

FCC RF EXPOSURE REPORT

FCC ID: 2AVMZ-X1

Test Report No	RF241223011-04-002
Product(s) Name:	Portable Wireless Speaker
Model(s)	X1 Speaker, X1-ANC (With Adjustable Noise Control), S-236D
Trade Mark	N/A
Applicant	Dongguan Shunlang Electronics Co., Ltd
Address	Floor 5, Building 2, Shenxiang Industrial Park, Dabandi Cuntou
	Community, Humen town, Dongguan city, China
Receipt Date	2024 12 27
	2024.12.27
Test Date	
	2024.12.28~2025.01.02
Test Date	2024.12.28~2025.01.02
Test Date	2024.12.28~2025.01.02 2025.01.02
Test Date	2024.12.28~2025.01.02 2025.01.02 CFR47 FCC Part 1: Section 1.1310;
Test Date	2024.12.28~2025.01.02 2025.01.02 CFR47 FCC Part 1: Section 1.1310; CFR47 FCC Part 2: Section 2.1093;

Prepared By:	Checked By:	Approved By:	Standard jo
Jason Huang	Black Ding	Tim Zhang	
Jason huang	Black Ding	7in.zhang	HAIYUN OF

History of this test report

Original Report Issue Date: 2024.01.02

• No additional attachment

$\, \odot \,$ Additional attachments were issued following record

Attachment No.	Issue Date	Description

1.. MPE CALCULATION METHOD

Limit

$$P_{\rm th} (\rm mW) = ERP_{20 \,\rm cm} (\rm mW) = \begin{cases} 2040f & 0.3 \,\rm GHz \le f < 1.5 \,\rm GHz \\ \\ 3060 & 1.5 \,\rm GHz \le f \le 6 \,\rm GHz \end{cases}$$
(B.1)

$$P_{\rm th} (\rm mW) = \begin{cases} ERP_{20 \,\rm cm} (d/20 \,\rm cm)^x & d \le 20 \,\rm cm \\ \\ ERP_{20 \,\rm cm} & 20 \,\rm cm < d \le 40 \,\rm cm \end{cases}$$
(B.2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20}\operatorname{cm}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Table B.2-Example Power Thresholds (mW)

	Distance (mm)										
		5	10	15	20	25	30	35	40	45	50
(z	300	39	65	88	110	129	148	166	184	201	217
(MHz)	450	22	44	67	89	112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
Frequency	1900	3	12	26	44	66	92	122	157	195	236
nbə	2450	3	10	22	38	59	83	111	143	179	219
Fn	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169
									1. C		

Calculation Method

 $ERP/EIRP = P_T + G_T - L_C$

ERP/EIRP is the equivalent (or effective) radiated power [in same units as P_T , typically dBW, dBm, or power spectral density (psd)], relative to either a dipole antenna (ERP) or an isotropic antenna (EIRP).

 P_T is the transmitter output power, in dBW, dBm, or psd (power over a specified reference bandwidth). G_T is the gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP).

L_C is the signal attenuation in the connecting cable between the transmitter and the antenna, in dB.

Table for Filed Antenna

For BT

Antenna gain	Antenna Type		
1.9dBi	PCB antenna		

2.. TEST RESULTS

Worst case as below

Mode	Output power to	Ant gain	EIRP	ERP	ERP(mw)	Distance	Pth (mW)	
wode	antenna (dBm)	(dBi)	(dBm)	(dBm)		(cm)	Fui (IIIVV)	
BDR+EDR	2.03	1.9	4.93	2.78	1.9	0.5	2.79	

Note:

- 1. ERP = EIRP −2.15 dB 2. 1.9mW<2.79mW

> Conclusion

The SAR evaluation is not required

Statement

- 1. The report is invalid without the official seal or special seal of Shenzhen Haiyun Standard Technology Co., Ltd. (hereinafter referred to as the unit).
- 2. The report is invalid without the signature of the approver.
- 3. The report is invalid if altered arbitrarily.
- 4. The report shall not be partially copied without the written approval of the unit.
- 5. The reported test results are only valid for the tested samples.
- If there is any objection to the test report, it shall be submitted to the test unit within 15 days from the date of receiving the report, and the overdue shall not be accepted.

Shenzhen Haiyun Standard Technology Co., Ltd.

Address: Room 110, 111, 112, 113, 115, 116, Block B, Jinyuan Business Building, No.

302, Xixiang Avenue, Labor Community, Xixiang Street, Baoan District, Shenzhen,

China

Tel: 0755-26024411

Email: service@hy-lab.cn

(END OF REPORT)