	N	Note: 15.35(b), Unless emissions is 20dE applicable to the peak emission lev	3 ab equi	ove the maxin pment under t	num permi est. This p	tted average	emission limit

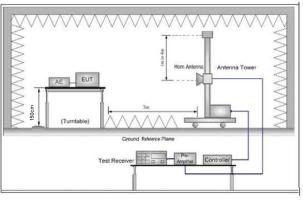


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

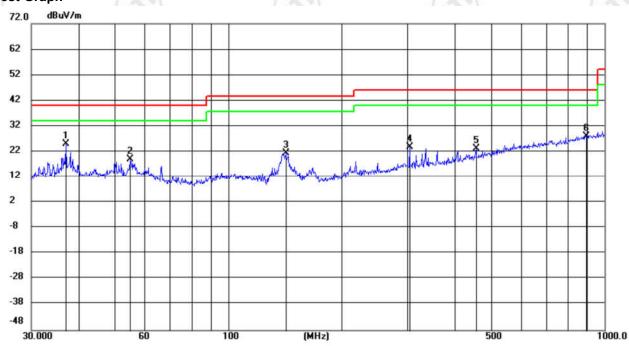
Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the

Page 29 of 52

	data type Through Pre-scan, find the DH5 of data type and GFSK modulation is the
Exploratory Test Mode:	 for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Non-hopping transmitting mode with all kind of modulation and all kind of
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dl margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

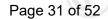

Page 30 of 52

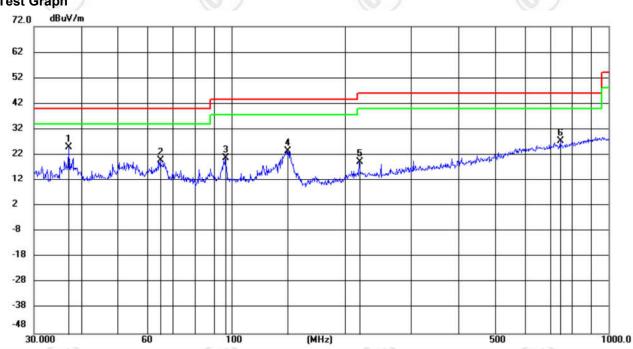
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

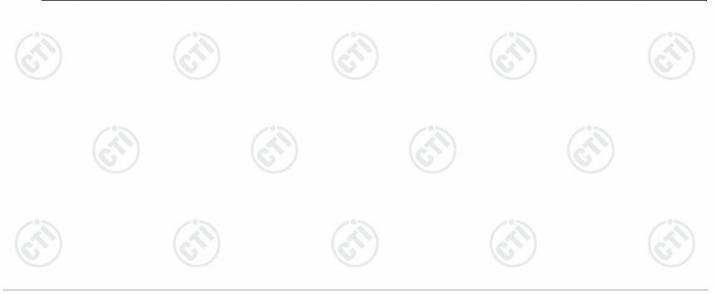
Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	37.1549	11.52	13.61	25.13	40.00	-14.87	QP	100	183	
	54.8925	5.23	13.73	18.96	40.00	-21.04	QP	199	341	
	142.3493	11.81	9.62	21.43	43.50	-22.07	QP	199	58	
	304.2363	7.23	16.75	23.98	46.00	-22.02	QP	100	172	
	455.9857	3.30	19.92	23.22	46.00	-22.78	QP	199	0	
	895.5822	0.84	27.34	28.18	46.00	-17.82	QP	199	352	
	*	MHz * 37.1549 54.8925 142.3493	Mk. Freq. Level MHz dBuV * 37.1549 11.52 54.8925 5.23 142.3493 11.81 304.2363 7.23 455.9857 3.30	Mk. Freq. Level Factor MHz dBuV dB * 37.1549 11.52 13.61 54.8925 5.23 13.73 142.3493 11.81 9.62 304.2363 7.23 16.75 455.9857 3.30 19.92	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 37.1549 11.52 13.61 25.13 54.8925 5.23 13.73 18.96 142.3493 11.81 9.62 21.43 304.2363 7.23 16.75 23.98 455.9857 3.30 19.92 23.22	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 37.1549 11.52 13.61 25.13 40.00 54.8925 5.23 13.73 18.96 40.00 142.3493 11.81 9.62 21.43 43.50 304.2363 7.23 16.75 23.98 46.00 455.9857 3.30 19.92 23.22 46.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB * 37.1549 11.52 13.61 25.13 40.00 -14.87 54.8925 5.23 13.73 18.96 40.00 -21.04 142.3493 11.81 9.62 21.43 43.50 -22.07 304.2363 7.23 16.75 23.98 46.00 -22.02 455.9857 3.30 19.92 23.22 46.00 -22.78	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV/m dBuV/m dB Detector * 37.1549 11.52 13.61 25.13 40.00 -14.87 QP 54.8925 5.23 13.73 18.96 40.00 -21.04 QP 142.3493 11.81 9.62 21.43 43.50 -22.07 QP 304.2363 7.23 16.75 23.98 46.00 -22.02 QP 455.9857 3.30 19.92 23.22 46.00 -22.78 QP	Mk. Freq. Level Factor ment Limit Margin Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 37.1549 11.52 13.61 25.13 40.00 -14.87 QP 100 54.8925 5.23 13.73 18.96 40.00 -21.04 QP 199 142.3493 11.81 9.62 21.43 43.50 -22.07 QP 199 304.2363 7.23 16.75 23.98 46.00 -22.02 QP 100 455.9857 3.30 19.92 23.22 46.00 -22.78 QP 199	Mk. Freq. Level Factor ment Limit Margin Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree * 37.1549 11.52 13.61 25.13 40.00 -14.87 QP 100 183 54.8925 5.23 13.73 18.96 40.00 -21.04 QP 199 341 142.3493 11.81 9.62 21.43 43.50 -22.07 QP 199 58 304.2363 7.23 16.75 23.98 46.00 -22.02 QP 100 172 455.9857 3.30 19.92 23.22 46.00 -22.78 QP 199 0





Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	37.1223	11.42	13.61	25.03	40.00	-14.97	QP	100	120	
2		65.0688	7.99	12.01	20.00	40.00	-20.00	QP	100	225	
3		96.4700	7.92	13.02	20.94	43.50	-22.56	QP	100	88	
4		141.2307	14.05	9.60	23.65	43.50	-19.85	QP	100	236	
5		218.7683	5.99	13.45	19.44	46.00	-26.56	QP	100	341	
6		746.6966	2.41	24.96	27.37	46.00	-18.63	QP	200	350	



Radiated Spurious Emission above 1GHz:

Mode	:		GFSK Transmit	ting		Channel:		2402 MHz	<u>z</u>
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1164.2164	7.61	42.28	49.89	74.00	24.11	Pass	Н	PK
2	2000.1	8.99	41.52	50.51	74.00	23.49	Pass	Н	PK
3	3987.0658	-16.55	53.72	37.17	74.00	36.83	Pass	Н	PK
4	6655.2437	-8.18	54.01	45.83	74.00	28.17	Pass	Н	PK
5	9992.4662	-0.86	45.73	44.87	74.00	29.13	Pass	Н	PK
6	13703.7136	5.04	42.59	47.63	74.00	26.37	Pass	Н	PK
7	1249.825	7.86	41.26	49.12	74.00	24.88	Pass	V	PK
8	1936.6937	8.98	36.87	45.85	74.00	28.15	Pass	V	PK
9	4801.1201	-13.44	52.58	39.14	74.00	34.86	Pass	V	PK
10	9601.4401	-1.80	53.16	51.36	74.00	22.64	Pass	V	PK
11	14217.7478	7.01	40.80	47.81	74.00	26.19	Pass	V	PK
		(6.7.		(6.7))	(67)	7)		(6.2.)

Mode	:		GFSK Transmit	ting		Channel:		2441 MHz	2
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1164.4164	7.61	41.26	48.87	74.00	25.13	Pass	Н	PK
2	1997.2997	8.99	40.72	49.71	74.00	24.29	Pass	Н	PK
3	4879.1253	-13.46	51.89	38.43	74.00	35.57	Pass	Н	PK
4	5999.1999	-10.93	53.97	43.04	74.00	30.96	Pass	Н	PK
5	9957.4638	-1.14	49.76	48.62	74.00	25.38	Pass	Н	PK
6	13614.7076	6.15	41.67	47.82	74.00	26.18	Pass	Н	PK
7	1352.0352	7.98	38.71	46.69	74.00	27.31	Pass	V	PK
8	1997.0997	8.99	37.30	46.29	74.00	27.71	Pass	V	PK
9	3489.0326	-18.05	54.24	36.19	74.00	37.81	Pass	V	PK
10	4882.1255	-13.47	52.59	39.12	74.00	34.88	Pass	V	PK
11	9757.4505	-3.40	53.66	50.26	74.00	23.74	Pass	V	PK
12	13672.7115	5.41	42.50	47.91	74.00	26.09	Pass	V	PK

Page 33 of 52

Mode	: :		GFSK Transmit	ting		Channel:		2480 MHz	Z
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1163.2163	7.60	41.51	49.11	74.00	24.89	Pass	Н	PK
2	1995.8996	8.99	39.40	48.39	74.00	25.61	Pass	Н	PK
3	4957.1305	-13.36	52.62	39.26	74.00	34.74	Pass	Н	PK
4	5991.1994	-10.95	5 53.31	42.36	74.00	31.64	Pass	Н	PK
5	9997.4665	-0.81	47.94	47.13	74.00	26.87	Pass	Н	PK
6	13701.7134	5.05	43.69	48.74	74.00	25.26	Pass	Н	PK
7	1385.6386	8.16	37.28	45.44	74.00	28.56	Pass	V	PK
8	1823.8824	8.58	37.34	45.92	74.00	28.08	Pass	V	PK
9	3502.0335	-18.02	53.21	35.19	74.00	38.81	Pass	V	PK
10	4957.1305	-13.36	52.89	39.53	74.00	34.47	Pass	V	PK
11	9913.4609	-1.50	52.00	50.50	74.00	23.50	Pass	V	PK
12	13702.7135	5.05	42.14	47.19	74.00	26.81	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2402 MHz	Z
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1161.6162	7.58	41.75	49.33	74.00	24.67	Pass	Н	PK
2	1436.2436	8.09	37.42	45.51	74.00	28.49	Pass	Н	PK
3	4801.1201	-13.44	51.98	38.54	74.00	35.46	Pass	Н	PK
4	5995.1997	-10.9	5 57.14	46.19	74.00	27.81	Pass	Н	PK
5	9982.4655	-0.93	47.40	46.47	74.00	27.53	Pass	Н	PK
6	13692.7128	5.16	42.65	47.81	74.00	26.19	Pass	Н	PK
7	1202.4202	7.99	38.37	46.36	74.00	27.64	Pass	V	PK
8	1737.2737	8.50	37.65	46.15	74.00	27.85	Pass	V	PK
9	4801.1201	-13.44	51.31	37.87	74.00	36.13	Pass	V	PK
10	6705.247	-7.73	46.94	39.21	74.00	34.79	Pass	V	PK
11	9601.4401	-1.80	53.98	52.18	74.00	21.82	Pass	V	PK
12	13676.7118	5.36	42.00	47.36	74.00	26.64	Pass	V	PK

Page 34 of 52

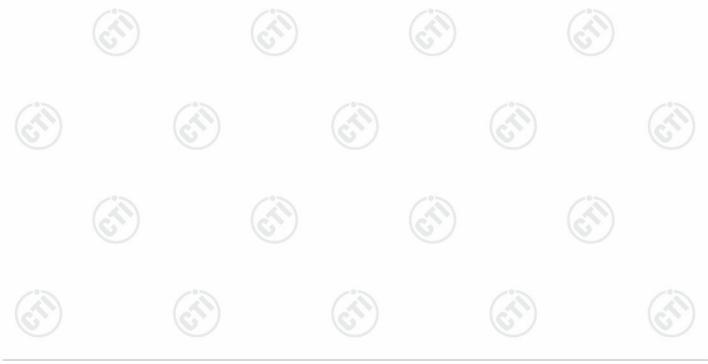
Mode	Mode:		π/4DQPSK Tra	nsmitting	Channel:		2441 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1163.0163	7.60	41.16	48.76	74.00	25.24	Pass	Н	PK
2	1757.2757	8.49	37.84	46.33	74.00	27.67	Pass	Н	PK
3	4879.1253	-13.46	51.71	38.25	74.00	35.75	Pass	Н	PK
4	5972.1981	-11.01	53.96	42.95	74.00	31.05	Pass	Н	PK
5	9975.465	-0.99	48.60	47.61	74.00	26.39	Pass	Н	PK
6	13773.7182	4.37	43.38	47.75	74.00	26.25	Pass	Н	PK
7	1203.6204	7.99	38.74	46.73	74.00	27.27	Pass	V	PK
8	1622.0622	8.11	37.26	45.37	74.00	28.63	Pass	V	PK
9	4879.1253	-13.46	52.66	39.20	74.00	34.80	Pass	V	PK
10	7778.3186	-4.15	47.04	42.89	74.00	31.11	Pass	V	PK
11	9757.4505	-3.40	53.69	50.29	74.00	23.71	Pass	V	PK
12	14188.7459	7.17	40.38	47.55	74.00	26.45	Pass	V	PK

Mode:		Т	π/4DQPSK Transmitting			Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1163.0163	7.60	41.90	49.50	74.00	24.50	Pass	Н	PK
2	1999.7	8.99	39.20	48.19	74.00	25.81	Pass	Н	PK
3	4956.1304	-13.36	51.64	38.28	74.00	35.72	Pass	Н	PK
4	6000.2	-10.93	57.10	46.17	74.00	27.83	Pass	Н	PK
5	9990.466	-0.87	50.12	49.25	74.00	24.75	Pass	Н	PK
6	14187.7458	7.18	40.61	47.79	74.00	26.21	Pass	Н	PK
7	1188.6189	7.87	38.25	46.12	74.00	27.88	Pass	V	PK
8	1691.2691	8.48	37.38	45.86	74.00	28.14	Pass	V	PK
9	4957.1305	-13.36	52.70	39.34	74.00	34.66	Pass	V	PK
10	7038.2692	-7.19	46.66	39.47	74.00	34.53	Pass	V	PK
11	9913.4609	-1.50	52.94	51.44	74.00	22.56	Pass	V	PK
12	14248.7499	6.77	41.32	48.09	74.00	25.91	Pass	V	PK

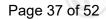
Page 35 of 52

Mode	Mode:		8DPSK Transm	itting	Channel:		2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1165.2165	7.62	42.12	49.74	74.00	24.26	Pass	Н	PK
2	1990.6991	8.99	40.50	49.49	74.00	24.51	Pass	Н	PK
3	3326.0217	-18.10	60.74	42.64	74.00	31.36	Pass	Н	PK
4	6000.2	-10.93	54.41	43.48	74.00	30.52	Pass	Н	PK
5	9991.4661	-0.86	49.31	48.45	74.00	25.55	Pass	Н	PK
6	14774.785	8.42	40.10	48.52	74.00	25.48	Pass	Н	PK
7	1164.4164	7.61	39.46	47.07	74.00	26.93	Pass	V	PK
8	1990.499	8.99	36.95	45.94	74.00	28.06	Pass	V	PK
9	4801.1201	-13.44	52.19	38.75	74.00	35.25	Pass	V	PK
10	7014.2676	-7.10	47.34	40.24	74.00	33.76	Pass	V	PK
11	9601.4401	-1.80	53.96	52.16	74.00	21.84	Pass	V	PK
12	14328.7552	6.30	41.78	48.08	74.00	25.92	Pass	V	PK

Mode	Mode:		8DPSK Transm	nitting	Channel:		2441 MHz		
NO	Freq. [MHz]	Facto [dB]	D	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1163.4163	7.60	42.08	49.68	74.00	24.32	Pass	Н	PK
2	1993.8994	8.99	39.39	48.38	74.00	25.62	Pass	Н	PK
3	4879.1253	-13.40	6 51.11	37.65	74.00	36.35	Pass	Н	PK
4	5999.1999	-10.9	3 55.40	44.47	74.00	29.53	Pass	Н	PK
5	6643.2429	-8.30	52.68	44.38	74.00	29.62	Pass	Н	PK
6	13710.714	4.97	42.55	47.52	74.00	26.48	Pass	Н	PK
7	1623.4623	8.12	38.50	46.62	74.00	27.38	Pass	V	PK
8	3862.0575	-17.03	3 52.14	35.11	74.00	38.89	Pass	V	PK
9	4879.1253	-13.40	51.92	38.46	74.00	35.54	Pass	V	PK
10	7813.3209	-3.95	46.24	42.29	74.00	31.71	Pass	V	PK
11	9757.4505	-3.40	54.67	51.27	74.00	22.73	Pass	V	PK
12	14771.7848	8.39	38.83	47.22	74.00	26.78	Pass	V	PK

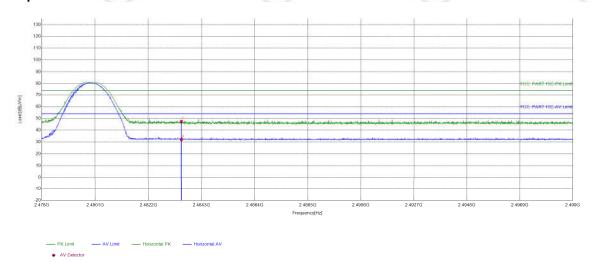


Page	36	of	52
raye	SU	OI	UZ


Mode	Mode:		BDPSK Transm	itting		Channel:		2480 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1165.6166	7.63	41.89	49.52	74.00	24.48	Pass	Н	PK
2	1662.2662	8.32	37.24	45.56	74.00	28.44	Pass	Н	PK
3	4957.1305	-13.36	51.17	37.81	74.00	36.19	Pass	Н	PK
4	5996.1997	-10.95	56.64	45.69	74.00	28.31	Pass	Н	PK
5	6654.2436	-8.18	54.18	46.00	74.00	28.00	Pass	Н	PK
6	9960.464	-1.12	49.81	48.69	74.00	25.31	Pass	Н	PK
7	1200.6201	8.00	38.27	46.27	74.00	27.73	Pass	V	PK
8	1705.8706	8.51	38.63	47.14	74.00	26.86	Pass	V	PK
9	3806.0537	-17.30	52.30	35.00	74.00	39.00	Pass	V	PK
10	4960.1307	-13.35	53.05	39.70	74.00	34.30	Pass	V	PK
11	9913.4609	-1.50	53.17	51.67	74.00	22.33	Pass	V	PK
12	13674.7116	5.38	42.71	48.09	74.00	25.91	Pass	V	PK

Remark:

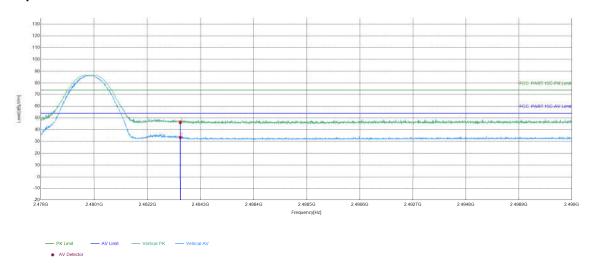
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Test plot as follows:

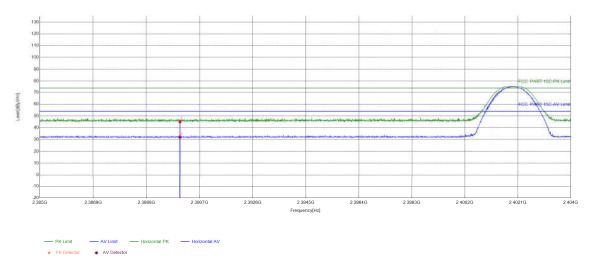
Test_Mode	GFSK Transmitting	Test_Frequency	2480
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		

	Suspecte	d List								
70.00	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	37.13	47.51	74.00	26.49	PASS	Horizontal	PK
	2	2483.5	10.38	21.77	32.15	54.00	21.85	PASS	Horizontal	AV



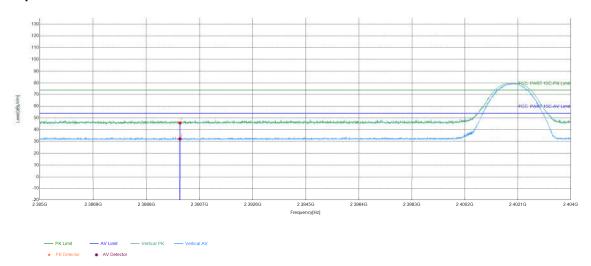


(43)		(4)	(43)	
Test_Mode	GFSK Transmitting	Test_Frequency	2480	
Tset_Engineer	chenjun	Test_Date	2024/06/12	7
Remark	1		(C)	1



Ì	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	35.76	46.14	74.00	27.86	PASS	Vertical	PK
	2	2483.5	10.38	23.06	33.44	54.00	20.56	PASS	Vertical	AV

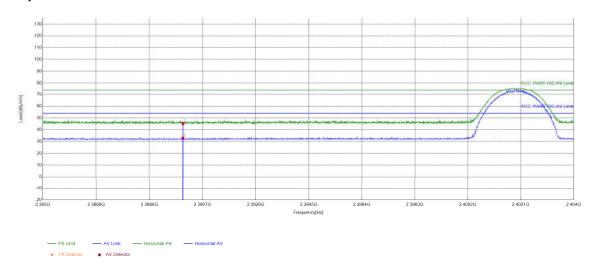
(43)	(4)	(-43)	(-63)
Test_Mode	GFSK Transmitting	Test_Frequency	2402
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		



0.7	Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
Ī	1	2390	9.96	35.25	45.21	74.00	28.79	PASS	Horizontal	PK	
	2	2390	9.96	22.12	32.08	54.00	21.92	PASS	Horizontal	AV	



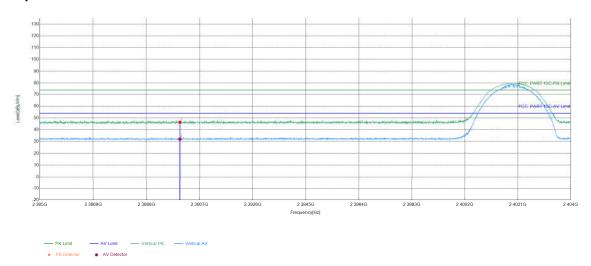
(43)		(4)	(43)	
Test_Mode	GFSK Transmitting	Test_Frequency	2402	
Tset_Engineer	chenjun	Test_Date	2024/06/12	7
Remark	1		(C)	1



S	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.81	45.77	74.00	28.23	PASS	Vertical	PK
	2	2390	9.96	22.32	32.28	54.00	21.72	PASS	Vertical	AV



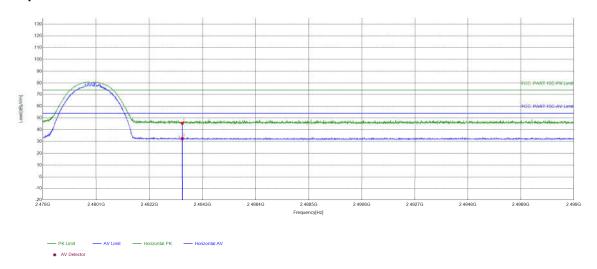
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		

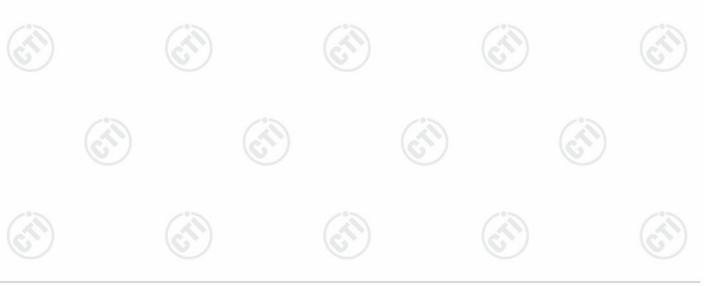


0.7	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2390	9.96	35.23	45.19	74.00	28.81	PASS	Horizontal	PK
	2	2390	9.96	22.81	32.77	54.00	21.23	PASS	Horizontal	AV



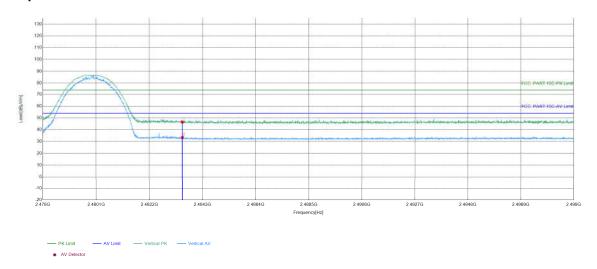
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		


Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	36.50	46.46	74.00	27.54	PASS	Vertical	PK
	2	2390	9.96	22.13	32.09	54.00	21.91	PASS	Vertical	AV



Page 43 of 52

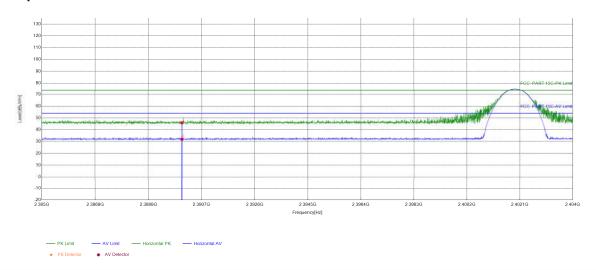
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		(C)


Suspected List										
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	35.22	45.60	74.00	28.40	PASS	Horizontal	PK
	2	2483.5	10.38	22.12	32.50	54.00	21.50	PASS	Horizontal	AV



Page	44	of	52
ı ayc		OI.	UZ

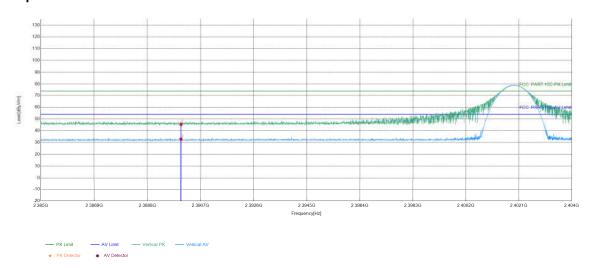
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		(C)



1	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ĺ	1	2483.5	10.38	36.15	46.53	74.00	27.47	PASS	Vertical	PK
	2	2483.5	10.38	23.00	33.38	54.00	20.62	PASS	Vertical	AV



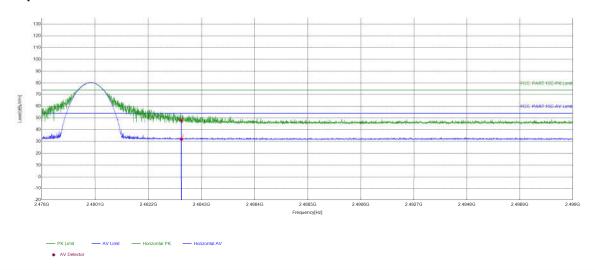
(43)	(-43)	(44)	(4)
Test_Mode	8DPSK Transmitting	Test_Frequency	2402
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		


3	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.93	45.89	74.00	28.11	PASS	Horizontal	PK
	2	2390	9.96	22.05	32.01	54.00	21.99	PASS	Horizontal	AV



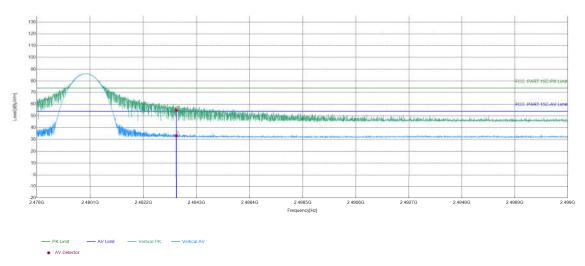
Page	46	of	52

(43)	(44)	(-43)	(-4.1)
Test_Mode	8DPSK Transmitting	Test_Frequency	2402
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	35.45	45.41	74.00	28.59	PASS	Vertical	PK
2	2390	9.96	22.93	32.89	54.00	21.11	PASS	Vertical	AV

Page	47	of	52
ı ago		01	02

	(-53)	(4)	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		


0.7	Suspected List									
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
Ī	1	2483.5	10.38	37.55	47.93	74.00	26.07	PASS	Horizontal	PK
	2	2483.5	10.38	21.74	32.12	54.00	21.88	PASS	Horizontal	AV

	(-53)	(4)	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480
Tset_Engineer	chenjun	Test_Date	2024/06/12
Remark	1		

Test Graph

0:	Suspecte	d List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	44.32	54.70	74.00	19.30	PASS	Vertical	PK
	2	2483.5	10.38	22.82	33.20	54.00	20.80	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix Bluetooth Classic

Refer to Appendix: Bluetooth Classic of EED32Q82147902

